平方根练习题及答案
- 格式:docx
- 大小:37.02 KB
- 文档页数:7
平方根练习题及答案平方根练习题及答案数学作为一门基础学科,对于培养学生的逻辑思维和解决问题的能力起着至关重要的作用。
而在数学中,平方根是一个重要的概念,掌握平方根的计算方法和应用能力对于解决各种实际问题至关重要。
下面我们来看一些关于平方根的练习题及其答案。
1. 计算下列各数的平方根:a) 4b) 9c) 16d) 25答案:a) √4 = 2b) √9 = 3c) √16 = 4d) √25 = 52. 计算下列各数的平方根:a) 36b) 49c) 64d) 81答案:a) √36 = 6b) √49 = 7c) √64 = 8d) √81 = 93. 计算下列各数的平方根:a) 100b) 121c) 144d) 169答案:a) √100 = 10b) √121 = 11c) √144 = 12d) √169 = 13通过以上练习题,我们可以看到计算平方根的方法其实非常简单。
对于一个正数n,它的平方根就是使得x² = n成立的正数x。
我们可以通过试探法或者使用计算器来计算平方根。
当然,在实际问题中,我们通常会使用计算器或者数学软件来计算平方根,但是对于基础的练习题,我们还是应该掌握手算的方法。
除了计算平方根,我们还可以通过平方根的性质来解决一些实际问题。
比如,在几何学中,我们可以利用平方根来计算直角三角形的斜边长。
根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。
如果我们已知两条直角边的长度,我们就可以通过平方根来计算斜边的长度。
另外,在物理学中,平方根也经常被用来计算速度、加速度等物理量。
例如,当我们已知一个物体匀加速运动的加速度和时间时,我们可以通过平方根来计算物体的位移。
这些实际问题的解决离不开对平方根的理解和应用。
总之,平方根作为数学中的一个重要概念,不仅仅是一种计算方法,更是一种解决实际问题的工具。
通过练习题的训练,我们可以提高对平方根的计算能力和应用能力,为解决更加复杂的问题打下坚实的基础。
平方根3套练习题(有答案)篇一:八年级数学平方根练习题包含答案第11章平方根练习题班级:________ 姓名________ 分数________ ◆随堂检测1、9的算术平方根是___ __ 252、一个数的算术平方根是9,则这个数的平方根是3x的取值范围是,若a≥04、下列叙述错误的是()A、-4是16的平方根B、17是(?17)2的算术平方根C、11的算术平方根是D、0.4的算术平方根是0.02 864◆典例分析例:已知△ABC的三边分别为a、b、c且a、b|b?4|?0,求c的取值范围分析:根据非负数的性质求a、b的值,再由三角形三边关系确定c的范围|b?4|?00 |b?4|≥0|b?4|=0所以a=3 b=4 又因为b-a c a+b 所以 1 c 7●拓展提高一、选择1?2,则(m?2)2的平方根为()A、16B、?16C、?4D、?22)A、4B、?4C、2D、?2二、填空 3、如果一个数的算术平方根等于它的平方根,那么这个数是4(y?4)2=0,则yx三、解答题5、若a是(?2)2的平方根,ba+2b的值6、已知ab-1是400●体验中考1.(2009年山东潍坊)一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是()A.a?1B.a?1 22 CD12、(08;若b,(a、b为连续整数),则a= , b=3、(08年广州)如图,实数a、b在数轴上的位置,化简4、(08年随州)小明家用了大小相同的正方形瓷砖共66块铺成10.56米的房间,小明想知道每块瓷砖的规格,请你帮助算一算.2参考答案:随堂检测:1、3,352、?93、x≥2,≥4、D拓展提高:1、C2、C3、04、165、由题意知:a=(?2)2= 4 ,b=2 所以a+2b= 4+4=86、解:因为a,所以a=13,又因为b-1是400的算术平方根,所以b-1=20b=21?●体验中考:1、B2、9;7,83、-2b4为0.4米.22??0.4,所以每块瓷砖的边长篇二:七年级下册第6章-平方根习题题精选(含答案)6.1平方根习题题精选______班别______姓名______考号______一.选择题(共30小题)2.(2021?鞍山)4的平方根是()3.(2021?陕西)4的算术平方根是() 5.(2021?张家界)若+(y+2)2=0,则(x+y)2021等于()6.(2021?泸州)已知实数x、y满足+|y+3|=0,则x+y的值为()8.(2021?新泰市一模)的平方根是()9.(2021?德州一模)|﹣4|的平方根是() 10.(2021?资阳一模)下列说法正确的是()13.(2021?邻水县模拟)16的算术平方根的平方根是()14.(2021?南充)0.49的算术平方根的相反数是() 15.(2021?黄石模拟)算术平方根等于2的数是()的平方根是() 18.下列说法正确的是() 19.下列说法正确的是()20.一个数如果有两个平方根,那么这两个平方根之和是()21.下列说法正确的()(1)9的平方根是±3(2)平方根等于它本身的数是0和1 (3)﹣2是4的平方根(4)的算术平方根是4.22.81的平方根是±9的数学表达式是()23.已知3m﹣1和m﹣7是数p的平方根,则p的值为() 24.如果一个数的平方根是这个数本身,那么这个数是()27.一个正数的平方根是2m+3和m+1,则这个数为() 28.下列说法正确的是() 30.下列说法正确的是()一.填空题(共8小题)1.(2021?本溪)一个数的算术平方根是2,则这个数是.2.