第06章 数据(A)
- 格式:ppt
- 大小:4.32 MB
- 文档页数:71
第17课时 数据的描述、分析(一)【知识梳理】1.掌握总体、个体、样本、样本容量四个基本概念;2.理解样本平均数、极差、方差、 标准差、中位数、众数.【例题精讲】例1.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环) 如下:8,6,10,7,9,则这五次射击的平均成绩是 环,中位数 环,极差是 环,方差是 环2.例2.已知样本x 1、x 2、x 3、x 4的平均数是2,则x 1+3、x 2+3、x 3+3、x 4+3的平均 数为 ; .已知样本x 1,x 2,x 3,…,x n 的方差是1,那么样本2x 1+3, 2x 2+3,2x 3+3,…,2x n +3的方差是 , 标准差是 . 例3.小明上学期六门科目的期末考试成绩(单位:分)分别是:120,115,x ,60,85,80.若平均分是93分,则x=_________,一组数据2,4,x ,2, 3,4的众数是2,则x = .例4.为了了解我市九年级学生中考数学成绩,从所有考生的试卷中抽取1000 份试卷进行统计分析,在这个问题中,样本是被抽取的1000名学生,则总体 是 ,个体是 , 样本是 ,样本容量是 .例5.某校九年级(1)班积极响应校团委的号召, 每位同学都向“希望工程”捐献图 书,全班40名同学共捐图书320册.特别值得一提的是李扬、王州两位同学在 父母的支持下各捐献了50册图书. 班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):⑴ 分别求出该班级捐献7册图书和8册图书的人数;⑵ 请算出捐书册数的平均数、中位数和众数, 并判断其中哪些统计量不能 反映该班同学捐书册数的一般状况,说明理由.【当堂检测】1.下列调查方式,合适的是( )A .要了解一批灯泡的使用寿命,采用普查方式.B .要了解淮安电视台“有事报道”栏目的收视率,采用普查方式.C .要保证“神舟六号”载人飞船成功发射,对重要零部件的检查采用抽查方式.D .要了解外地游客对“淮扬菜美食文化节”的满意度,采用抽查方式. 册数 4 5 6 7 8 50人数 6 8 15 22.刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的()A.众数B.方差C.平均数D.频数3.人民商场对上周女装的销售情况进行了统计,如下表所示:颜色黄色绿色白色紫色红色数量(件)100 180 220 80 550经理决定本周进女装时多进一些红色的,来解释这一现象的统计知识是( )A.平均数B.中位数C.众数D.方差4.下列调查方式中.不合适的是()A.了解2008年5月18日晚中央也视台“爱的奉献”抗震救灾文艺晚会的收视率,采用抽查的方式.B.了解某渔场中青鱼的平均重量,采用抽查的方式.C.了解某型号联想电脑的使用寿命,采用普查的方式.D.了解一批汽车的刹车性能,采用普查的方式.5.某校参加“姑苏晚报·可口可乐杯”中学生足球赛的队员的年龄如下(单位:岁):13,14,16,15,14,15,15,15,16,14,则这些队员年龄的众数是.6.在校园歌手大赛中,七位评委对某位歌手的打分如下:9.8,9.5,9.7,9.6,9.5,9.5,9.6,则这组数据的平均数是,极差是.7.数据1,3-,4,2-的方差2S=.8.江苏省《居住区供配电设施建设标准》规定,住房面积在120m2及以下的居民住宅,用电的基本配置容量(电表的最大功率)应为8千瓦.为了了解某区该类住户家用电器总功率情况,有关部门从中随机调查了50户居民,所得数据(均取整数)如下:家用电器总功率2 3 4 5 6 7(单位:千瓦)户数 2 4 8 12 16 8(1)这50户居民的家用电器总功率的众数是千瓦,中位数是千瓦;(2)若该区这类居民约有2万户,请你估算这2万户居民家用电器总功率的平均值;(3)若这2万户居民原来用电的基本配置容量都为5千瓦,现市供电部门拟对家用电器总功率已超过5千瓦用户的电表首批增容,改造为8千瓦,请计算该区首批增容的用户约有多少户?第18课时 数据的描述、分析(二)【知识梳理】1. 明确扇形图、条形图、折线统计图的区别与联系.【例题精讲】例1.下面是两户居民家庭全年各项支出的统计图.根据统计图,下列对两户教 育支出占全年总支出的百分比作出的判断中,正确的是( )A .甲户比乙户大 B.乙户比甲户大C .甲、乙两户一样大 D.无法确定哪一户大例2.在“不闯红灯,珍惜生命”活动中,文明中学的关欣和李好两位同学某天来 到城区中心的十字路口,观察、统计上午7:00~12:00中闯红灯的人次.制 作了如下的两个数据统计图.(1)求图(一)提供的五个数据(各时段闯红灯人次)的众数和平均数.(2)估计一个月(按30天计算)上午7:00~12:00在该十字路口闯红灯的未成年人约有________人次.