开关电源中软开关技术应用探析
- 格式:docx
- 大小:27.47 KB
- 文档页数:2
软开关在开关电源中的应用研究作者:宋臻达来源:《科技资讯》2016年第35期摘要:软开关技术是一种新型技术,在各类领域都有广泛的应用,并不断朝着小型化、轻量化的方向发展。
开关电源的发展不仅进一步减小系统的体积,增大了开关的性价比与功率密度,还提升了开关的瞬时相应速度,抑制来电源音频噪声,成为下一阶段的一个发展趋势,在各个领域中都有着广泛的应用。
该文主要针对软开关技术在开关电源中的应用进行分析。
关键词:软开关开关电源应用中图分类号:TN86 文献标识码:A 文章编号:1672-3791(2016)12(b)-0047-02当今,随着科技的不断发展、进步,开关电源也得到了不断的发展和创新。
在开关电源技术发展中,小型化、轻量化的装置已经得到了应用,这是发展的一个方向和潮流。
另外,开关电源也对效率和电磁兼容性有了更高要求。
推广软开关技术,可以有效解决开关噪声问题以及电路中的开关损耗问题,提高开关频率。
1 软开关技术概述软开关技术指的是在电压为零的时候,开关管导通,电流为零的时候,开关管关闭。
软开关技术对于创新开关功能非常有效,且更加具备节能和环保性,将“人”的因素融入其中。
硬开关的开通和关断过程伴随着电压和电流的剧烈变化,产生较大的开关损耗和开关噪声。
而软开关在电路中增加了小电感、电容等谐振元件,在开关过程前后引入谐振,使开关条件得以改善。
降低开关损耗和开关噪声,软开关有时也被称为谐振开关。
2 软开关电路分类2.1 准谐振开关电路这准谐振开关电路是指在零电压情况下导通,在零电流的情况下关闭。
这种电路简称为QRC。
这种电路的输出电压和频率成正比关系,而和占空比没有必然联系,因此,QRC也属于变频电源。
与PWM进行比较,该种电路在控制上更为复杂,然而耗损为零,效率非常高,在各个领域得到了应用。
2.2 ZVS—PWM开关电路这种电路有很多的优点。
第一,消耗的功率低,而且效率非常高;第二,工作频率非常高。
但是,当关断主开关的时候,其电压比输入电压多一倍,这种电压会对开关电路的运行产生不利影响。
开关电源中软开关技术的应用分析发表时间:2018-07-18T16:07:04.763Z 来源:《科技中国》2018年1期作者:严骅[导读] 摘要:软开关技术是目前开关电源领域中的研究重点,软开关技术的诞生进一步推动了通信电源领域的发展,并在生活、生产实践中得到了广泛的应用,让人们享受到了更加便捷的生产和生活方式。
本文针对开关电源中软开关技术的概念进行解读,并针对其具体的应用展开分析。
摘要:软开关技术是目前开关电源领域中的研究重点,软开关技术的诞生进一步推动了通信电源领域的发展,并在生活、生产实践中得到了广泛的应用,让人们享受到了更加便捷的生产和生活方式。
本文针对开关电源中软开关技术的概念进行解读,并针对其具体的应用展开分析。
关键词:开关电源;软开关技术;应用科学技术的发展也带动了开关电源技术的革新,目前,越来越多的人倾向体积小,轻便的开关电源,这是开关电源的一个发展趋势。
软开关技术就是在这样的背景下的发展起来的,它符合现代人要求开关电源体积小,质量轻的特点,是一种新型的技术,已经广泛的应用于的各个领域。
同时软开关技术还提升了开关电源的质量和使用效率。
一、软开关电源的概述软开关技术是一种新型的电源技术,它更加符合环保和节能的理念,是开关电源的一次创新。
软开关技术的工作原理其实比较简单,就是在电压为零的时候,开关管是通着的,当电流为零的时候,开关管是关闭的,这样就可以有效的保护开关,避免在多次的开关中,因为电流及电压的变化而造成损害。
同时,软开关的电路结构也发生了改变,增加了小电感、电容等原件,可以有效的降低开关损耗和噪音,让开关的工作环境更加安全。
在传统的通信电源中,常常会出现空开跳开、模块不均流、保险管断开、防雷器故障、整流模块退出的问题,而软开关技术的应用则有效解决了这一问题。
与传统的开关相比,软开关设备体型小,在以往的通信电源中,电容、滤波电感、变压器的重量与体积占据着交稿的比例,降低了电路效率,容易引发电磁干扰问题,而软开关的体积小,就很好的解决了上述难题。