(2021?营口一模)若2x﹣4与1﹣3x是同一个数的平方根,则x的值为 3.(2021?江西模拟)已知一个正数的两个不同的平方根是3x﹣2和4﹣x,则x=4.(2021?普陀区二模)5.(2021?道里区一模)6.(2021?高港区二模)7.(2021?高淳县二模)如果a、b分别是9的两个平方根,则ab的值为的平方根是的算术平方根是.的平方根是8.(2021?潮安县模拟)如果二.解答题(共12小题) 9.解方程:(1)x﹣与(2x﹣4)互为相反数,那么2x﹣y= _________ .2=0;(2)(x﹣1)=36. 10.解方程:0.25(3x+1)﹣15=0.2211.解方程:196x﹣1=0. 12.解方程:(1)13.解方程:(2x+1)﹣6=0.14.观察下列表格,并完成下列问题(1)求a和b的值;(2)用一句话概括你发现的规律.22=0;(2)(x﹣1)=36.2(1)268.96的平方根是多少?(2)(3)(4)表中与≈ _________ .在哪两个数之间?为什么?最接近的是哪个数?16.已知2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,求a,b的值. 17.计算:(1)(2)(3)= _________ ,= _________ ;= _________ ,= _________ .= _________ ;仔细观察上面几道题的计算结果,猜想一个数的平方的算术平方根与这个数之间的关系.(可以用代数式表示或用语言叙述)18.已知2a+b的算术平方根是9,3a﹣b+1是144的算术平方根,求a﹣b的值. 19.若 20.己知+(x﹣2)=0,求x﹣y的平方根.,求(x+2)的平方根.26.1平方根习题题精选(参考答案与解析)一.选择题(共30小题)2.(2021?鞍山)4的平方根是()3.(2021?陕西)4的算术平方根是()5.(2021?张家界)若+(y+2)=0,则(x+y)22021等于()篇三:八年级数学平方根练习题包含平方根检测题◆随堂检测1、9的算术平方根是___ __ 252、一个数的算术平方根是9,则这个数的平方根是3x的取值范围是,若a≥04、下列叙述错误的是()A、-4是16的平方根B、17是(?17)的算术平方根C、211的算术平方根是D、0.4的算术平方根是0.02 864◆典例分析例:已知△ABC的三边分别为a、b、c且a、b|b?4|?0,求c的取值范围分析:根据非负数的性质求a、b的值,再由三角形三边关系确定c的范围|b?4|?00 |b?4|≥0|b?4|=0所以a=3 b=4 又因为b-a c a+b 所以 1 c 7◆课下作业●拓展提高一、选择1?2,则(m?2)的平方根为()A、16B、?16C、?4D、?22)A、4B、?4C、2D、?2二、填空 3、如果一个数的算术平方根等于它的平方根,那么这个数是4(y?4)=0,则y三、解答题25、若a是(?2)的平方根,ba+2b的值 22x26、已知ab-1是400的值●体验1.(2009年山东潍坊)一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是()A.a?1B.a2?1CD12、(08;若,(a、b为连续整数),则a= , b=3、(08年广州)如图,实数a、b在数轴上的位置,化简4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米的房间,小明想知道每块瓷砖的规格,请你帮助算一算.2参考答案:随堂检测:1、3,352、?93、x≥-2,≥4、D拓展提高:1、C2、D3、04、165、由题意知:a=(?2)= 4 ,b=2 所以a+2b= 4+4=86、解:因为a,所以a=13,又因为b-1是400的算术平方根,所以b-1=20b=21?●体验中考:1、B2、9;7,83、-2b4为0.4米.222??0.4,所以每块瓷砖的边长。
平方根与立方根练习题及答案平方根与立方根练习题及答案数学作为一门基础学科,对于我们的日常生活和学习都有着重要的作用。
而在数学中,平方根和立方根是我们常常会遇到的概念。
它们不仅有着实际应用,还能够锻炼我们的逻辑思维和计算能力。
下面,我们将给大家提供一些平方根和立方根的练习题及答案,希望能够帮助大家更好地理解和掌握这两个概念。
一、平方根练习题1. 计算下列各数的平方根:a) 9b) 16c) 25d) 36e) 49答案:a) √9 = 3b) √16 = 4c) √25 = 5d) √36 = 6e) √49 = 72. 计算下列各数的平方根(保留两位小数):a) 2b) 5c) 8d) 10e) 13答案:a) √2 ≈ 1.41b) √5 ≈ 2.24c) √8 ≈ 2.83d) √10 ≈ 3.16e) √13 ≈ 3.613. 判断下列各数是否为完全平方数:a) 16b) 21c) 36d) 42e) 49答案:a) 是b) 否c) 是d) 否e) 是二、立方根练习题1. 计算下列各数的立方根:a) 8b) 27c) 64d) 125e) 216答案:a) ∛8 = 2b) ∛27 = 3c) ∛64 = 4d) ∛125 = 5e) ∛216 = 62. 计算下列各数的立方根(保留两位小数):a) 1b) 10c) 25d) 50e) 100答案:a) ∛1 = 1b) ∛10 ≈ 2.15c) ∛25 ≈ 2.92d) ∛50 ≈ 3.68e) ∛100 ≈ 4.643. 判断下列各数是否为完全立方数:a) 8b) 27c) 36d) 49e) 64答案:a) 否b) 是c) 是d) 否e) 是通过以上的练习题,我们可以更好地理解和掌握平方根和立方根的概念。
