陶瓷基复合材料
- 格式:docx
- 大小:355.26 KB
- 文档页数:12
陶瓷基复合材料陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。
其最高使用温度主要取决于基体特征。
陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。
法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
工制备艺浆体浸渍-热压法适用于长纤维。
首先把纤维编织成所需形状,然后用陶瓷泥浆浸渍,干燥后进行烧结。
优点是加热温度较晶体陶瓷低,层板的堆垛次序可任意排列,纤维分布均匀,气孔率低,获得的强度较高。
缺点则是不能制造大尺寸的制品,所得制品的致密度较低,此外零件的形状不宜太复杂,基体材料必须是低熔点或低软化点陶瓷。
晶须与颗粒增韧陶瓷基复合材料的加工与制备晶须与颗粒的尺寸均很小,只是几何形状上有些区别,用它们进行增韧的陶瓷基复合材料的制造工艺是基本相同的。
基本上是采用粉末冶金方法。
制备工艺比长纤维复合材料简便很多。
所用设备也不复杂设备。
过程简单。
混合均匀,热压烧结即可制得高性能的复合材料制造工艺也可大致分为配料-成型-烧结-精加工等步骤。
直接氧化沉积法方法:将纤维预制体置于熔融金属上面,添加有镁、硅添加剂的熔融金属铝,在氧化气氛中,不断地浸渍预制体,在浸渍过程中,熔融金属或其蒸汽与气相氧化剂反应生成氧化物。
随着时间的延长,边浸渍边氧化,最终可制得纤维增强CMC。
优点:纤维几乎无损伤、纤维分布均匀、CMC性能优异,工艺简单、效率高成本低先驱体热解法方法:将单独合成的先驱体,通过加温调节其粘度,在高压-真空联合作用下使其浸入并充满多向纤维编织坯件的空隙,在高温下使先驱体热解。
陶瓷基复合材料介绍一、材料定义与特性陶瓷基复合材料(Ceramic Matrix Composites,简称CMC)是一种以陶瓷为基体,复合增强体材料的高性能复合材料。
它具有高强度、高硬度、耐高温、抗氧化、耐腐蚀等优异性能,被广泛应用于航空航天、汽车、能源、化工等领域。
二、基体与增强体材料陶瓷基体的主要类型包括氧化铝、氮化硅、碳化硅、氮化硼等,它们具有高熔点、高硬度、耐腐蚀等特性。
增强体材料主要包括纤维、晶须、颗粒等,它们可以显著提高陶瓷基体的强度和韧性。
三、制备工艺与技术陶瓷基复合材料的制备工艺主要包括:热压烧结法、液相浸渍法、化学气相沉积法、粉末冶金法等。
其中,热压烧结法和液相浸渍法是最常用的制备工艺。
四、增强纤维与基体的界面增强纤维与基体的界面是影响陶瓷基复合材料性能的关键因素之一。
为了提高材料的性能,需要优化纤维与基体的界面特性,包括润湿性、粘结性、化学稳定性等。
五、材料的应用领域陶瓷基复合材料具有广泛的应用领域,主要包括:航空航天领域的发动机部件、机载设备;能源领域的燃气轮机叶片、核反应堆部件;汽车领域的刹车片、发动机部件;化工领域的耐腐蚀设备、管道等。
六、发展现状与趋势随着科技的不断进步,陶瓷基复合材料的研究和应用不断深入。
目前,国内外研究者正在致力于开发低成本、高性能的陶瓷基复合材料,并探索其在更多领域的应用。
同时,研究者还在研究如何更好地控制材料的微观结构和性能,以提高材料的综合性能。
七、挑战与机遇尽管陶瓷基复合材料具有许多优异的性能,但它们的制备工艺复杂、成本高,且存在易脆性等挑战。
然而,随着科技的不断进步和新材料的发展,陶瓷基复合材料的成本逐渐降低,应用领域也在不断扩大。
同时,随着环保意识的提高和能源需求的增加,陶瓷基复合材料在能源和环保领域的应用前景广阔。
因此,陶瓷基复合材料在未来仍具有巨大的发展潜力。