(3)请你根据统计图提供的信息向交通管理部门提出一条合理化建议.例3.数学课上,年轻的刘老师在讲授“轴对称”时,设计了如下四种教学方法: ①教师讲,学生听;②教师让学生自己做;③教师引导学生画图,发现规律;④教师让学生对折纸,观察发现规律,然后画图.数学教研组长将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种,他随机抽取了60名学生的调查问卷,统计如图:(1)请将条形统计图补充完整,并计算扇形统计图中方法③的圆心角.(2)同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?(3)假如抽取的60名学生集中在某两个班,这个调查结果还合理吗?为什么?(4)请你对老师的教学方法提出一条合理化的建议.【当堂检测】1.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中 生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A 组:0.5h t <;B 组:0.5h≤t <1hC 组:1h 1.5h t <≤D 组: 1.5h t ≥请根据上述信息解答下列问题:(1)C 组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该辖区约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?2.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A .中位数B .众数C .平均数D .极差3.有一组数据如下:3、a 、4、6、7,它们的平均数是5,那么这组数据的方差是( )A.10B.10C.2D.2第19课时 概率问题及其简单应用(一)【知识梳理】1.了解频数、频率、必然事件和不可能事件、确定事件、随机事件、频率的稳定性等概念,并能进行有效的解答或计算.2.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件.3.必然事件发生的概率是1,记作P (A )=1不可能事件发生的概率为0,记作 P (A )=0随机事件发生的概率是0和1之间的一个数,即0<P (A )<1【例题精讲】例1.下列事件中是必然事件的是( )A.明天我市天气晴朗B.两个负数相乘,结果是正数C.抛一枚硬币,正面朝下D.在同一个圆中,任画两个圆周角,度数相等 例2.在一次抽奖游戏中,主持人说,这次中奖的可能性有10%,就是说100个人中有10个人可以获奖.旁边的一个人就想,我在这儿等着,等前面的90个人抽完,看看他们抽到奖没有,如果他们没有抽到奖,那我就可以抽到奖了.因为中奖的可能性是10%.你说这个人的想法对吗?例3.某中学为促进课堂教学,提高教学质量,对七年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了“频率分布表”和“频数分布条形图”(如图2).请你根据图表中提供的信息,解答下列问题. 频率分布表:代号 教学方式 最喜欢的频数 频率1 老师讲,学生听 200.102 老师提出问题,学生探索思考 1003 学生自行阅读教材,独立思考 30 0.154 分组讨论,解决问题 0.25(1)补全“频率分布表”;(2)在“频数分布条形图”中,将代号为“4”的部分补充完整;(3)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由.(字数在20字以内)【当堂检测】1.下列事件你认为是必然事件的是()A.中秋节的晚上总能看到圆圆的月亮; B.明天是晴天C.打开电视机,正在播广告; D.太阳总是从东方升起2.将五张分别画有等边三角形、平行四边形、矩形、等腰梯形、正六边形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张卡片,图形一定是中心对称图形的概率是()A.15B.25C.35D.453.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12B.9C.4D.34.在中考体育达标跳绳项目测试中,1min跳160次为达标,•小敏记录了他预测时,1min跳的次数分别为145,155,140,162,164,•则他在该次预测中达标的概率是_________.5.有一道四选一的选择题,某同学完全靠猜测获得结果,则这个同学答对的概率是________.6.在一所4000人的学校随机调查了100人,其中有76人上学之前吃早饭,•在这所学校里随便问一个人,上学之前吃过早餐的概率是________.7. 