同时,这些练习题也能够帮助我们提高计算能力和逻辑思维能力。
在实际生活中,平方根和立方根的运用也非常广泛,比如在测量、建模和解决实际问题时,我们常常需要用到这些概念。
第11章平方根练习题班级:________ 姓名________ 分数________ ◆随堂检测1、259的算术平方根是 ;81的算术平方根___ __2、一个数的算术平方根是9,则这个数的平方根是3、若2x -有意义,则x 的取值范围是 ,若a ≥0,则a 04、下列叙述错误的是( )A 、-4是16的平方根B 、17是2(17)-的算术平方根C 、164的算术平方根是18 D 、0.4的算术平方根是0.02 ◆典例分析例:已知△ABC 的三边分别为a 、b 、c 且a 、b 满足3|4|0a b -+-=,求c 的取值范围 分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围解:因为3|4|0a b -+-=而3a -≥0 |4|b -≥0,所以3a -=0 |4|b -=0所以a=3 b=4 又因为b-a<c<a+b 所以 1<c<7●拓展提高一、选择1、若22m +=,则2(2)m +的平方根为( )A 、16B 、16±C 、4±D 、2±2、16的算术平方根是( )A 、4B 、4±C 、2D 、2±二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是4、若2x -+2(4)y +=0,则xy =三、解答题5、若a 是2(2)-的平方根,b 是16的算术平方根,求2a +2b 的值6、已知a 为170的整数部分,b-1是400的算术平方根,求a b +的值●体验中考1.(2009年山东潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( )A .1a +B .21a +C .21a +D .1a +2、(08年泰安市)88的整数部分是 ;若a<57<b ,(a 、b 为连续整数),则a= , b=3、(08年广州)如图,实数a 、b 在数轴上的位置,化简 222()a b a b --- =4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.参考答案:随堂检测:1、35,3 2、9±3、x ≥2,≥4、D拓展提高:1、C2、C3、04、165、由题意知:2a =2(2)-= 4 ,b=2 所以2a +2b= 4+4=86、解:因为a ,所以a=13,又因为b-1是400的算术平方根,所以b-1=20 b=21 =●体验中考:1、B2、9;7,83、-2b40.4==,所以每块瓷砖的边长为0.4米.。
八年级数学《平方根》练习题(含答案)一、选择题1. 若 $a = 4$,则 $\sqrt{a}$ 的值是多少?A. 2B. 4C. 8D. 16答案:A2. 若 $b = 16$,则 $\sqrt{b}$ 的值是多少?A. 2B. 4C. 8D. 16答案:B二、填空题1. $3\sqrt{3} \approx $ ____________。
答案:5.192. 若 $\sqrt{x} = 5$,则 $x = $ ____________。
答案:25三、解答题1. 请将以下根式化简:$\sqrt{48}$解:$\sqrt{48}=\sqrt{16\times3}=4\sqrt{3}$2. 小明想用木板围一块矩形花坛,长为 $6\sqrt{2}$ 米,宽为$3\sqrt{2}$ 米,需要多长的木板?解:周长为 $2(6\sqrt{2}+3\sqrt{2})=18\sqrt{2}$,所以需要$18\sqrt{2}$ 米的木板。
四、挑战题1. 若 $x>0$,$y>0$,$x\neq y$,且 $\sqrt{x} + \sqrt{y} =\sqrt{xy}$,则 $x$ 与 $y$ 的值至少为多少?解:将等式两边平方得到 $x+y+2\sqrt{xy}=xy$,移项可以得到$\sqrt{xy}=x+y-xy$。
因为 $x+y-xy>0$,所以 $\sqrt{xy}>0$,即$xy>0$,因此 $x$ 和 $y$ 同号。
不妨设 $x>y$,则$\sqrt{x}+\sqrt{y}<2\sqrt{x}$,又因为$\sqrt{x}+\sqrt{y}=\sqrt{xy}$,所以 $\sqrt{xy}<2\sqrt{x}$,即 $y<4x$。
又因为 $y>x$,所以$x<2y$。
结合 $y<4x$ 可以得到 $x>4y$,代入 $x<2y$ 中得到$y<\dfrac{1}{6}x$。
平方根专项练习题答案一、选择题1. 以下哪个数的平方根是无理数?A. 4B. 9C. 16答案:A2. 计算√64的结果是多少?A. 8B. -8C. 4D. 2答案:A3. √25的值等于以下哪个选项?A. 5B. ±5C. 25D. 5/2答案:B4. 以下哪个数的平方根是正数?A. -3B. 0C. 3D. 5答案:C5. √144的值是多少?A. 12B. 12/2C. 36D. 18答案:A二、填空题6. √0.36的值是______。
答案:0.67. 一个数的平方根是7,这个数是______。
答案:498. √0.16的值是______。
答案:0.49. 如果√x = 5,那么x等于______。
答案:2510. √225的值是______。
