数学建模第二章作业答案章绍辉
- 格式:doc
- 大小:545.00 KB
- 文档页数:25
15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++03032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1)由量纲i P 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数.16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(210010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g l t =1π, )(21πϕπ=, 2/12/12mg kl =π ∴)(2/12/1mg kl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1g m l k g l t '''='ϕ 当无量纲量l l mm '='时, 就有 ll l g g l tt '=⋅'='. (三)2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周⎩⎨⎧==---22/112/112/12/1ππk g m l g tl期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆i Ti i t TT r k c dt t g c t g c 1022022))()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kTT r k r c 2)(2⋅-=于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的.总费用函数()x c b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b kc b b b c kbc x ββ)1(2)1()1(223221+++++=1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0 .01,1单调减少时当t i dtdis s ∴-σσ.0)(lim .0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s,1,10 dtdit s s σσσ从而则若 ()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 (七)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()(记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h 即 )1(max Nxrx h -=, 易得 2*0N x = 此时 4rN h =, 但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln'=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. Ex()x f3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点; ② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=nm n m D 21112 当mn2较小,1 n 时,有 ()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈E D -=1 , mnE 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为nq ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 ()1122--+=⋅+⋅n n n nnpq q m npqm q m于是带走产品的平均数是 ()122-+-n n npqq m m , 未带走产品的平均数是 ()()122-+--n n npqq m m n )∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n npq q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111m n n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'm n n D ---≈当1 n 时,并令'1'D E -=,则 226'm n E ≈④ 两种办法的比较:由上知:mnE 4≈,226'm n E ≈ ∴ m n E E 32/'=,当n m 时,132 mn, ∴ E E '. 所以第二种办法比第一种办法好.2.一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)? 