陶瓷基复合材料引言。
陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。
它具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此被广泛应用于航空航天、汽车制造、化工等领域。
本文将介绍陶瓷基复合材料的组成、性能和应用,并对其未来发展进行展望。
一、陶瓷基复合材料的组成。
陶瓷基复合材料通常由陶瓷基体和增强材料组成。
陶瓷基体可以是氧化铝、碳化硅、氮化硅等陶瓷材料,而增强材料则可以是碳纤维、玻璃纤维、陶瓷颗粒等。
这些材料通过复合加工技术,如热压、注射成型等,将陶瓷基体与增强材料紧密结合,形成具有优异性能的复合材料。
二、陶瓷基复合材料的性能。
1. 耐磨性,陶瓷基复合材料具有优异的耐磨性,可以在高速、高负荷条件下保持较长的使用寿命,因此被广泛应用于机械设备的零部件制造。
2. 耐腐蚀性,由于陶瓷基复合材料具有优异的化学稳定性,可以在酸、碱等腐蚀性介质中长期稳定运行,因此在化工领域得到广泛应用。
3. 高强度,陶瓷基复合材料在高温、高压条件下依然保持优异的强度和刚性,因此被广泛应用于航空航天领域。
4. 高温稳定性,陶瓷基复合材料在高温条件下依然保持稳定的性能,因此被广泛应用于发动机、燃气轮机等高温设备的制造。
三、陶瓷基复合材料的应用。
1. 航空航天领域,陶瓷基复合材料被广泛应用于航空发动机、航天器外壳等高温、高压零部件的制造。
2. 汽车制造领域,陶瓷基复合材料被应用于汽车刹车片、离合器片等零部件的制造,以提高其耐磨性和耐高温性能。
3. 化工领域,陶瓷基复合材料被应用于化工设备的制造,以提高其耐腐蚀性和耐高温性能。
四、陶瓷基复合材料的发展展望。
随着科学技术的不断进步,陶瓷基复合材料将会在性能和应用范围上得到进一步提升。
未来,我们可以期待陶瓷基复合材料在新能源领域、生物医药领域等新兴领域的广泛应用,为人类社会的发展做出更大的贡献。
结论。
陶瓷基复合材料具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此在航空航天、汽车制造、化工等领域得到广泛应用。
陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和增强相组成的新型材料。
陶瓷基复合材料具有优异的耐高温、耐磨损、耐腐蚀性能,因此在航空航天、汽车制造、机械制造等领域有着广泛的应用。
本文将从材料特性、制备工艺、应用领域等方面对陶瓷基复合材料进行介绍。
首先,陶瓷基复合材料的材料特性是其具有的重要特点之一。
陶瓷基复合材料具有高温强度高、热震稳定性好、耐磨损、耐腐蚀等优异性能。
这些特性使得陶瓷基复合材料在高温、高压、腐蚀等恶劣环境下能够发挥出色的性能,因此在航空航天领域得到了广泛的应用。
其次,陶瓷基复合材料的制备工艺是影响其性能的重要因素之一。
陶瓷基复合材料的制备工艺包括原料的选择、配比、成型、烧结等多个环节。
其中,原料的选择和配比直接影响着复合材料的成分和性能,而成型和烧结工艺则决定了复合材料的内部结构和组织。
因此,制备工艺的优化对于提高陶瓷基复合材料的性能具有重要意义。
最后,陶瓷基复合材料在航空航天、汽车制造、机械制造等领域有着广泛的应用。
在航空航天领域,陶瓷基复合材料被用于制造发动机涡轮叶片、导向器、复合材料轴承等部件,以提高其耐高温、耐磨损、耐腐蚀等性能。
在汽车制造领域,陶瓷基复合材料被用于制造发动机零部件、刹车盘、离合器等,以提高汽车的性能和安全性。
在机械制造领域,陶瓷基复合材料被用于制造轴承、密封件、刀具等,以提高机械设备的使用寿命和性能。