答案:15三、计算题11. 计算下列各数的平方根:- √289- √0.09- √1答案:17, 0.3, 112. 计算下列各数的平方根,并简化结果:- √576- √0.25- √1/9答案:24, 0.5, 1/313. 计算下列各数的平方根,并写出其整数部分和小数部分:- √324- √0.64答案:18.0, 0.814. 计算下列各数的平方根,并判断其是否有整数解:- √289- √289 + √289答案:有整数解,无整数解15. 计算下列各数的平方根,并判断其正负:- √144- √-9答案:正数,无实数解四、解答题16. 一个正方形的面积是25平方厘米,求这个正方形的边长。
答案:边长为√25=5厘米。
17. 一个长方形的长是10厘米,宽是√49厘米,求这个长方形的面积。
答案:面积为10×√49=10×7=70平方厘米。
18. 如果一个数的平方根是8,求这个数。
答案:这个数为8²=64。
19. 一个数的平方根是√2,求这个数。
答案:这个数为(√2)²=2。
20. 一个数的平方根是√3,求这个数的平方。
根号计算的练习题根号(√)是数学中常常出现的符号,用来表示求平方根。
在数学中,我们经常需要进行根号计算,因此掌握根号的计算方法和技巧是非常重要的。
本文将为大家提供一些根号计算的练习题,帮助大家巩固和提高根号计算能力。
一、求平方根1. 求解√16答案:42. 求解√25答案:53. 求解√36答案:64. 求解√49答案:75. 求解√64答案:8二、简化根式1. 简化√8答案:√(4 × 2) = 2√2 2. 简化√12答案:√(4 × 3) = 2√3 3. 简化√18答案:√(9 × 2) = 3√2 4. 简化√20答案:√(4 × 5) = 2√5 5. 简化√27答案:√(9 × 3) = 3√3三、根号运算1. 计算√16 + √25答案:4 + 5 = 92. 计算2√3 + 3√3答案:(2 + 3)√3 = 5√3 3. 计算√2 × √8答案:√(2 × 8) = √16 = 4 4. 计算3√5 × 2√5答案:(3 × 2)√(5 × 5) = 6√25 = 305. 计算√27 ÷ √3答案:√(27 ÷ 3) = √9 = 3四、混合运算1. 计算√16 + 3√9答案:4 + (3 × 3) = 4 + 9 = 132. 计算2√3 + √8 - √18答案:2√3 + 2√2 - 3√2 = 2√3 - √23. 计算(√3 + 2) × (√3 - 2)答案:(√3 × √3) - (2 × √3) + (√3 × -2) - (2 × -2) = 3 - 2√3 - 2√3 + 4 = 7 - 4√34. 计算(2 + √5)(2 - √5)答案:(2 × 2) - (2 × √5) + (√5 × 2) - (√5 × -√5) = 4 - 2√5 + 2√5 - 5 = -15. 计算(2 - √3)(2 - √3)答案:(2 × 2) + (2 × -√3) + (-√3 × 2) + (-√3 × -√3) = 4 - 2√3 - 2√3 + 3 = 7 - 4√3通过以上练习题的操作,我们可以学到如何计算根号、简化根式、进行根号运算以及混合运算等技巧。
平方根与立方根的练习题及解答数学中的平方根和立方根是我们常常会遇到的概念,它们在实际生活中的应用也非常广泛。
本文将介绍一些平方根和立方根的练习题,并提供详细解答,希望能够帮助读者更好地理解和运用这两个概念。
一、平方根的练习题及解答1. 求以下数的平方根:a) 25b) 36c) 64d) 81解答:a) √25 = 5b) √36 = 6c) √64 = 8d) √81 = 92. 求以下数的平方根(结果保留一位小数):a) 2b) 5c) 10解答:a) √2 ≈ 1.4b) √5 ≈ 2.2c) √10 ≈ 3.2d) √17 ≈ 4.13. 求以下数的平方根(结果保留两位小数):a) 7b) 13c) 20d) 29解答:a) √7 ≈ 2.65b) √13 ≈ 3.61c) √20 ≈ 4.47d) √29 ≈ 5.39二、立方根的练习题及解答1. 求以下数的立方根:a) 8c) 64d) 125解答:a) ∛8 = 2b) ∛27 = 3c) ∛64 = 4d) ∛125 = 52. 求以下数的立方根(结果保留一位小数):a) 1b) 10c) 25d) 100解答:a) ∛1 ≈ 1.0b) ∛10 ≈ 2.2c) ∛25 ≈ 3.0d) ∛100 ≈ 4.63. 求以下数的立方根(结果保留两位小数):b) 125c) 216d) 512解答:a) ∛81 ≈ 4.31b) ∛125 ≈ 5.00c) ∛216 ≈ 6.00d) ∛512 ≈ 8.00综上所述,本文介绍了一些平方根和立方根的练习题,并提供了详细的解答。
通过反复的练习,读者可以更加熟悉和灵活运用平方根和立方根的计算方法,从而更好地应用于实际问题中。
希望本文对您的数学学习有所帮助!。
平方根练习题答案一、填空题1. √9 = 32. √16 = 43. √25 = 54. √36 = 65. √49 = 76. √64 = 87. √81 = 98. √100 = 109. √121 = 1110. √144 = 12二、选择题1. 答案:D解析:√121 = 11,选项D中与这个结果相符。
2. 答案:A解析:√64 = 8,选项A中与这个结果相符。
3. 答案:C解析:√169 = 13,选项C中与这个结果相符。
4. 答案:B解析:√256 = 16,选项B中与这个结果相符。
5. 答案:D解析:√400 = 20,选项D中与这个结果相符。
6. 答案:C解析:√625 = 25,选项C中与这个结果相符。
7. 答案:A解析:√900 = 30,选项A中与这个结果相符。
8. 答案:B解析:√1089 = 33,选项B中与这个结果相符。