解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r n nr r n r r f 7))(4(7)( 收益的期望值为G(n) =∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值.G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.5.某工厂生产甲、乙两种产品,生产每件产品需要原材料、能源消耗、劳动力及所获利润如下表所示:品种 原材料 能源消耗(百元)劳动力(人)利润(千元)甲 2 1 4 4 乙3625现有库存原材料1400千克;能源消耗总额不超过2400百元;全厂劳动力满员为2000人.试安排生产任务(生产甲、乙产品各多少件),使利润最大,并求出最大利润.解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S.则此问题的数学模型为Zy x y x y x y x y x t s y x S ∈≥≥≤+≤+≤++=,,0,020********6140032..54max模型的求解:用图解法.可行域为:由直线,0200024:24006:140032:3:21===+=+=+y x y x l y x l y x l 及组成的凸五边形区域.直线C y x l =+54:在此凸五边形区域内平行移动. 易知:当l 过31l l 与的交点时,S 取最大值. 由⎩⎨⎧=+=+200024140032y x y x 解得:200,400==y x260020054004max =⨯+⨯=S (千元).故安排生产甲产品400件、乙产品200件,可使利润最大,其最大利润为2600千元. 7.深水中的波速v 与波长λ、水深d 、水的密度ρ和重力加速度g 有关,试用量纲分析方法给出波速v 的表达式.解:设v ,λ,d ,ρ,g 的关系为),,,,(g d v f ρλ=0.其量纲表达式为[v ]=LM 0T -1,[λ]=LM 0T 0,[d ]=LM 0T 0,[ρ]=L -3MT 0, [g ]=LM 0T -2,其中L ,M ,T 是基本量纲.---------4分量纲矩阵为A=)()()()()()()()(200010100013111g d v T M L ρλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧===+-++02y - y -0 y 03y y 51454321y y y 的基本解为1y =),21,0,0,21,1(--2y =)0,0,1,1,0(- 由量纲i P 定理 得 ⎪⎩⎪⎨⎧==---2112121πλπλd g v∴g v λ=1π, )(21πϕπ=, λπd =2)(λϕλd g v =∴,其中ϕ是未定函数 .。
第二章 习题二1.(1)按照“两秒准则”表明前后车距与车速成正比,这和“一车长度准则”是类似的。
在2.2节的基础上引入下面的符号: D ~前后车距(m ) v ~车速(m/s )K ~按照“两秒准则”,D 与v 之间的比例系数(s ),在“两秒准则”中,K=2 于是“两秒准则”的数学模型为(2)D K v K =⨯=而刹车距离的数学模型为212d kv k v =+ 要考虑“两秒准则”是否安全,即要比较D 与d 的大小212d D kv k v K v -=+-⨯(1) 代入k 1=0.75v ,k 2=0.082678,K=2,所以当d>D ,即刹车距离的理论大于前后车距时,认为不够安全;当d<D ,即刹车距离的理论小于前后车距时,认为足够安全。
计算得到当速度超过15.12 m/s 时,“两秒准则”就不安全了,也就是说“两秒准则”适用于车速不是很快的情况。
另外,还可以通过绘图直观解释为什么“两秒准则”不够安全,用以下程序把刹车距离实测数据与“两秒准则”都画在同一幅图中:v=(20:5:80).*0.44704;d2=[18,25,36,47,64,82,105,132,162,196,237,283,334 22,31,45,58,80,103,131,165,202,245,295,353,41820,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376]; d2=0.3048.*d2;k1=0.75; k2=0.082678; K=2; d1=[v;v;v].*k1;d=d1+d2;plot([0,40],[0,K*40],'k')hold onplot(0:40,polyval([k2,k1,0],0:40),':k')plot([v;v;v],d,'ok')title('比较刹车距离实测数据、理论值和两秒准则')legend('两秒准则','刹车距离理论值',...'刹车距离的最小值、平均值和最大值',2)xlabel('车速v(m/s)')ylabel('距离(m)')hold off(2)“两秒准则”的不安全性在于,其刹车距离随着车速增长的速度赶不上理论刹车距离的增长速度,为此我们提出一个“t秒准则”,通过不断增加t的值使得刹车距离总是大于理论刹车距离。