总之,陶瓷基复合材料具有优异的性能和广泛的应用前景。
随着科学技术的不断进步,陶瓷基复合材料将在更多领域得到应用,并为人类社会的发展做出更大的贡献。
陶瓷基复合材料陶瓷基复合材料是一种由陶瓷基体和其他添加剂组成的复合材料。
其综合性能优异,因此在航空航天、电子器件、能源领域等多个领域得到广泛应用。
本文将介绍陶瓷基复合材料的制备方法、性能及应用,并对其未来发展进行展望。
一、制备方法陶瓷基复合材料的制备方法多种多样,主要包括烧结法、溶胶-凝胶法、机械合金化法等。
首先,烧结法是最常用的制备陶瓷基复合材料的方法之一。
该方法将陶瓷粉末与其他添加剂混合,并通过高温下的烧结过程将其烧结成坚固的材料。
这种方法制备的复合材料具有较高的结晶度和致密性。
其次,溶胶-凝胶法是一种制备陶瓷基复合材料的新方法。
该方法通过将金属盐、有机物等混合,形成胶体溶胶,然后通过热处理使其成为凝胶,并进一步高温热处理得到致密材料。
这种方法制备的复合材料具有较高的纯度和均匀性。
最后,机械合金化法是一种通过粉末冶金技术制备陶瓷基复合材料的方法。
该方法将陶瓷颗粒与添加剂一起经过球磨、混合等机械处理,使其均匀分散,并通过热处理得到复合材料。
这种方法制备的复合材料具有较高的强度和断裂韧性。
二、性能陶瓷基复合材料具有一系列优异的性能,主要包括高温稳定性、硬度高、抗腐蚀性好等。
首先,陶瓷基复合材料具有较好的高温稳定性。
由于陶瓷基复合材料的陶瓷基体具有较高的熔点和热稳定性,因此能够在高温环境下保持较好的性能,不易发生烧结变形等问题。
其次,陶瓷基复合材料具有较高的硬度。
陶瓷基体的硬度往往比金属基体或聚合物基体要高,因此陶瓷基复合材料在硬度方面具有优势。
这使得该材料在需要高硬度的应用中表现出色,如切割工具、磨料等领域。
再次,陶瓷基复合材料具有良好的抗腐蚀性。
由于陶瓷基体的本身特性,该材料在酸碱等腐蚀性环境中有很好的稳定性,不易受到腐蚀侵蚀。
这使得陶瓷基复合材料在化工、生物医药等领域得到广泛应用。
三、应用陶瓷基复合材料在很多领域都有广泛的应用。
下面将介绍几个典型的应用领域。
首先,陶瓷基复合材料在航空航天领域具有重要应用。
陶瓷基复合材料综述陶瓷基复合材料是指以陶瓷材料为基体,通过添加其他材料或者通过热处理等方式形成的一种具有复合结构的新型材料。
陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。
本文将对陶瓷基复合材料的制备方法、性能以及应用方面进行综述。
一、陶瓷基复合材料的制备方法陶瓷基复合材料的制备方法可以分为两大类:一种是在陶瓷基体中添加其他材料,如纳米颗粒、纤维、碳纳米管等;另一种是通过热处理等方式改变陶瓷基体的结构和性能。
其中,添加其他材料的方法主要包括浸渍法、溶胶凝胶法、等离子熔融法等;热处理方法主要包括烧结、热压、热等静压等。
二、陶瓷基复合材料的性能陶瓷基复合材料具有许多独特的性能,其主要包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性。
其中,高温稳定性是指材料在高温下仍然能够保持物理和化学性能的稳定性。
高硬度则是指材料的硬度较高,能够抵抗外界的划痕和磨损。
高抗磨损性则是指材料能够在摩擦和磨损等条件下保持其表面的完整性和光洁度。
化学稳定性则是指材料对酸、碱、盐等化学介质的稳定性较好,不易发生腐蚀和溶解。
三、陶瓷基复合材料的应用方面由于陶瓷基复合材料具有优异的性能,因此在许多领域都得到了广泛的应用。
其中,陶瓷基复合材料在航空航天领域中被广泛应用于火箭发动机喷管、刹车盘等高温部件中。
此外,在能源领域,陶瓷基复合材料可以用于制备高效的催化剂、光催化剂和固态电解质等。