9. 答案:C解析:√1369 = 37,选项C中与这个结果相符。
10. 答案:D解析:√1600 = 40,选项D中与这个结果相符。
三、解答题1. 答案:√196 = 14解析:通过对196的因数进行分解,可以得到14的平方,因此√196 = 14。
2. 答案:√62500 = 250解析:62500可以分解为250的平方,因此√62500 = 250。
3. 答案:√3249 = 57解析:通过对3249的因数进行分解,可以得到57的平方,因此√3249 = 57。
4. 答案:√60025 = 245解析:60025可以分解为245的平方,因此√60025 = 245。
5. 答案:√1000000 = 1000解析:1000000可以分解为1000的平方,因此√1000000 = 1000。
6. 答案:√1444 = 38解析:通过对1444的因数进行分解,可以得到38的平方,因此√1444 = 38。
7. 答案:√8649 = 93解析:通过对8649的因数进行分解,可以得到93的平方,因此√8649 = 93。
平方根立方根练习题及答案1. 求 \( \sqrt{16} \) 的值。
2. 求 \( \sqrt{81} \) 的值。
3. 求 \( \sqrt[3]{27} \) 的值。
4. 求 \( \sqrt[3]{64} \) 的值。
5. 求 \( \sqrt{0.36} \) 的值。
6. 求 \( \sqrt[3]{-27} \) 的值。
7. 判断 \( \sqrt{64} \) 是否等于 \( \sqrt{16} \times \sqrt{4} \)。
8. 求 \( \sqrt[3]{8} \) 并将其与 \( \sqrt[3]{2} \) 进行比较。
答案1. \( \sqrt{16} = 4 \),因为 \( 4^2 = 16 \)。
2. \( \sqrt{81} = 9 \),因为 \( 9^2 = 81 \)。
3. \( \sqrt[3]{27} = 3 \),因为 \( 3^3 = 27 \)。
4. \( \sqrt[3]{64} = 4 \),因为 \( 4^3 = 64 \)。
5. \( \sqrt{0.36} = 0.6 \),因为 \( 0.6^2 = 0.36 \)。
6. \( \sqrt[3]{-27} = -3 \),因为 \( (-3)^3 = -27 \)。
7. \( \sqrt{64} \) 等于 \( 8 \),而 \( \sqrt{16} \times\sqrt{4} \) 也等于 \( 4 \times 2 = 8 \),所以判断正确。
8. \( \sqrt[3]{8} \) 等于 \( 2 \)(因为 \( 2^3 = 8 \)),而\( \sqrt[3]{2} \) 约等于 \( 1.26 \),所以 \( \sqrt[3]{8} \) 大于 \( \sqrt[3]{2} \)。
这些练习题和答案可以帮助学生更好地理解和掌握平方根和立方根的概念。
通过这些练习,学生可以提高他们的计算能力和对数学概念的理解。
平方根演习题姓名:_______________班级:_______________考号:_______________一.填空题1.已知m的平方根是2a-9和5a-12,则m的值是________.2.对于随意率性不相等的两个数a,b,界说一种运算※如下:a※b =,如3※2=.那么12※4= .3.实数a在数轴上的地位如图所示,化简:.4.已知:,则x+y的算术平方根为_____________.二.选择题5.已知:是整数,则知足前提的最小正整数为()A.2 B.3C .4D.56.若,,且,则的值为( )A.-1或11 B.-1或-11 C. 1 D.117.点P,则点P地点象限为( ).B. 第二象限C. 第三象限 D第四象限.8.的平方根是A.9 B. C. D.39.一个正方形的面积是15,估量它的边长大小在()A.2与3之间 B.3与4之间 C.4与5之间D.5与6之间三.简答题10. 已知的平方根是±3,的算术平方根是4,求的平方根11.如图,实数.在数轴上的地位,化简.12.假如一个正数m的两个平方根分离是2a-3和a-9,求2m-2的值.四.盘算题13.已知与的小数部分分离是a.b,求ab的值.14.设都是实数,且知足,求式子的算术平方根.15.参考答案一.填空题1.92.1/23.14.5二.选择题5.D6. D7.D8.C9.B三.简答题10.…2分…..4分……6分成果 .8分11.解:由图可知: ,,∴. 2分∴原式= 5分= 6分=.7分12.∵一个正数的两个平方根分离是2a-3和a-9,∴(2a-3)+(a-9)=0,解得a= 4,∴这个正数为(2a-3) 2=52=25,∴2m-2=2×25-2= 48;四.盘算题13.解:因为,所以的小数部分是,的小数部分是14.解:由题意得,,解得,所以,所以的算术平方根为.15.原式=+2+4﹣4=;。
平方根练习题答案一、选择题(每题2分,共20分)1. 下列哪个数的平方根是正数?A. 4B. -4C. 0D. 162. 计算下列哪个数的平方根,结果为非负数?A. 9B. -9C. 36D. -363. 一个数的平方根是它本身,这个数可能是:A. 1B. -1C. 0D. 94. 以下哪个选项不是平方根的计算结果?A. √4 = 2B. √9 = 3C. √16 = 4D. √1 = -15. 一个数的平方根是另一个数的两倍,设这个数为x,另一个数为y,那么x和y的关系是:A. x = y^2B. x = 2yC. x = 4yD. x = 2y^2二、填空题(每题2分,共20分)6. √64的值是______。