数学建模章绍辉版作业 Last revised by LE LE in 2021第四章作业第二题:针对严重的交通情况,国家质量监督检验检疫局发布的国家标准,车辆驾驶人员血液中的酒精含量大于或等于20mg/100ml,小于80mg/100ml 为饮酒驾车,血液中的酒精含量大于或等于80mg/100ml 的为醉酒驾车。
下面分别考虑大李在很短时间内和较长时间内(如2个小时)喝了三瓶啤酒,多长时间内驾车就会违反新的国家标准。
1、 问题假设大李在短时间内喝下三瓶啤酒后,酒精先从吸收室(肠胃)吸收进中心室(血液和体液),然后从中心室向体外排除,忽略喝酒的时间,根据生理学知识,假设(1) 吸收室在初始时刻t=0时,酒精量立即为032D;在任意时刻,酒精从吸收室吸收进中心室的速率(吸收室在单位时间内酒精含量的减少量)与吸收室的酒精含量成正比,比例系数为1k ;(2) 中心室的容积V 保持不变;在初始时刻t=0时,中心室的酒精含量为0;在任意时刻,酒精从中心室向体外排除的速率(中心室在单位时间内酒精含量的减少量)与中心室的酒精含量成正比,比例系数为2k ;(3) 在大李适度饮酒没有酒精中毒的前提下,假设1k 和2k 都是常量,与饮酒量无关。
2、 符号说明酒精量是指纯酒精的质量,单位是毫克;酒精含量是指纯酒精的浓度,单位是毫克/百毫升; ~t 时刻(小时);()~x t 在时刻t 吸收室(肠胃)内的酒精量(毫克);0~D 两瓶酒的酒精量(毫克);(t)~c 在时刻t 吸收室(血液和体液)的酒精含量(毫克/百毫升); 2()~c t 在时刻t 中心室(血液和体液)的酒精含量(毫克/百毫升);~V 中心室的容积(百毫升);1~k 酒精从吸收室吸收进中心室的速率系数(假设其为常数);2~k 酒精从中心室向体外排除的速率系数(假设其为常数);3~k 在短时间喝下三瓶酒的假设下是指短时间喝下的三瓶酒的酒精总量除以中心室体积,即03/2D V ;而在较长时间内(2小时内)喝下三瓶酒的假设下就特指03/4D V . 3、 模型建立和求解(1) 酒是在很短时间内喝的:记喝酒时刻为0t =(小时),设(0)0c =,可用()2113212()k t k t k k c t e e k k --=--来计算血液中的酒精含量,此时12k k 、为假设中所示的常数,而033155.792D k V ⎛⎫== ⎪⎝⎭.下面用MATLAB 程序画图展示血液中酒精含量随时间变化并且利用fzero 函数和fminbnd 函数来得到饮酒驾车醉酒驾车对应的时间段,以及血液中酒精含量最高的时刻。
数学建模第二章课后习题第5题参考答案5.(1)at m me w w w w w t w --+=)()(000,要使,只需。
联系:在目前的情况下,当时,两个模型中猪的体重的变化都一样,当时,新的假设中猪的体重增长的比较快,当时,新的假设猪的体重增长的比较慢。
因为,所以函数为增函数,即当t 增大时,猪的体重会随着增加,这与原来的假设是一致的。
两个假设都满足'(0)w r =,在最佳出售时机附近误差微小。
区别:150200250300当a=1/60时两个假设模型的比较由图可知,新假设是阻滞增长模型,体重w 是t 的增函数,体重增加的速率先快后慢,时间充分长后,体重趋于w m 。
而原假设w(t)=0w +rt 只假设体重匀速增加。
从长时间来看,新假设比原假设更符合实际。
(2) 则t 天之后比现在出售多赚的纯利润为:0000((0))()()()()(0)(0)(0)()matm p gt w w Q t p t w t C t p w ct p w w w w e--=--=--+- 其中p(0)=12,g=0.08, 900=w ,270=m w ,,c=3.2,代入数据并用matlab 中的fminbnd 函数运算得到: 在t=14.4336时,纯利润到达最大值:Qm =12.1513。
代码如下:Q=@(t)((12-0.08*t)*90.*270)./(90+(270-90).*exp(-(1/60)*t))-3.2*t-12*90;nQ=@(t)-Q(t);[t,Q1]=fminbnd(nQ,0,100), Qm=-Q1 t = 14.4336 Q1 = -12.1513 Qm =12.1513 (3)所以,如果生猪体重wm 增加1%,灵敏度S(tm,dwm)= 3.7669,最佳出售时间tm 就推迟0.038%。
灵敏度比较小,所以wm 对tm 不灵敏。
程序如下:Q=@(t,wm)((12-0.08*t)*90.*wm)./(90+(wm-90).