书架上有数学书3本,英语书2本,语文书5本,从中任意抽取一本是数学书的概率是()A.110B.35C.310D.158.小华与小丽设计了A B,两种游戏:游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.第20课时概率问题及其简单应用(二)【知识梳理】1.频数、频率、概率:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率)总是在一个固定数值附近摆动,这个固定数值就叫随机事件发生的概率,概率的大小反映了随机事件发生的可能性的大小.2.概率的性质:P(必然事件)= 1,P(不可能事件)= 0,0<P(不确定事件)<1.【例题精讲】例1.小明、小华用4张扑克牌(方块2,黑桃4,黑桃5,•梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,•抽出的牌不放回.(1)若小明恰好抽到了黑桃4.①请在下边框中绘制这种情况的树状图;②求小华抽出的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌面数字比小华的大,则小明胜;反之,•则小明负,你认为这个游戏是否公平?说明你的理由.例2 张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘).王伟的方案是:从一副扑克牌中取出方块1、2、3,将它们背面朝上重新洗牌后,从中摸出一张,记录下牌面数字后放回,洗匀后再摸出一张.若摸出两张牌面数字之和为奇数,则张红得到入场劵;若摸出两张牌面数字之和为偶数,则王伟得到入场券.(1)计算张红获得入场券的概率,并说明张红的方案是否公平?(2)用树状图(或列表法)列举王伟设计方案的所有情况,计算王伟获得入场券的概率,并说明王伟的方案是否公平?马 卒卒 炮 马 卒 马 图(1) 图(2) 【当堂检测】1.某校九年级三班在体育毕业考试中,全班所有学生得分的情况如下表,那么该班共有_______人,随机地抽取l 人,恰好是获得30分的学生的概率是_______,从表中你还能获取的信息是________(写出一条即可)2.完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m 、n ,以m 、n 分别作为一个点的横坐标与纵坐标,求点(m ,n )不在第二象限的概率.(用树状图或列表法求解)3.如图的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是 .4.掷2枚1元钱的硬币和3枚1角钱的硬币,1枚1元钱的硬币和至少1枚1角钱的硬币的正面朝上的概率是 .5.小红、小明、小芳在一起做游戏时需要确定做游戏的先后顺序,他们约定用 “剪子、包袱、锤子”的方式确定,问在一个回合中三个人都出包袱的概率是____6.图(2)是中国象棋棋盘的一部分,图中红方有两个马,黑方有三个卒子和 一个炮,按照中国象棋中马的行走规则(马走日字,例如:按图(1)中的箭头 方向走),红方的马现在走一步能吃到黑方棋子的概率是多少?。
弯曲应力6-1 求图示各梁在m -m 截面上A 点的正应力和危险截面上最大正应力。
题 6-1图解:(a )m KN M m m ⋅=-5.2 m KN M ⋅=75.3max48844108.49064101064m d J x --⨯=⨯⨯==ππMPa A 37.20108.490104105.2823=⨯⨯⨯⨯=--σ (压)MPa 2.38108.4901051075.3823max =⨯⨯⨯⨯=--σ (b )m KN M m m ⋅=-60 m KN M ⋅=5.67max488331058321210181212m bh J x --⨯=⨯⨯== MPa A 73.611058321061060823=⨯⨯⨯⨯=--σ (压) MPa 2.104105832109105.67823max =⨯⨯⨯⨯=--σ (c )m KN M m m ⋅=-1 m KN M ⋅=1max48106.25m J x -⨯=36108.7m W x -⨯=cm y A 99.053.052.1=-=MPa A 67.38106.251099.0101823=⨯⨯⨯⨯=--σ (压) MPa 2.128106.2510183max =⨯⨯=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。
解:)1(32431απ-=D W x⎪⎭⎫ ⎝⎛-⨯⨯⨯=-463)64(110326π 361002.17m -⨯=3463321021.213210632m D W x --⨯=⨯⨯==ππMPa 88.521002.17109.0631=⨯⨯=-σ MPa 26.551021.2110172.1631=⨯⨯=-σ MPa 26.55max =σ6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。