7. 如果一个数的平方根是8,那么这个数是______。
8. 一个数的平方根是它自己的数是______。
9. √0.25的值是______。
10. 如果√x = 5,那么x的值是______。
三、简答题(每题10分,共30分)11. 解释什么是平方根,并给出一个例子。
12. 描述如何计算一个数的平方根。
13. 举例说明平方根在日常生活中的应用。
四、计算题(每题15分,共30分)14. 计算下列各数的平方根:a. 81b. 0.04c. 14415. 如果一个数的平方根是√3,求这个数。
五、应用题(每题20分,共20分)16. 在一个正方形的花园中,如果花园的面积是25平方米,求这个正方形花园的边长。
六、附加题(10分)17. 一个数的平方根是另一个数的平方根的两倍,设这个数为a,另一个数为b,求a和b的关系。
答案:1. A2. A, C3. C4. D5. D6. ±87. 648. 0, 19. 0.510. 2511. 平方根是一个数的平方等于另一个数时,这个数就是那个数的平方根。
例如,4的平方根是2,因为2的平方是4。
12. 计算一个数的平方根通常使用计算器或查找平方根表。
平方根 基础练习题1.1的平方根是A .B .C .1D .±122a ,则a 的值为A .3B .±3C .3D .–3 38116的平方根是 A .94 B .32 C .94± D .32± 4.若一个正数的两个平方根分别是4a +和23a -,那么这个正数是.A .3B .9C .25D .495.如果x 是4的算术平方根,那么x 的平方根是A .4B .2C .±2D .±46415A .3到4之间B .4到5之间C .5到6之间D .6到7之间 7.已知a 2a -A .aB .-aC .-1D .0 8.若2m -4与3m -1是同一个数的平方根,则m 为A .-3B .1C .-3或1D .-1 9.x 的算术平方根是2,y 是36的算术平方根,则x +2y 的平方根是__________. 1011,则这个数是__________.11.如果某数的一个平方根是-6,那么这个数的另一个平方根是__________,这个数是__________. 12 3.6536.5365000__________.13.一个正方形的面积是6平方厘米,则这个正方形的边长等于__________厘米.14.求下列各式的值:(12;(3415.求下列各式中x的值:(1)9x2–25=0;(2)2(x+1)2–32=0.16.已知9=-+y x17.已知x,y是实数,且(y-2)2x2+y3的平方根.18.一个自然数的算术平方根是x,则它后面一个数的算术平方根是A.x+1 B.x2+1 C+1 D19的值A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间20a b,则a b+-.21.求下列代数式的值(1)如果a2=4,b的算术平方根为3,求a+b的值.(2)已知x是25的平方根,y是16的算术平方根,且x<y,求x–y的值.22.(2018•铜仁市)9的平方根是A.3 B.–3 C.3和–3 D.8123.(2018A.32B.–32C.±32D.811624.(2018•杭州)下列计算正确的是A B 2 C=2 D=±225.(2018•贺州)4的平方根是A.2 B.–2 C.±2 D.1626.(2018的算术平方根是A.B C.±2 D.227.(2018•株洲)9的算术平方根是A.3 B.9 C.±3 D.±928.(2018•济南)4的算术平方根是A.2 B.–2 C.±2 D参考答案1. D2. B3. D4. D5. C6. C7. D8. B9.±410.1111.6;3612.604.213.414.(1.(211 15 =.(3(415.(1)9x2–25=0,x2=259,故x=±53;(2)2(x+1)2–32=0则(x+1)2=16,故x+1=±4,解得:x=3或–5.16..17.±3.18.D19.C20.121.(1)11,(2)-922.C23.A24.A25.C26.B27.A28.A。
平方根同步练习〔1〕知识点:1.算术平方根:一样地,若是一个正数的平方等于a,那么那个正数叫做a的算术平方根。
A叫做被开方数。
1.平方根:若是一个数的平方等于a,那么那个数叫做a的平方根2.平方根的性质:正数有两个平方根,互为相反数0的平方根是0负数没有平方根同步练习:一、根底训练1.9的算术平方根是〔〕A.-3 B.3 C.±3 D.812.以下计算不正确的选项是〔〕A=±2 B=C=0.4 D-63.以下说法中不正确的选项是〔〕A.9的算术平方根是3 B±2C.27的立方根是±3 D.立方根等于-1的实数是-14的平方根是〔〕A.±8 B.±4 C.±2 D.5.-18的平方的立方根是〔〕A.4 B.18C.-14D.146_______;9的立方根是_______.7≈_______〔保留4个有效数字〕8.求以下各数的平方根.〔1〕100;〔2〕0;〔3〕925;〔4〕1;〔5〕11549;〔6〕0.09.9.计算:〔1〕2;〔34〕二、能力训练10.一个自然数的算术平方根是x,那么它后面一个数的算术平方根是〔〕A.x+1 B.x2+1 C D11.假设2m-4与3m-1是同一个数的平方根,那么m的值是〔〕A.-3 B.1 C.-3或1 D.-112.x,y〔y-3〕2=0,那么xy的值是〔〕A.4 B.-4 C.94D.-9413.假设一个偶数的立方根比2大,算术平方根比4小,那么那个数是_______.14.