*exp(-(1/60)*t))-3.2*t-12*90;数值计算W m 对t m 的灵敏度(W m =270,t m =14.4336)m m w w +∆ ()/%m m w w ∆ m m t t +∆ ()/%m m t t ∆ (,)m m S w t272.70001.000014.9773 0.0377 3.7669 283.5000 5.0000 17.0565 0.1817 3.6345 297.0000 10.0000 19.46010.34833.4825数值计算W m 对Q m 的灵敏度(W m =270,Q m =12.1513) m m w w +∆ ()/%m m w w ∆ m m Q Q +∆ ()/%m m Q Q ∆ (,)m m S w Q272.7000 1.0000 13.1078 0.0787 7.8720 283.5000 5.0000 17.1208 0.4090 8.1794 297.0000 10.0000 22.47540.84968.4963d=[.01;.05;.1];dwm=d*270;Q1=@(t)-Q(t,270+dwm(1));[t1,Q1]=fminbnd(Q1,0,30);Q2=@(t)-Q(t,270+dwm(2));[t2,Q2]=fminbnd(Q2,0,30);Q3=@(t)-Q(t,270+dwm(3));[t3,Q3]=fminbnd(Q3,0,30);Qm1=-Q1;Qm2=-Q2;Qm3=-Q3;tm=14.4336;Qm=12.1513;Sw_t=@(t,w)((t-tm)/tm)./(w/270);Sw_Q=@(Q,w)((Q-Qm)/Qm)./(w/270);t=[t1;t2;t3],Q=[Qm1;Qm2;Qm3],a=[270+d.*270,d.*100,t,(t-tm)./tm,Sw_t(t,d.*270)],b=[270+d.*270,d.*100,Q,(Q-Qm)./Qm,Sw_Q(Q,d.*270)], t =14.977317.056519.4601Q =13.107817.120822.4754a =272.7000 1.0000 14.9773 0.0377 3.7669 283.5000 5.0000 17.0565 0.1817 3.6345 297.0000 10.0000 19.4601 0.3483 3.4825b =272.7000 1.0000 13.1078 0.0787 7.8720 283.5000 5.0000 17.1208 0.4090 8.1794297.0000 10.0000 22.4754 0.8496 8.4963 (4)由图可知,新假设模型是一个阻滞增长模型,比原来的模型更符合实际,可以在较长时间内使用。
习题2作业讲评1. 继续考虑2.2节的“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗?“两秒准则”是否足够安全?对于安全车距,你有没有更好的建议?(“两秒准则”,即后车司机从前车经过某一标志开始,默数2秒之后到达同一标志,而不管车速如何.刹车距离与车速的经验公式20.750.082678d v v =+,速度单位为m/s ,距离单位为m )解答(1)“两秒准则”表明前后车距与车速成正比例关系. 引入以下符号:D ~ 前后车距(m );v ~ 车速(m/s );于是“两秒准则”的数学模型为22D K v v ==. 与“一车长度准则”相比是否一样,依赖于一车长度的选取.比较20.750.082678d v v =+与2D v =,得:()0.082678 1.25d D v v -=-所以当15.12 m/s v <(约合54.43 km/h )时,有d<D ,即前后车距大于刹车距离的理论值,可认为足够安全;当15.12 m/s v >时,有d>D ,即前后车距小于刹车距离的理论值,不够安全. 也就是说,“两秒准则”适用于车速不算很快的情况.另外,还可以通过绘图直观的解释“两秒准则”够不够安全. 用以下MATLAB 程序把刹车距离实测数据和“两秒准则”都画在同一幅图中(图1).v=(20:5:80).*0.44704;d2=[18,25,36,47,64,82,105,132,162,196,237,283,334 22,31,45,58,80,103,131,165,202,245,295,353,418 20,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376]; d2=0.3048.*d2;k1=0.75;k2=0.082678;K2=2; d1=[v;v;v].*k1; d=d1+d2;plot([0,40],[0,K2*40],'k') hold onplot(0:40,polyval([k2,k1,0],0:40),':k') plot([v;v;v],d,'ok','MarkerSize',2)title('比较刹车距离实测数据、理论值和两秒准则') legend('两秒准则','刹车距离理论值',...'刹车距离的最小值、平均值和最大值',2) xlabel('车速v (m/s )') ylabel('距离(m )') hold off510152025303540020406080100120140160180比较刹车距离实测数据、理论值和两秒准则车速v (m/s )距离(m )图1(2)用最大刹车距离除以车速,得到最大刹车距离所需要的尾随时间(表1),并以尾随时间为依据,提出更安全的“t秒准则”(表2)——后车司机根据车速快慢的范围,从前车经过某一标志开始,默数t秒钟之后到达同一标志.v=(20:5:80).*0.44704;d2=[18,25,36,47,64,82,105,132,162,196,237,283,33422,31,45,58,80,103,131,165,202,245,295,353,41820,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376];d2=0.3048.