试求梁内最大拉应力与最大压应力。
已知I z =10170cm 4,h 1=,h 2=。
(新教材)人教A版数学选择性必修第三册单元测试第六章计数原理(A卷基础卷)考试时间:100分钟;学校:___________姓名:___________班级:___________考号:___________一.选择题(共8小题)1.(2020春•河西区期中)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,则不同的选法种数是()A.9 B.10 C.20 D.402.(2020春•和平区校级期末)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.16种B.18种C.24种D.36种3.(2020春•通州区期末)甲、乙等7人排成一排,甲在最中间,且与乙不相邻,那么不同的排法种数是()A.96 B.120 C.360 D.4804.(2020春•重庆期末)有6名医生到3个医院去作新冠肺炎治疗经验交流,则每个医院至少去一名的不同分派方法种数为()A.216 B.729 C.540 D.4205.(2020•北京)在(2)5的展开式中,x2的系数为()A.﹣5 B.5 C.﹣10 D.106.(2020•济宁模拟)在的展开式中,常数项为()A.B.C.D.7.(2020春•天津期末)若(n∈N*)的展开式中常数项为第9项,则n的值为()A.7 B.8 C.9 D.108.(2020春•东城区期末)若从1,2,3,…,9这9个整数中同时取3个不同的数,其和为奇数,则不同的取法共有()A.36种B.40种C.44种D.48种9.(2020春•东海县期中)下列各式中,等于n!的是()A.A B.A C.nA D.m!C10.(2020春•常州期中)若的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为()A.第3项B.第4项C.第5项D.第6项11.(2019春•日照期中)将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有多少种?下列结论正确的有()A.C C C C B.C AC.C C A D.1812.(2020春•宝应县期中)若(2x+1)10=a0+a1x+a2x2+…a10x10,x∈R,则()A.a0=1 B.a0=0C.a0+a1+a2+…+a10=310D.a0+a1+a2+…+a10=3三.填空题(共4小题)13.(2020•上城区校级模拟)在二项式的展开式中,二项式系数之和是,含x4的项的系数是.14.(2020•甘肃模拟)某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学、各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有种.15.(2020春•南郑区校级期中)中国古代中的“礼、乐、射、御、书、数”合称“六艺”“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射“和“御“两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有种.16.(2020春•西城区校级期中)设有编号为1,2,3,4,5的五把锁和对应的五把钥匙.现给这5把钥匙也分别贴上编为1,2,3,4,5的五个标签,则有种不同的姑标签的方法;若想使这5把钥匙中至少有2把能打开贴有相同标签的锁,则有种不同的贴标签的方法.(用数字作答)17.(2019春•武汉期中)现有5本书和3位同学,将书全部分给这三位同学.(1)若5本书完全相同,每个同学至少有一本书,共有多少种分法?(2)若5本书都不相同,共有多少种分法?(3)若5本书都不相同,每个同学至少有一本书,共有多少种分法?18.(2019春•黄浦区校级期中)从6名男医生和3名女医生中选出5人组成一个医疗小组,请解答下列问题:(1)如果这个医疗小组中男女医生都不能少于2人,共有多少种不同的建组方案?(用数字作答)(2)男医生甲要担任医疗小组组长,所以必选,而且医疗小组必须男女医生都有,共有多少种不同的建组方案?(3)男医生甲与女医生乙不被同时选中的概率.(化成最简分数)19.(2020春•栖霞市月考)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排4人,后排3人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.20.(2019春•台州期末)已知(1+x)n的展开式中第4项和第8项的二项式系数相等.