在汽车制造领域,陶瓷基复合材料可以应用于汽车刹车系统、传动系统和发动机部件等。
此外,陶瓷基复合材料还可以用于制备耐磨、耐蚀和高温结构件,如轴承、密封件和切割工具等。
综上所述,陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。
通过添加其他材料或者通过热处理等方式改变陶瓷基体的结构和性能,可以制备出具有不同功能和应用的陶瓷基复合材料。
由于其广泛的应用前景,陶瓷基复合材料在材料科学领域中受到了广泛的研究和开发。
陶瓷基复合材料的性质及其应用前景陶瓷基复合材料是一种新型的复合材料,它由陶瓷基体和增强材料组成。
其特点是硬度高、强度大、耐高温、耐腐蚀、绝缘性能好等。
由于其独特的性质,陶瓷基复合材料在航空航天、汽车制造、电子和电力工业等领域都有广泛的应用。
一、陶瓷基复合材料的组成陶瓷基复合材料由陶瓷基体和增强材料组成。
其中,陶瓷基体通常采用氧化物陶瓷或碳化物陶瓷,而增强材料则可以选择纤维材料、颗粒材料、层板材料等。
陶瓷基复合材料的制备方法很多,主要包括热压、热等静压、拉伸成型等。
二、陶瓷基复合材料的性质1. 高硬度由于陶瓷基复合材料的基体是陶瓷,因此具有非常高的硬度。
事实上,某些陶瓷基复合材料的硬度可以接近金刚石,达到20GPa以上。
这一优异的性能意味着它们可以耐受高度的磨损和冲击,适用于大多数需要高耐久性的应用领域。
2. 高强度在增强材料的加入下,陶瓷基复合材料具有很高的强度和刚性。
因此,它们可以承受非常大的载荷,并在极端条件下工作。
这种性质使它们成为航空航天、汽车制造和电力工业等相关领域中理想的结构材料。
3. 耐高温陶瓷基复合材料具有非常好的耐高温性能。
在高温环境下,它们保持不失效、不变形等特性。
因此,它们被广泛应用于航空航天、汽车制造等需要高温稳定性能的领域。
4. 耐腐蚀陶瓷基复合材料还具有良好的耐腐蚀性能。
在强酸、强碱、高浓度的腐蚀性环境下,它们仍然可以保持稳定。
这一性质使它们成为化工、电力工业领域中的理想材料。
5. 绝缘性能好陶瓷基复合材料具有很好的绝缘性能,因此广泛运用于电子和电力工业中。
它们可以承受高电压、高电流的特性,同时在工作过程中不会导电或产生电磁干扰。
三、陶瓷基复合材料的应用前景由于其优异的性能和多功能性,陶瓷基复合材料在多个领域都有很广泛的应用前景。
以下是一些典型应用案例:1. 航空航天陶瓷基复合材料可以用于制作飞机、火箭、导弹的部件,如机身、引擎、导向器等。
因为它们的低重量、高强度和耐高温性质可以降低飞行设备的质量和提高操作效率。
陶瓷基复合材料概述陶瓷基复合材料的基本构成包括陶瓷基体和增强相。
陶瓷基体是复合材料的主要组成部分,其主要作用是提供材料的整体力学性能和化学稳定性。
常见的陶瓷基体材料包括氧化铝、碳化硅、氮化硼等。
增强相通常由纤维、微颗粒或涂层等形式存在,其主要作用是增强材料的力学性能。
常用的增强相材料包括碳纤维、硅碳纤维、碳化硅颗粒等。
陶瓷基复合材料的制备方法主要包括增强相预浸料注浆成型、陶瓷基体浸渍和化学气相沉积等。
增强相预浸料注浆成型是指将增强相(如碳纤维布或纱线)经过预处理后,浸渍在浆料中,制备成具有一定形状和大小的增强相预浸料;陶瓷基体浸渍是将陶瓷基体浸泡在含有滞留剂的浆料中,使其吸附一定量的浆料,然后经过干燥和烧结等工艺得到复合材料;化学气相沉积是利用化学反应在陶瓷基体表面生成陶瓷薄膜,然后在其表面沉积增强相。
陶瓷基复合材料具有许多优越的性能,例如高温强度、高刚度、低热膨胀系数、优良的耐腐蚀性和较高的抗摩擦性能等。
这些性能使得陶瓷基复合材料在高温、高压、强腐蚀等恶劣条件下能够更好地发挥作用。