*d2;k1=0.75;k2=0.082678;d=d2+[v;v;v].*k1;vi=0:40;plot([0,10*0.44704],[0,10*0.44704],'k',...vi,k1.*vi+k2.*vi.*vi,'k:',...[v;v;v],d,'ok','MarkerSize',2)legend('t 秒准则','刹车距离理论值',...'刹车距离的最小值、平均值和最大值',2)hold onplot([10,35]*0.44704,2*[10,35]*0.44704,'k',...[35,60]*0.44704,3*[35,60]*0.44704,'k',... [60,75]*0.44704,4*[60,75]*0.44704,'k') title('t 秒准则,刹车距离的模型和数据') xlabel('车速v (m/s )') ylabel('距离(m )') hold off510152025303540020406080100120140160180车速v (m/s )距离(m )t 秒准则,刹车距离的模型和数据图24. 继续考虑2.3节“生猪出售时机”案例,假设在第t 天的生猪出售的市场价格(元/公斤)为2()(0)p t p gt ht =-+(1)其中h 为价格的平稳率,取h =0.0002. 其它模型假设和参数取值保持不变.(1) 试比较(1)式与(2.3.1)式,解释新的假设和原来的假设的区别与联系;(2)在新的假设下求解最佳出售时机和多赚的纯利润; (3)作灵敏度分析,分别考虑h 对最佳出售时机和多赚的纯利润的影响;(4)讨论模型关于价格假设的强健性. 解答一(用MATLAB 数值计算)(1)比较(1)式与(2.3.1)式,(1)式表明价格先降后升,(2.3.1)式假设价格匀速下降,(1)式更接近实际(图3). 两个假设都满足(0)p g '=-,在最佳出售时机附近误差微小(图4). 绘图的程序p=@(t)12-0.08*t+0.0002*t.^2; figure(1) n=400;plot([0,n],[12,12-0.08*n],'k:',... 0:.1:n,p(0:.1:n),'k') axis([0,400,0,20])title('模型假设(1)式与(2.3.1)式的比较')legend('p(0) - g t (1)式',... 'p(0) - g t + h t^2 (2.3.1)式') xlabel('t (天)')ylabel('p (元/公斤) ') figure(2) n=20;plot([0,n],[12,12-0.08*n],'k:',... 0:.1:n,p(0:.1:n),'k')title('模型假设(1)式与(2.3.1)式的比较')legend('p(0) - g t (1)式',... 'p(0) - g t + h t^2 (2.3.1)式')xlabel('t (天)'), ylabel('p (元/公斤) ')50100150200250300350400024********161820模型假设(1)式与(2.3.1)式的比较t (天)p (元/公斤)图3246810121416182010.410.610.81111.211.411.611.812模型假设(1)式与(2.3.1)式的比较t (天)p (元/公斤)图4(2)在(1)式和(2.3.1)式组成的假设下,多赚的纯利润为()()23()(0)(0)(0)Q t rp gw c t hw gr t hrt =--+-+保留h ,代入其他具体数值,得()32()900.08 1.6Q t ht h t t =+-+令()2()31800.16 1.60Q t ht h t '=+-+=解得生猪出售时机为130t =-(舍去负根)多赚的纯利润为()321111900.08 1.6Q ht h t t =+-+.代入h =0.0002,得113.829t =天,110.798Q =元.或者用MATLAB 函数fminbnd 计算,脚本如下: C=@(t)3.2*t; w=@(t)90+t;p=@(t,h)12-0.08*t+h*t.^2;Q=@(t,h)p(t,h).*w(t)-C(t)-90*12; Qh=@(t)-Q(t,0.0002); t1=fminbnd(Qh,0,30) Q1=Q(t1,0.0002)为帮助理解,可用以下脚本绘制图5: figure(2) tp=0:250;plot(tp,Q(tp,0.0002),'k') title('纯利润Q') xlabel('t (天)') ylabel('Q (元) ')050100150200250-600-500-400-300-200-100100纯利润Qt (天)Q (元)图5(3)用以下MATLAB 脚本计算灵敏度(,)t tS t h h h ∆=∆和(,)Q QS Q h h h ∆=∆,将结果列表.