(Ⅰ)求n的值和这两项的二项式系数;(Ⅱ)在(1+x)3+(1+x)4+…+(1+x)n+2的展开式中,求含x2项的系数(结果用数字表示).21.(2020•南通模拟)已知(1+2x)n=a0+a1x+a2x2+…+a n x n(n∈N*).(1)当n=6时,求a0+a2+a4+a6的值;(2)化简:C22k.(新教材)人教A版数学选择性必修第三册单元测试:第六章计数原理(A卷基础卷)参考答案与试题解析一.选择题(共8小题)1.(2020春•河西区期中)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,则不同的选法种数是()A.9 B.10 C.20 D.40【解答】解:利用第一种方法有:种,利用第二种方法有:种方法.、故共有:5+4=9种完成工作.故选:A.2.(2020春•和平区校级期末)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.16种B.18种C.24种D.36种【解答】解:由题意知,甲丙的位置固定,先排乙,再把剩余的节目全排列,故台晚会节目演出顺序的编排方案共有有A31A33=18种.故选:B.3.(2020春•通州区期末)甲、乙等7人排成一排,甲在最中间,且与乙不相邻,那么不同的排法种数是()A.96 B.120 C.360 D.480【解答】解:从出甲乙之外的5人中选2人排在甲的两边并和甲相邻,剩下的全排即可,故有A52A44=480种,故选:D.4.(2020春•重庆期末)有6名医生到3个医院去作新冠肺炎治疗经验交流,则每个医院至少去一名的不同分派方法种数为()A.216 B.729 C.540 D.420【解答】解:根据题意,分2步进行计算:①先将6名医生分为3组,若分为1、1、4的三组,有C64=15种分组方法,若分为1、2、3的三组,有C63C32=60种分组方法,若分为2、2、2的三组15种分组方法,则有15+60+15=90种分组方法;②将分好的三组对应三个医院,有A33=6种情况,则每个医院至少去一名的不同分派方法种数为90×6=540种;故选:C.5.(2020•北京)在(2)5的展开式中,x2的系数为()A.﹣5 B.5 C.﹣10 D.10【解答】解:(2)5的展开式中,通项公式为T r+1•(﹣2)r•,令2,求得r=1,可得x2的系数为•(﹣2)=﹣10,故选:C.6.(2020•济宁模拟)在的展开式中,常数项为()A.B.C.D.【解答】解:因为(x)6的通项公式为:T r+1•x6﹣r•()r=()r••x6﹣2r;6﹣2r=0时,r=3;6﹣2r=﹣1时,r不存在;∴的展开式中,常数项为:()3•3;故选:A.7.(2020春•天津期末)若(n∈N*)的展开式中常数项为第9项,则n的值为()A.7 B.8 C.9 D.10【解答】解:∵(n∈N*)的展开式中的第9项T9•(﹣3)8•2n﹣8•x2n﹣20为常数项,故有2n﹣20=0,∴n=10,故选:D.8.(2020春•东城区期末)若从1,2,3,…,9这9个整数中同时取3个不同的数,其和为奇数,则不同的取法共有()A.36种B.40种C.44种D.48种【解答】解:根据题意,将9个数分为2组,一组为奇数:1、3、5、7、9,一组为偶数:2、4、6、8,若取出的3个数和为奇数,分2种情况讨论:①取出的3个数全部为奇数,有C53=10种情况,②取出的3个数有1个奇数,2个偶数,有C51C42=30种情况,则和为奇数的情况有10+30=40种.故选:B.二.多选题(共4小题)9.(2020春•东海县期中)下列各式中,等于n!的是()A.A B.A C.nA D.m!C【解答】解:n!,A正确;(n+1)!,B错误;n n•(n﹣1)!=n!,C正确;m!m!•n!,D错误;故选:AC.10.(2020春•常州期中)若的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为()A.第3项B.第4项C.第5项D.第6项【解答】解:∵的展开式中第3项与第8项的系数相等,∴;所以n=9,则展开式中二项式系数最大的项为第五项和第六项;故选:CD.11.(2019春•日照期中)将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有多少种?下列结论正确的有()A.C C C C B.C AC.C C A D.18【解答】解:根据题意,四个不同的小球放入三个分别标有1〜3号的盒子中,且没有空盒,则三个盒子中有1个中放2个球,剩下的2个盒子中各放1个,有2种解法:(1)分2步进行分析:①、先将四个不同的小球分成3组,有C42种分组方法;②、将分好的3组全排列,对应放到3个盒子中,有A33种放法;则没有空盒的放法有C A种;(2)分2步进行分析:①、在4个小球中任选2个,在3个盒子中任选1个,将选出的2个小球放入选出的小盒中,有C C种情况②、将剩下的2个小球全排列,放入剩下的2个小盒中,有A22种放法;则没有空盒的放法有C C A22种;故选:BC.12.