此外,陶瓷基复合材料还具有良好的抗热冲击性能和较低的密度,使其具备轻量化设计的优势。
陶瓷基复合材料在航空航天领域有广泛的应用。
例如,在航空发动机的制造中,使用陶瓷基复合材料可以减轻发动机重量、提高燃烧效率和减少燃料消耗。
此外,在航空航天器的外壳、导向系统和推进系统中也常使用陶瓷基复合材料,以提高材料的耐高温性能和抗氧化性能。
在汽车制造领域,陶瓷基复合材料可以用于发动机部件、制动系统和排气系统等关键部位,以提高汽车的安全性能、降低能源消耗和减少尾气排放。
陶瓷基复合材料的高温性能和耐腐蚀性能使其成为替代传统金属材料的理想选择。
在能源领域,陶瓷基复合材料可以用于核能装置、燃料电池和太阳能电池等设备,以提高能量转化效率和延长设备寿命。
陶瓷基复合材料的高温稳定性和化学稳定性使其在能源应用中具有重要的地位。
此外,陶瓷基复合材料还可用于电子器件、石油化工、医疗器械和船舶制造等领域。
陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。
它具有优异的耐高温、耐腐蚀、耐磨损、绝缘性能和较高的强度和硬度,因此在航空航天、汽车、机械等领域有着广泛的应用前景。
首先,陶瓷基复合材料的制备方法有多种,包括热压法、热等静压法、注射成型法等。
其中,热压法是一种常用的制备方法,通过将陶瓷粉末和增强材料粉末混合后,经过模具成型,再进行高温高压烧结而成。
这种方法制备的陶瓷基复合材料具有较高的密度和强度,适用于要求较高性能的领域。
其次,陶瓷基复合材料的增强材料多样,常见的有碳纤维、硅碳化物、氧化锆等。
这些增强材料能够有效提高陶瓷基复合材料的强度和韧性,使其具有更广泛的应用前景。
同时,通过合理选择和设计增强材料的类型和比例,可以使陶瓷基复合材料具有更优异的性能。
另外,陶瓷基复合材料的应用领域广泛,例如在航空航天领域,可以用于制造发动机零部件、导弹外壳等高温、高压、高速工作的零部件;在汽车领域,可以用于制造发动机缸套、刹车盘等耐磨损、耐腐蚀的零部件;在机械领域,可以用于制造轴承、刀具等需要耐磨损、耐高温的零部件。
最后,陶瓷基复合材料在实际应用中还面临着一些挑战,如制备工艺复杂、成本较高、易受到裂纹和断裂等。
因此,需要进一步研究和改进制备工艺,提高制备效率和降低成本,同时加强对陶瓷基复合材料的性能评价和监测,以确保其在各个领域的可靠应用。
综上所述,陶瓷基复合材料具有广阔的应用前景和发展空间,通过不断的研究和创新,相信它将在未来的材料领域发挥越来越重要的作用。
陶瓷基复合材料陶瓷基复合材料是一种将陶瓷作为基体,同时添加其他材料形成的复合材料。
它具有优异的高温性能、耐磨性、耐腐蚀性和机械性能,广泛应用于航空航天、汽车、电子、能源和化工等领域。
本文将重点介绍陶瓷基复合材料的特点、制备方法和应用。
陶瓷基复合材料的特点有以下几个方面。
首先,它具有很高的耐高温性能。
陶瓷基复合材料可以在高温下长时间工作,不会烧结或软化,因此在航空航天和汽车引擎等高温环境中得到广泛应用。
其次,它具有优异的耐磨性。
陶瓷基复合材料的硬度和抗磨损性能远远超过金属材料,可以用于制造耐磨件,如轴承、机械密封件等。
此外,它还具有较高的抗腐蚀性能和较低的摩擦系数,可以用于制造化学装置和摩擦副。
陶瓷基复合材料的制备方法主要包括烧结法和浸渍法。
烧结法是将陶瓷粉末和其他材料混合后,通过高温加热使其熔结成型。
这种方法适用于制备纯陶瓷基复合材料,如氧化铝基陶瓷复合材料。
浸渍法是将陶瓷基体浸渍于其他材料溶液中,然后通过热处理使其形成复合材料。
这种方法可以制备各种类型的陶瓷基复合材料,如碳纤维增强陶瓷基复合材料和碳化硅增强陶瓷基复合材料。
陶瓷基复合材料在各个领域中都有广泛的应用。