结论:h 的微小变化对t 和Q 的影响都很小 Qh=@(t)-Q(t,0.0002*1.01); [tn,Qn]=fminbnd(Qh,0,30); (tn-t1)/t1/0.01 (-Qn-Q1)/Q1/0.01Qh=@(t)-Q(t,0.0002*1.05); [tn,Qn]=fminbnd(Qh,0,30); (tn-t1)/t1/0.05 (-Qn-Q1)/Q1/0.05Qh=@(t)-Q(t,0.0002*1.1); [tn,Qn]=fminbnd(Qh,0,30); (tn-t1)/t1/0.1 (-Qn-Q1)/Q1/0.1表3 数值计算最佳出售时机t 对h 的灵敏度表4 数值计算多赚的纯利润Q 对h 的灵敏度(4)市场价格是经常波动的,如果价格下跌,往往会止跌回稳,模型假设(1)式以二次函数来刻画价格止跌回升的变化趋势,如果考虑的时间段长达数月,(1)式比(2.3.1)式更接近实际(见图3),但是本问题的最佳出售时机不超过20天,(1)式与(2.3.1)式在最佳出售时机附近非常近似(见图4),(1)式导致的模型解答可以由(2.3.1)式导致的解答加上灵敏度分析所代替. 所以采用更为简单的(2.3.1)式作为假设更好.具体分析如下:由12()(,)g g t p t h -+∆=,得12(,)1g p t h g gt∆-=-, 代入h =0.0002,t =13.82852279,g =0.08,得0.034571gg∆=-. 由于(,)t g S t g t g∆∆≈,根据课本2.3节,代入(,) 5.5S t g =-,t =10,算得11.901t t +∆=,与t =13.829只相差两天.用于以上分析计算的MATLAB 脚本: dg_g=(12-p(ts,0.0002))/ts/0.08-1 10+dg_g*10*(-5.5)解答二(用MATLAB 的Symbolic Math Toolbox 的MuPAD 软件符号计算)(1)运行以下MuPAD 语句,绘得图6和图7:plot(plot::Function2d(12-0.08*t+0.0002*t^2,t=0..400), plot::Function2d(12-0.08*t,t=0..150, LineStyle=Dashed));plot(plot::Function2d(12-0.08*t+0.0002*t^2,t=0..20), plot::Function2d(12-0.08*t,t=0..20, LineStyle=Dashed),#O);(1)式表明价格先降后升,在实际当中有一定道理. 而 (2.3.1)式假设价格匀速下降. 两个假设都满足(0)p g '=-,在最佳出售时机附近误差微小.图6假设(2.3.1)式与(1)式的比较图7假设(2.3.1)式与(1)式的比较(2) 在(1)式和(2.3.1)式组成的假设下,保留h,代入其他具体数值,计算多赚的纯利润. 运行以下MuPAD语句:C:=t->32/10*t:w:=t->90+t:p:=(t,h)->12-8/100*t+h*t^2:Q:=(t,h)-->expand(w(t)*p(t,h)-C(t)-90*12); plot(plot::Function2d(Q(t,0.0002),t=0..290));算得223(2)825,905ht h h t Q t t t =+-+,绘得图8.图8(,0.0002)Q t 的图像运行以下MuPAD 语句:S:=solve(diff(Q(t,h),t),t) assuming h>0; t1:=S[1];subs(t1,h=0.0002); t2:=S[2];ts:=subs(t2,h=0.0002); Q2:=Q(t2,h);Qs:=subs(Q2,h=0.0002);由方程0Qt∂=∂,解得两根:12t t ==代入h =0.0002,得12192.8381439, 13.82852279t t ==(天). 2t 符合题意,1t 应该舍去(对应的Q 是负数). 2t 对应的多赚的纯利润为10.79837809元.(3)接着上一小题,运行以下MuPAD 语句:subs(diff(t2,h)*h/t2,h=0.0002); //t 对h 的灵敏度利用导数算得t 对h 的灵敏度:d (,)0.4124276803d t hS t h h t=⋅=.运行以下MuPAD 语句:subs(diff(Q2,h)*h/Q2,h=0.0002); //Q 对h 的灵敏度,方法一 subs(diff(Q(t,h),h)*h/Q(t,h),t=ts,h=0.0002); //Q 对h 的灵敏度,方法二,更简单用两种方法利用导数算得Q 对h 的灵敏度:d (,)0.367739025d Q hS Q h h Q=⋅=. 结论:h 的微小变化对t 2和Q 2的影响都很小. (4)同解答一5. 继续考虑第2.3节“生猪出售时机”案例,假设在第t 天的生猪体重(公斤)为()000()mt m w w w t w w w e α-=+-(2)其中0(0)90w w ==(公斤),270m w =(公斤),其它模型假设和参数取值保持不变.(1)试比较(2)式与(2.3.2)式,解释新的假设和原来的假设的区别与联系(提示:说明当α (α>0)取何值时,在t =0时可以保持(0)1w r '==;说明当t 增大时,猪的体重会如何变化).(2)在新的假设下求解最佳出售时机和多赚的纯利润. (3)参数m w 代表猪长成时的最终重量,对m w 做灵敏度分析,分别考虑m w 对最佳出售时机和多赚的纯利润的影响.