(2020春•宝应县期中)若(2x+1)10=a0+a1x+a2x2+…a10x10,x∈R,则()A.a0=1 B.a0=0C.a0+a1+a2+…+a10=310D.a0+a1+a2+…+a10=3【解答】解:因为(2x+1)10=a0+a1x+a2x2+…a10x10,x∈R,令x=0可得:a0=1;令x=1可得a0+a1+a2+…a10=310;故选:AC.三.填空题(共4小题)13.(2020•上城区校级模拟)在二项式的展开式中,二项式系数之和是32,含x4的项的系数是10.【解答】解:在二项式的展开式中,二项式系数之和是25=32,通项公式为T r+1•(﹣1)r•x10﹣3r,令10﹣3r=4,求得r=2,可得含x4的项的系数是10,故答案为:32;10.14.(2020•甘肃模拟)某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学、各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有种1344.【解答】解:从生物、历史、地理、政治四科中选排一节,有4种方法,若数学排第一节,则英语可以排3,4,5,6节,其余全排列,此时有4×A,若数学排第二节,则英语可以排4,5,6节,其余全排列,此时有3×A,若数学排第三节,则英语可以排1,5,6节,其余全排列,此时有3×A,若数学排第四节,则英语可以排1,2,5,6节,其余全排列,此时有4×A,则共有4(4×A3×A3×A4×A)=4×14×A4×14×24=1344,故答案为:134415.(2020春•南郑区校级期中)中国古代中的“礼、乐、射、御、书、数”合称“六艺”“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射“和“御“两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有120种.【解答】解:根据题意,“数”必须排在前三节,据此分3种情况讨论:①“数”排在第一节,“射“和“御“两门课程联排的情况有4×A22=8种,剩下的三门课程有A33=6种情况,此时有8×6=48种排课顺序;②“数”排在第二节,“射“和“御“两门课程联排的情况有3×A22=6种,剩下的三门课程有A33=6种情况,此时有6×6=36种排课顺序;③“数”排在第三节,“射“和“御“两门课程联排的情况有3×A22=6种,剩下的三门课程有A33=6种情况,此时有6×6=36种排课顺序;则有48+36+36=120种排课顺序;故答案为:12016.(2020春•西城区校级期中)设有编号为1,2,3,4,5的五把锁和对应的五把钥匙.现给这5把钥匙也分别贴上编为1,2,3,4,5的五个标签,则有120种不同的姑标签的方法;若想使这5把钥匙中至少有2把能打开贴有相同标签的锁,则有31种不同的贴标签的方法.(用数字作答)【解答】解:根据题意,现给这5把钥匙也贴上编号为1,2,3,4,5的五个标签,则有A55=120种不同的贴标签的方法:若这5把钥匙中至少有2把能打开贴有相同标签的锁,分3种情况讨论:①5把都可以打开贴有相同标签的锁,即5个标签全部贴对,有1种贴标签的方法;②5把钥匙中有3把可以打开贴有相同标签的锁,即有3个标签贴对,有C53=10种贴标签的方法;③5把钥匙中有2把可以打开贴有相同标签的锁,即有2个标签贴对,有2C52=20种贴标签的方法;则一共有1+10+20=31种贴标签的方法;故答案为:120,31.四.解答题(共5小题)17.(2019春•武汉期中)现有5本书和3位同学,将书全部分给这三位同学.(1)若5本书完全相同,每个同学至少有一本书,共有多少种分法?(2)若5本书都不相同,共有多少种分法?(3)若5本书都不相同,每个同学至少有一本书,共有多少种分法?【解答】解:(1)根据题意,若5本书完全相同,将5本书排成一排,中间有4个空位可用,在4个空位中任选2个,插入挡板,有C42=6种情况,即有6种不同的分法;(2)根据题意,若5本书都不相同,每本书可以分给3人中任意1人,都有3种分法,则5本不同的书有3×3×3×3×3=35=243种;(3)根据题意,分2步进行分析:①将5本书分成3组,若分成1、1、3的三组,有C53=10种分组方法,若分成1、2、2的三组,有15种分组方法,则有10+15=25种分组方法;②将分好的三组全排列,对应3名学生,有A33=6种情况,则有25×6=150种分法.18.(2019春•黄浦区校级期中)从6名男医生和3名女医生中选出5人组成一个医疗小组,请解答下列问题:(1)如果这个医疗小组中男女医生都不能少于2人,共有多少种不同的建组方案?