在航空航天领域,它可用于制造发动机组件、航空轴承、导弹和卫星零部件等。
在汽车领域,它可用于制造发动机缸套、刹车片、活塞环等。
在电子领域,它可用于制造电子散热器、半导体器件等。
在能源领域,它可用于制造核燃料颗粒、核电站部件等。
在化工领域,它可用于制造化学反应器、蒸馏柱等。
综上所述,陶瓷基复合材料具有优异的高温性能、耐磨性、耐腐蚀性和机械性能,广泛应用于航空航天、汽车、电子、能源和化工等领域。
随着科技的进步和材料制备技术的发展,陶瓷基复合材料的应用前景将更加广阔。
陶瓷基复合材料综述引言:陶瓷基复合材料是近二十年来发展起来的新型材料,由于该类材料具有良好的高温性能。
因此它作为耐高温结构材料在航空航天工业和能源工业等领域的应用具有巨大的潜力。
如航空发动机的推重比为10时,涡轮前进口温度达1650C, 在这样高的温度下,传统的高温合金材料已经无法满足要求【11,因此国内外的材料研究者纷纷把研究的重点转向陶瓷基复合材料。
研究者通过大量的实验发现,陶瓷基复合材料不仅具有良好的高温稳定性和高温抗氧化能力,而且材料在断裂过程中通过裂纹偏转、纤维断裂和纤维拔出等机理吸收能量,既有效的增强了材料的强度和韧性,又保持了基体材料低膨胀、低密度的特点。
摘要:概述了陶瓷基复合材料的基本概念,介绍了陶瓷基复合材料的性能、分类及其应用,以及各类陶瓷基复合材料的优点、缺点。
重点介绍了陶瓷基复合材料的增韧机理、制备工艺(包括粉末冶金法、浆体法、反应烧结法、液态浸渍法、直接氧化法等)。
最后对陶瓷复合基材料的发展前景及发展方向做了展望。
1、陶瓷基复合材料概述陶瓷分为普通陶瓷和特种陶瓷。
普通陶瓷就是我们日常用的陶瓷、建筑陶瓷、化学陶瓷、电瓷及其他工业用瓷。
虽然陶瓷外表美观,耐腐蚀,但是它塑性差,易碎,是其致命缺点。
而另一种陶瓷:特种陶瓷则刚好解决了这个缺点,让陶瓷的发展有了无限的空间。
特种陶瓷包括功能陶瓷和结构陶瓷。
是一种复合材料。
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展从而得到有优良韧性的纤维增强陶瓷基复合材料。
2、陶瓷基基复合材料的基体与增强体(2) 增强体:陶瓷基复合材料中的增强体,通常也称为增韧体。
从几何尺寸上增强体可分为纤维(长、短纤维)、晶须和颗粒三类。
复合材料中常见的纤维状增强体有玻璃纤维、芳纶纤维、碳纤维、硼纤维、碳化硅纤维、氧化铝纤维和金属纤维等。
它们有连续的长纤维、定长纤维、短纤维和晶须之分。
玻璃纤维有许多品种,它是树脂基复合材料最常用的增强体,由玻璃纤维增强的复合材料是现代复合材料的代表,但是,由于它的模量偏低,而且使用温度不高,通常它不属于高级复合材料增强体。
复合材料最主要的增强体是纤维状的。
3、陶瓷基复合材料的性能陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。
其最高使用温度主要取决于基体特征。
陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。
法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
4、陶瓷基复合材料的分类陶瓷基复合材料的分类就是按照增强体种类来分A纤维:在陶瓷基复合材料中使用得较为普遍的是碳纤维、玻璃纤维、硼纤维等将玻璃小球熔化,然后通过1m左右直径的小孔把它们拉出来。
另外,缠绕纤维的心轴的转动速度决定纤维的直径,通常为lo^m勺数量级。
B晶须:晶须为具有一定长径比(直径0.3~1」m,长0~100」m)的小单晶体。
晶须的特点是没有微裂纹、位错、孔洞和表面损伤等一类缺陷,因此其强度接近理论强度。