(4)讨论模型关于生猪体重假设的强健性. 解答一(用MATLAB 数值计算)(1)在(2)式中,为使(0)w r '=,必须00()m m w w w w α-=. 当m w =270,0w =90时,有160α=.新假设(2)式是阻滞增长模型,假设生猪体重的增长率是体重的线性递减函数,于是体重增加的速率先快后慢,时间充分长后,体重趋于m w . 而(2.3.2)式0()w t w rt =+只假设体重匀速增加. 长时间来看,新假设比原假设更符合实际(图9). 两个假设都满足(0)w r '=,在最佳出售时机附近误差微小(图10).50100150200250300350400050100150200250300t (天)价格 p (元/公斤)模型假设(2.3.2)式与(2)式的比较图924681012141618209095100105110115t (天)价格 p (元/公斤)图10(2) 在(2.3.1)式和(2)式组成的假设下,用MATLAB 函数fminbnd 计算,可以求得生猪出售时机为t =14.434天,多赚的纯利润为Q =12.151元.(3) 编程计算(,)m m m t t S t w w w ∆=∆和(,)mm m Q QS Q w w w ∆=∆,将结果列表.表5数值计算最佳出售时机t 对m w 的灵敏性表6数值计算多赚的纯利润Q 对m w 的灵敏性结论:m w 的微小变化对t 和Q 的影响都较小.(4)模型假设(2)式导致的模型解答可以由(2.3.2)式导致的解答加上灵敏度分析所代替,所以实践中采用更为简单的(2.3.2)式作为假设即可. 具体分析过程见解答二之(4).MATLAB 脚本: %% (1) 绘图的程序w=@(t)90*270./(90+180*exp(-t/60));figure(1)n=400;plot([0,n],[90,90+n],'k:',...0:.1:n,w(0:.1:n),'k')axis([0,400,0,300])legend('p(0) - g t (2.3.2)式',... 'p(0) - g t + h^2 (2)式',4) title('模型假设(2.3.2)式与(2)式的比较') xlabel('t(天)')ylabel('价格 p(元/公斤) ')figure(2)n=20;plot([0,n],[90,90+n],'k:',...0:.1:n,w(0:.1:n),'k')legend('p(0) - g t (2.3.2)式',... 'p(0) - g t + h^2 (2)式',2) xlabel('t(天)')ylabel('价格 p(元/公斤) ')%% (2) 最佳出售时机和多赚的纯利润C=@(t)3.2*t;w=@(t,m)90*m./(90+(m-90)*exp(-t/60));p=@(t)12-0.08*t;Q=@(t,m)p(t).*w(t,m)-C(t)-90*12;Qh=@(t)-Q(t,270);ts=fminbnd(Qh,0,30)Qs=Q(ts,270)%% (3) 灵敏度分析Qh=@(t)-Q(t,270*1.01);[tn,Qn]=fminbnd(Qh,0,30);(tn-ts)/ts/0.01(-Qn-Qs)/Qs/0.01Qh=@(t)-Q(t,270*1.05);[tn,Qn]=fminbnd(Qh,0,30);(tn-ts)/ts/0.05(-Qn-Qs)/Qs/0.05Qh=@(t)-Q(t,270*1.1);[tn,Qn]=fminbnd(Qh,0,30);(tn-ts)/ts/0.1(-Qn-Qs)/Qs/0.1%% (4) 强健性分析dr_r=(w(ts,270)-90)/ts-110+dr_r*10*6.5解答二(用MATLAB的Symbolic Math Toolbox的MuPAD软件符号计算)(1)运行以下MuPAD 语句,算得160α=:solve(subs(diff(90*270/(90+(270-90)*E^(-a*t)),t), t=0)=1,a);运行以下MuPAD 语句,绘得图11:plot(plot::Function2d(90*270/(90+180*E^(-1/60*t)), t=0..400),plot::Function2d(90+t,t=0..180,LineStyle=Dashed), plot::Line2d([0,270],[400,270],LineStyle=Dotted),#O);运行以下MuPAD 语句,绘得图12 :plot(plot::Function2d(90*270/(90+180*E^(-1/60*t)), t=0..20),plot::Function2d(90+t,t=0..20,LineStyle=Dashed),#O);(2)式()06000()mt m w w w t w w w e -=+-是阻滞增长模型,假设生猪体重的增长率是体重的线性递减函数. 于是,体重w 是时间t 的增函数,体重增加的速率先快后慢,时间充分长后,体重趋于m w . 而(2.3.2)式0()w t w rt =+只假设体重匀速增加. 长时间来看,新假设比原假设更符合实际. 两假设都满足(0)w r '=,在最佳出售时机附近误差微小.