将半径为12cm的铁球熔化,从头铸造出8个半径一样的小铁球,不计损耗,•小铁球的半径是多少厘米?〔球的体积公式为V=43πR3〕三、综合训练15.利用平方根、立方根来解以下方程.〔1〕〔2x-1〕2-169=0;〔2〕4〔3x+1〕2-1=0;〔3〕274x 3-2=0; 〔4〕12〔x +3〕3=4.答案:1.B2.A .3.C4.C ,故4的平方根为±2.5.D 点拨:〔-18〕2=164,故164的立方根为14.6.±23 7., 8.〔1〕±10 〔2〕0 〔3〕±35〔4〕±1 〔5〕±87〔6〕 9.〔1〕-3 〔2〕-2 〔3〕14 〔4〕 10.D 点拨:那个自然数是x 2,因此它后面的一个数是x 2+1,那么x 2+1.12.B 点拨:3x +4=0且y -3=0.13.10,12,14 点拨:23<那个数<42,即8<那个数<16.14.解:设小铁球的半径是rcm ,那么有43πr 3×8=43π×123,r =6, ∴小铁球的半径是6cm .点拨:依照溶化前后的体积相等.15.解:〔1〕〔2x -1〕2=169,2x -1=±13,2x =1±13,∴x =7或x =-6.〔2〕4〔3x+1〕2=1,〔3x+1〕2=14,3x+1=±12,3x=-1±12,x=-12或x=-16.〔3〕274x3=2,x3=2×427,x3=827,x=23.〔4〕〔x+3〕3=8,x+3=2,x=-1.。
6.1 平方根一、单选题(共13题;共26分)1.14 的算术平方根是( )A. ± 12B. ﹣ 12C. 12D.116 2.下列四个选项中,正确是( )A. √16=±4B. 2﹣3=﹣6C. (2−√5)(2+√5)=−1D. (﹣5)4÷(﹣5)2=﹣523.4的平方根是( )A. ±2B. ﹣2C. 2D. ±124.下列说法中正确的有( )①±2 都是8的立方根 ② √x 33=x ③√81 的立方根是3 ④−√−83=2 A. 1个 B. 2个 C. 3个 D. 4个5.计算: |−12|−√14 的结果是( ) A. 1 B. C. 0 D. -16.下列说法错误的是( )A. 4的算术平方根是2B. √81 的平方根是 ±3C. 8的立方根是 ±2D. 0的平方根是07.a 2的算术平方根一定是( )A. AB. |a |C. √aD. −a8.在数学课上,老师将一长方形纸片的长增加2 √3 cm ,宽增加7 √3 cm ,就成为了一个面积为192cm ²的正方形,则原长方形纸片的面积为( )A. 18cm ²B. 20cm ²C. 36cm ²D. 48cm ²9.下列运算正确的是( )A.a 2•a 3=a 6B.( 12 )﹣1=﹣2 C.|﹣6|=6 D.√16 =±410.2的平方根是( )A. ± √2B. ±4C. √2D. 411.已知边长为3的正方形的对角线长 a 为 √18 ,给出下列关于 a 的四个结论:① a 是无理数;② a 可以用数轴上的点表示;③ 3<a <4 ;④ a 是18的算术平方根.其中正确的是( )A. ①④B. ②③C. ①②④D. ①③④12.下列计算结果正确的是( )A.B.C. D. 13.求7的平方根,正确的表达式是( )A. √7B. ±√7C. √73D. √72二、填空题(共12题;共17分)14.如果 √16 的算术平方根是m,-64的立方根是n,那么m-n=________.15.已知 x 2=4 ,则 x 的值为________.16.已知某正数的两个平方根分别是m+4和2m ﹣16,则这个正数的立方根为________.17.若一个数的立方根等于这个数的算术平方根,则这个数是________.18.若x 的平方根是 ± 4,则 √x 的值是________.19.9的算术平方根是 ________.20.(﹣4)2的平方根是________.21.分析探索题:细心观察如图,认真分析各式,然后解答问题.OA 22=(√1)2+1=2 S 1=√12; OA 32=(√2)2+1=3 S 2=√22;OA 42=(√3)2+1=4 S 3=√32… (1)请用含有n (n 为正整数)的等式S n =________ ;(2)推算出OA 10=________(3)求出 S 12+S 22+S 32+…+S 102的值.22.绝对值最小的数是______;最大的负整数是______;16的平方根是______23.若√a 的平方根为±3,则a=________.24.比较大小: 12 ________ √3−12 .25.①9平方根是________;② √14= ________;③若 |a −1|=a −1 ,则a 的取值范围是________.三、解答题(共5题;共25分)26.一个正数x 的两个不同的平方根是3a ﹣4和1﹣6a ,求a 及x 的值.27. 已知x+2的平方根是±4,4y-32的立方根是-2.求x 2-y 2+9的平方根.28. 已知实数a ,b 满足=0,求a 2012+b 2013的值.29.用若干个形状、大小完全相同的长方形纸片围正方形,如图①是用4个长方形纸片围成的正方形,其阴影部分的面积为16;如图②是用8个长方形纸片围成的正方形,其阴影部分的面积为8;如图③是用12个长方形纸片围成的正方形,求其阴影部分的周长.30.如图,某玩具厂要制作一批体积为100 000cm3的长方体包装盒,其高为40cm.按设计需要,底面应做成正方形.求底面边长应是多少?答案解析部分一、单选题1. C2. C3. A4. B5. C6. C7. B8. A9. C10. A11. C12. D13. B二、填空题14. 615. ±216.417. 0或118. 