由于晶须具有最佳的热性能、低密度和高杨氏模量,从而引起了人们对其特别的关注。
在陶瓷基复合材料中使用得较为普遍的是SiC、AYO及Si3NA晶须C颗粒:从几何尺寸上看,颗粒在各个方向上的长度是大致相同的,一般为几个微米。
颗粒的增韧效果虽不如纤维和晶须。
但是,如果颗粒种类、粒径、含量及基体材料选择适当仍会有一定的韧化效果,同时还会带来高温强度,高温蠕变性能的改善。
所以,颗粒增韧复合材料同样受到重视并对其进行了一定的研究。
常用的颗粒也是SiC、SisN等。
5、陶瓷基复合材料的应用:当在陶瓷基复合材料中引入增强、增韧材料后,陶瓷基复合材料克服了陶瓷基低韧性的弱点,使其既有很高的强度又有很好的韧性,从而使陶瓷基复合材料具有很多突出的优点,特别是韧性的提高,使其在航空航天、军事、能源、汽车、机械、化工、轻工等很多领域都有着广泛的应用潜力和前景。
法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,美国NASA制定的先进高温热机材料计划(HITEMP )、DOE /NA sA的先进涡轮技术应用计划、美国国家宇航计(NASP)、美国国防关键技术计划以及日本的月光计划等都把高温结构陶瓷基复合材料作为重点研究对象,国际普遍认为, CMG SiC是发动机高温结构材料的技术制高点之一,可反映一个国家先进航空航天器和先进武器装备的设计和制造能力。
用颗粒增强铝基复合材料制造刹车盘转子,一方面能降低重量50 ~60%,这不仅减小了惯性力,还增加了制动的加速度以至减少刹车距离;5.1、在陶瓷工业中。
ZrQ用途很广。
但主要用于分散体。
研磨介质,窑具锤式破碎机节能球磨机,粉磨机用的偏心轮盘等;在电子陶瓷领域多用作电绝缘耐热陶瓷基片;5.2、在冶金工业。
利用稳定剂与ZrO2形成固溶体产生氧空位。
可制备Mg-PS或Y-PSZ为基的氧敏探头对辊机,检测钢水中的Si、O等杂质的含量;在TZP或PS冲复合适宜的A12Q可制备耐1600C的高温泡沫陶瓷过滤器报道,通用电气公司(GE)于11月10日在F414改进型发动机上进行了陶瓷基复合材料(CMC涡轮转子叶片的关键性试验,这是公司第一次在工作发动机中试验CMC 材料。
在GE公司将CM材料应用于F136发动机静子部件之前,CM材料已经广泛应用于航空航天领域。
但最近的F414试验标志着CM材料第一次应用于发动机旋转部件。
虽然作为GE公司技术路线图的一部分,但该试验由美国海军特遣部队支持在转子叶片方面,CM材料在下一代宽体客机发动机上的应用更具吸引力,例如波音777的动力GE9发动机的替产品。
应用CM最关键的收益在于重量的降低,不仅材料本身比金属合金材料轻,同时也能减少冷却系统的重量。
GE古计在GE90 级别的发动机上采用CM涡轮转子叶片将降低总重约455kg,相当于GE90-115^动机干质量的6% 5.4 、在食品工业用作罐头盒接缝滚子,罐头盒穿孔器,柱塞,悬垂轴承和单向阀门5.5 、在纺织工业用作导丝器。
主要是由于稳定ZrO在高温下具有导电性给料机水泥磨,可消除丝线与导丝器的静电,而且材料烧成后不需要加工表面即很光洁并耐高温;5.6 、在航空航天领域:用陶瓷基复合材料制作的导弹的头锥、火箭的喷管、航天飞机的结构件等也收到了良好的效果。
5.7、在切削工具方面:SiCW增韧的细颗粒AI2Q陶瓷复合材料已成功用于工业生产制造切削刀具。
由美国格林利夫公司研制、一家生产切削工具和陶瓷材料的厂家和美国大西洋富田化工公司合作生产的WC--300复合材料刀具具有耐高温、稳定性好、强度高和优异的抗热展性能,熔点为2040C,切削速度可达200尺/ 分,甚至更高。