图11假设(2.3.2)式与(2)式的比较图12假设(2.3.2)式与(2)式的比较w,代入其(2)在由(2)式和(2.3.1)式组成的假设下,保留m他具体数值,计算多赚的纯利润. 运行以下MuPAD语句:C:=t->3.2*t:w:=(t,wm)->90*wm/(90+(wm-90)*E^(-t/60)): p:=t->12-0.08*t:Q:=(t,wm)-->w(t,wm)*p(t)-C(t)-90*12;plot(plot::Function2d(Q(t,270),t=0..30));算得()()6090120.08(,) 3.210809090emm tmw tQ t w tw--=--+-,绘得图13.图13(,270)Q t的图像运行以下MuPAD语句:T:=solve(diff(Q(t,270),t),t);ts:=T[1];Qs:=Q(ts,270);可解出Q的驻点的数值解14.43357158st=(天),根据函数图像和问题的实际意义,可知这是所求的最佳出售时机,对应的多赚的纯利润为12.15129217s Q =元.(3)接着上一小题,运行以下MuPAD 语句,但是求不出当(,)m Q t w 达到最大值时t 关于m w 的函数解析式:solve(diff(Q(t,wm),t),t);运行以下MuPAD 语句:solve(diff(Q(t,wm),t),wm);可见当(,)m Q t w 达到最大值时m w 关于t 的反函数解析式却有可能求得出,只是MuPAD 给出的表达式很复杂. 其实可以按如下步骤推出m w 关于t 的反函数解析式:g1:=diff(Q(t,wm),t)=0; 算得0Q t∂=∂即: ()()260606030.0812907.2 3.209090902e 90e e m m m m t m t t w t w w w w -----=--⎛⎫++ ⎪⎝⎭观察上式,发现分母大于零,而且去分母之后,合并m w 的同类项,可以表示为m w 的二次方程:g2:=g1*((wm-90)/E^(t/60)+90)^2*25*E^(t/60); //去分母 g2:=collect(g2,wm); //合并wm 的同类项,t 当作参数2606060306060801440016200e 270327038700e e e 648000e 64800012960000e e t m m t t t t t t t w t w ⎛⎫⎛⎫--++-- ⎪ ⎪⎝⎭⎝⎭+--=运行以下MuPAD 语句,由图像(图14)可知在实际问题关心的0<t<30范围内,二次项系数608027030e tt-->:plot(plot::Function2d((270-80/E^(t/60)-3*t),t=0..100));图4 二次项系数的符号于是,运行以下MuPAD语句,解方程:S:=solve(g2,wm);MuPAD给出解的四种情况,其中第一种是二次项系数非零,正是本问题所要求的解. 但是二次方程有两个根,要检验哪一个根才是当(,)mQ t w达到最大值时mw关于t的反函数解析式.float(subs(S[1][1],t=ts));算得当st t=时,有0.8519704108mw=-,这是增根,舍去;float(subs(S[1][2],t=ts));算得当st t=时,有270mw=,这是要找的根;wms:=S[1][2]; //当Q达到最大值时wm关于t的反函数解析式float(subs(1/(diff(wms,t))*wm/t,t=ts,wm=270));//t 对wm 的灵敏度,利用反函数求导数利用反函数求导数算得t 对m w 的灵敏度:d 1(,) 3.80183985d d d m m m m m w w t S t w w w tt t=⋅=⋅=. Q 对m w 的灵敏度则比较简单,运行以下MuPAD 语句: float(subs(diff(Q(t,wm),wm)*wm/Q(t,wm),t=ts,wm=270)); //Q 对wm 的灵敏度利用导数算得Q 对m w 的灵敏度:d (,)7.786585188d m m m w Q S Q w w Q=⋅=. 结论:m w 的微小变化对t 和Q 存在一定影响,不算厉害.(4)模型假设(2)式以阻滞增长模型来刻画生猪体重的变化趋势,如果考虑的时间段长达数月,(2)式比(2.3.2)式更符合实际,但是本问题的最佳出售时机不超过20天,(2)式与(2.3.2)式在最佳出售时机附近非常近似,(2)式导致的模型解答可以由(2.3.2)式导致的解答加上灵敏度分析所代替. 所以采用更为简单的(2.3.2)式作为假设更好. 具体分析如下:由()90(,)m r r t w t w ++∆=,得(,)90m w t w r r t-∆=-, 代入270m w =,14.43357158s t t ==,r =1,得0.036565352791r r r ∆∆==. 由于(,)t r S t r t r∆∆≈,根据2.3节,代入(,) 6.5S t r =,t =10,r =1,算得12.37674793t t +∆=,与14.43357158s t =只相差两天.以上计算可以用以下MuPAD 语句实现:dr:=float((w(ts,270)-90)/ts-1);10+dr*10*6.5;。