(用数字作答)(2)男医生甲要担任医疗小组组长,所以必选,而且医疗小组必须男女医生都有,共有多少种不同的建组方案?(3)男医生甲与女医生乙不被同时选中的概率.(化成最简分数)【解答】解:(1)根据条件可知有以下两种情况:①选两个男医生和三个女医生,有C•C15种建组方案;②选三个男医生和两个女医生,有C•C60种建组方案;故共有15+60=75种不同的建组方案.(2)男医生甲要担任医疗小组组长,所以必选,而且医疗小组必须男女医生都有,若选2男3女,甲必选,则还需要在5名男医生选1名,有5种建组方案;若选3男2女,甲必选,则还需要在5名男医生选2名,有30种建组方案;若选4男1女,甲必选,则还需要在5名男医生选3名,有30种建组方案;则共有5+30+30=65种组建方案.(3)6名男医生和3名女医生中选出5人组成一个医疗小组,有126种组建方法,若男医生甲与女医生乙被同时选中,则有35种方法,则男医生甲与女医生乙不被同时选中的方法有126﹣35=91种,则男医生甲与女医生乙不被同时选中的概率P.19.(2020春•栖霞市月考)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排4人,后排3人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.【解答】解:(1)根据题意,有3名男生、4名女生,共7人,从中选出5人排成一排,有A75=2520种排法;(2)根据题意,前排4人,有A74种排法,后排3人,有A33种排法,则有A74×A33=5040种排法;(3)根据题意,甲不站排头也不站排尾,有5种情况,将剩下的6人全排列,有A66种排法,则有5×A66=3600种排法;(4)根据题意,将4名女生看成一个整体,有A44种排法,将这个整体与3名男生全排列,有A44种排法,则有A44×A44=576种排法;(5)根据题意,先排4名女生,有A44种排法,排好后有5个空位,在5个人空位中任选3个,安排3名男生,有A53种排法,则有A44×A53=1440种排法.20.(2019春•台州期末)已知(1+x)n的展开式中第4项和第8项的二项式系数相等.(Ⅰ)求n的值和这两项的二项式系数;(Ⅱ)在(1+x)3+(1+x)4+…+(1+x)n+2的展开式中,求含x2项的系数(结果用数字表示).【解答】解:(Ⅰ)因为,所以n=10,所以120,故两项的二项式系数120.(Ⅱ)含x2项的系数为285,故答案为:285.21.(2020•南通模拟)已知(1+2x)n=a0+a1x+a2x2+…+a n x n(n∈N*).(1)当n=6时,求a0+a2+a4+a6的值;(2)化简:C22k.【解答】解:(1)当n=6时,令x=1,则(1+2)6=36=a0+a1+a2+a3+a4+a5+a6①,令x=﹣1,则(1﹣2)6=1=a0﹣a1+a2﹣a3+a4﹣a5+a6②,①+②得,;(2)③,④,③+④得,,即.。
第6章广义表z6.1 广义表的基本概念z6.2 广义表的存储结构z6.3 广义表的操作算法16.1 广义表的基本概念广义表(列表)的概念-n( ≥0 )个表元素组成的有限序列,记作LS= ( a1, a1, a2, …, a n)LS是表名,a i是表元素,它可以是单个元素(称为原子) ,可以是表(称为子表) 。
n为表的长度。
n= 0 的广义表为空表。
n> 0时,表的第一个表元素称为广义表的表头(head),除此之外,其它表元素组成的表称为广义表的表尾(tail)。
2广义表举例:(1)A=()(2)B=(e)(3)C=(a, (b, c, d) )(4)D=(A,B,C)(5)E= (a , E)9任意一个非空广义表,均可分解为表头和表尾。
9对于一个非空广义表,其表头可能是原子,也可能是子表;而表尾一定是子表。
3广义表的基本操作:•结构的创建和销毁InitGList(&L); DestroyGList(&L); CreateGList(&L, S); CopyGList(&T, L);•状态函数GListLength(L); GListDepth(L);GListEmpty(L); GetHead(L); GetTail(L);•插入和删除操作InsertFirst_GL(&L, e);DeleteFirst_GL(&L, &e);•遍历Traverse_GL(L, Visit());66. 2 广义表的存储结构z由于广义表中的元素不是同一类型,因此难以用顺序结构表示,通常采用链接存储方法存储广义表,并称之为广义链表。
z由于广义表中有两种数据元素,原子或子表,因此,需要两种结构的结点:一种是表结点,一种是原子结点。
z下面介绍一种广义表的链式存储结构。
78扩展的线性链表表示法:-子表结点由三个域组成:标志域、表头指针域和指向下一个元素的指针域;-原子结点的三个域为:标志域、值域和指向下一个元素的指针域。