下图为用热压法制备的SiCw/ Al 2Q复合材料钻头图五、陶瓷刹车片6、 陶瓷基复合材料的增韧图一、航天领域 图二、陶瓷刀裂纹分支。
(2)相变增韧:由分散相的相变产生应力场来阻止裂纹的扩展。
(3)裂纹扩展受阻:裂纹尖端的韧性分散相发生塑性变形使裂纹进一步扩展受阻或裂尖钝化。
(4)裂纹偏转:由于分散相和基体之间的热膨胀系数和弹性模量失匹而产生应力场,从而使裂纹沿分散相发生偏转。
(5)纤维(晶须)拔出:f/m界面脱胶或纤维拔出。
以上5种增韧机理中,最有发展前途的是裂纹偏转和纤维拔出,因为它们很少受温度的限制,尤其是裂纹偏转增韧,其增韧效果仅取决于分散相的体积分数和形状,而与粒子尺寸和温度无关,这样对高温增韧无疑是十分有利的。
7、陶瓷基复合材料的制备工艺7. 1、粉末冶金法原料(陶瓷粉末、增强剂、粘结剂和助烧剂)> 均匀混合(球磨超声等)>冷压成形 > (热压)烧结。
关键是均匀混合和烧结过程防止体积收缩而产裂纹。
7.2浆体法(湿态法)为了克服粉末冶金法中各组元混合不均的问题,采用了浆体(湿态)法制备陶瓷基复合材料。
其混合体为浆体形式。
混合体中各组元保持散凝状,即在浆体中呈弥散分布。
这可通过调整水溶液的pH值来实现。
对浆体进行超声波震动搅拌则可进一步改善弥散性。
弥散的浆体可直接浇铸成型或热(冷)压后烧结成型。
适用于颗粒、晶须和短纤维增韧陶瓷基复合材料幵强丽弓亲律粉未握合浆岸I采用浆体浸渍法可制备连续纤维增韧陶瓷基复合材料。
纤维分布均匀,气孔率低。
7.3、反应烧结法用此方法制备陶瓷基复合材料,除基体材料几乎无收缩外,还具有以下优点:增强剂的体积比可以相当大;可用多种连续纤维预制体;大多数陶瓷基复合材料的反应烧结温度低于陶瓷的烧结温度,因此可避免纤维的损伤。
此方法最大的缺点是高气孔率难以避免。
反应烧结法制备SiC/Si 32基复合材料工艺流程7.4、液态浸渍法用此方法制备陶瓷基复合材料,化学反应、熔体粘度、熔体对增强材料的浸 润性是首要考虑的问题,这些因素直接影响着材料的性能。
陶瓷熔体可通过毛细 作用渗入增强剂预制体的孔隙 。
施加压力或抽真空将有利于浸渍过程。
假如预 制体中的孔隙呈一束束有规则间隔的平行通道,则可用Poisseuiue 方程计算出 浸渍高度h : h = ( r t cos -) / 2 式中r 是圆柱型孔隙管道半径;t 是时间; 是浸渍剂的表面能;是接触角;是粘度。
7.5、 直接氧化法按部件形状制备增强体预制体,将隔板放在其表面上以阻止基体材料的生长。
熔化的金属在氧气的作用下发生直接氧化反应形成所需的反应产物。
由于在氧化产物中的空隙管道的液吸作用,熔化金属会连续不断地供给到生长前沿。
Al + 空气 > Al 2QAl + 氮气一;AlN7.6、 溶胶-凝胶(Sol - Gel )法溶胶(Sol )是由于化学反应沉积而产生的微小颗粒(直径 <10Onm )的悬浮 液;凝胶(Gel )是水分减少的溶胶,即比溶胶粘度大的胶体。
Sol - Gel 法 是 指金属有机或无机化合物经溶液、溶胶、凝胶等过程而固化,再经热处理生成氧0S00 000000000液态浸渍法制备陶瓷基复合材料示意图 000 \iif化物或其它化合物固体的方法。
该方法可控制材料的微观结构,使均匀性达到微 米、纳米甚至分子量级水平。
Sol - Gel 法制备Si02陶瓷原理如下:Si(OR) 4 + 4H 20 > Si(OH) 4+ 4R0HSi(OH) 4 > Si0 2 + 2H 20使用这种方法,可将各种增强剂加入基体溶胶中搅拌均匀, 当基体溶胶形成凝胶 后,这些增强组元稳定、均匀分布在基体中,经过干燥或一定温度热处理,然后 压制烧结形成相应的复合材料。