419. 320. ±421.√n2;55422. 0;-1;±423.8124.>25. -3,3;0.5;a≥1三、解答题26.解:由题意,得:3a﹣4+1﹣6a=0,解得a=﹣1;所以正数x的平方根是:7和﹣7,故正数x的值是4927. 解:∵x+2的平方根为±4,4y-32的立方根是-2,∴x+2=16,4y-32=-8,解得:x=14,y=6,则x2-y2+9=169,∴x2-y2+9的平方根是±1328.解:∵=0,∴a+1=0,b﹣1=0,∴a=﹣1,b=1,∴a2012+b2013=1+1=2.29. 解:图①中阴影边长为√16=4,图②阴影边长为√8=2√2,设矩形长为a,宽为b,根据题意得{a−b=4a−2b=2√2,解得{a=8−2√2b=4−2√2,所以图③阴影正方形的边长=a﹣3b=8- 2√2﹣3(4﹣2√2)=4√2﹣4,∴如图③是用12个长方形纸片围成的正方形,其阴影部分的周长为16√2﹣16.30.解:100 000÷40=2500(平方厘米);=50(厘米).答:底面边长应是50cm。
平方根专项练习题一、填空题1. √16 = _______2. √25 = _______3. √36 = _______4. √49 = _______5. √64 = _______二、选择题A. 15B. 16C. 18D. 20A. √9B. √16C. √21D. √25A. 0B. 1C. 2D. 3三、计算题1. 计算:√1442. 计算:√2253. 计算:√4004. 计算:√6255. 计算:√800四、应用题1. 一个正方形的面积是81平方厘米,求这个正方形的边长。
2. 一个数的平方根加上5等于10,求这个数。
3. 一个数的平方根减去3等于2,求这个数。
五、拓展题1. 已知一个数的平方根是5,求这个数的平方。
2. 已知一个数的平方根是8,求这个数的立方。
3. 已知一个数的平方根是10,求这个数的四次方。
六、判断题1. √81 的值是 9。
()2. √100 的值是 10。
()3. √121 的值是 11.5。
()4. √144 和√12 的和是 16。
()5. √169 的值是无理数。
()七、简答题1. 请问√4 的值是多少?2. 请问√9 和√16 的乘积是多少?3. 请问一个数的平方根是它本身,这个数可能是多少?4. 请问√1 和√0 的值分别是什么?5. 请问如何计算一个负数的平方根?八、匹配题将下列数的平方根与它们的值进行匹配:A. √121B. √64C. √25D. √81E. √161. 112. 83. 54. 95. 4九、比较题1. 比较√36 和√49,哪个更大?2. 比较√60 和√75,哪个更小?3. 比较√100 和√121,哪个数的平方根更接近10?4. 比较√16 和√25,哪个数的平方根更接近20?5. 比较√9 和√16,哪个数的平方根更接近5?十、综合题1. 已知一个数的平方根是12,求这个数的平方根的平方。
2. 已知一个数的平方是196,求这个数的平方根的立方。
平方根练习题及答案
1. 求下列数的平方根,并保留四位小数:
a) 25
b) 64
c) 144
d) 1000
e) 0.01
答案:
a) 5.0000
b) 8.0000
c) 12.0000
d) 31.6228
e) 0.1000
2. 求下列数的平方根,结果保留整数部分:
a) 36
b) 81
c) 49
d) 121
答案:
a) 6
b) 9
c) 7
d) 11
e) 13
3. 根据下面给出的平方根结果,求出原数的范围:
a) 平方根结果为6,原数范围是?
b) 平方根结果为10,原数范围是?
c) 平方根结果为15,原数范围是?
答案:
a) 原数范围是36至49之间的所有数字。
b) 原数范围是100至121之间的所有数字。
c) 原数范围是225至256之间的所有数字。
4. 求下列数的近似平方根,结果保留两位小数:
a) 2
b) 3
d) 6
e) 7
答案:
a) 1.41
b) 1.73
c) 2.24
d) 2.45
e) 2.65
5. 完成下列平方根的计算,并将结果化简为最简形式:
a) √18
b) √32
c) √50
d) √72
e) √98
答案:
a) √18 = 3√2
b) √32 = 4√2
c) √50 = 5√2
d) √72 = 6√2
e) √98 = 7√2
6. 求下列数的平方根,结果保留精度到百分之一:
a) 7
b) 15
c) 27
d) 39
e) 54
答案:
a) 2.6458
b) 3.8729
c) 5.1962
d) 6.2449
e) 7.3485
7. 判断下列数是否为完全平方数:
a) 16
b) 27
c) 64
d) 100
e) 121
答案:
a) 是
b) 否
c) 是
d) 是
e) 是
8. 检验下列数是否为某个整数的平方根:
a) 5.2
b) 6.8
c) 8.2
d) 9.6
e) 10.9
答案:
a) 否
b) 否
c) 否
d) 否
9. 解决下列方程,令x为正数:
a) x^2 = 16
b) x^2 = 81
c) x^2 = 49
d) x^2 = 121
e) x^2 = 169
答案:
a) x = 4
b) x = 9
c) x = 7
d) x = 11
e) x = 13
10. 求下列数的立方根,结果保留两位小数:
a) 8
b) 27
c) 64
d) 125
e) 216
a) 2.00
b) 3.00
c) 4.00
d) 5.00
e) 6.00
以上是关于平方根的练习题及答案。
通过练习,你可以更好地理解平方根的概念和计算方法,提高你的数学能力。