开关电源高频化和软开关技术开关电源高频化和软开关技术近年来, 电力电子技术发展迅猛, 直流开关电源广泛应用于计算机、航空航天等领域。
如今, 笨重型、低效电源装置已被小型、高效电源所取代。
为了实现电源装置的高性能、高效率、高可靠性,减小体积和重量, 必须实现直流开关电源的高频化。
直流开关电源的高频化不仅减小了功率变换器的体积, 增大了变换器的功率密度和性能价格比, 而且极大地提高了瞬时响应速度, 抑制了电源所产生的音频噪声, 从而已成为新的发展趋势。
然而功率变换器开关频率的进一步提高将受以下因素的限制: ①在通断瞬间切换过程中, 功率器件的开关应力。
②开关损耗。
③剧烈的d i/ d t 和d u/ d t 冲击及其产生的电磁干扰(EMI) 。
软开关技术是使功率变换器得以高频化的重要技术之一, 它应用谐振的原理, 使开关器件中的电流(或电压) 按正弦或准正弦规律变化。
当电流自然过零时, 使器件关断(或电压为零时, 使器件开通) , 从而减少开关损耗。
它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断问题及二极管反向恢复问题, 而且还能解决由硬开关引起的EMI 等问题。
为此先后有人提出了谐振变换器( resonantconverter) , 准谐振变换器(quasi resonant converter)和多谐振变换器(muti resonant converter) , 零开关PWM 变换器(zero switching PWM converter) , 零转换PWM变换器(zero transition PWM converter) 及无源无损缓冲电路(passive lossless snubber circuit) 等多种软开关技术。
谐振变换器谐振变换器实际上是直流开关电源负载谐振变换器, 在20世纪70 年代最早被提出来, 它通过在标准PWM变换器结构上简单地附加谐振网络的方法而得到。
软开关技术在电力电子变换电路的应用论文本文对传统的硬开关技术所存在的开关损耗及电力公害等不足进行了详细的分析,在此基础上提出了软开关的概念,阐述了软开关的工作原理,分析了软开关存在的不足。
一、硬开关及其所存在的问题在硬开关过程中,开关器件在较高电压下通过较大电流,会产生很大的开关损耗。
开关损耗随开关频率的提高成正比增加,不仅降低了变压器的效率,而且严重的发热温升可能使开关器件的寿命急剧缩短,此外还会产生严重的电磁干扰噪声,难与其他敏感电子设备电磁兼容。
二、软开关原理如果在电力电子变换电路中采取一些措施,如改变电路结构和控制策略,使开关器件在开通过程中其端电压为0,则可以大大缓解上述问题,这种开通方式称为零电压开通;同理,若使开关器件在关断过程之前其承载的电流已降为零,则这种关断方式称为零电流关断。
零电压开通、零电流关断是电力电子器件最理想的开关方式,其开关过程中无能量损耗,但如果开关器件在开通过程中其端电压很小,在关断过程中其电流也很小,则这种开关过程的功耗也很小,称之为软开关。
在电力电子变换电路中,利用LC谐振特性使变换器中开关器件的端电压uv或电流iv自然地谐振过零,在开关器件端电压uv降为零后(如图1a中t0时刻),即其等效电阻Rv变为零后,施加驱动信号,开通电路。
这样在电流iv的建立过程中电流、电压因没有重叠时间而无开通损耗,即Pon=uv×iv=0,这种开通方式称为零电压开通,如图1a所示。
如果流经开关器件的电流因电路谐振电流自然地降为零(如图1a中t1时刻),则在开关管电流下降时因开关管仍处于通态,Rv=0,其电压为零而无损耗关断,电流降到零后再撤除驱动信号。
由于电流早已为零也无开关损耗,这种关断方式称为零电流关断,如图1a所示。
零电压开通和零电流关断都无开关损耗,这当然是最理想的软开关过程。
但如果象图2b所示,施加驱动信号后,在Rv减小、电流上升的开通过程中,电压uv不大或迅速下降为零,这种开通过程开通损耗不大,称之为软开通。
软开关技术综述摘要软开关技术是利用在零电压、零电流条件下控制开关器件的导通和关断,有效地降低了电路的开关损耗和开关噪声因而在电力电子装置中得到广泛应用。
本文在讲述软开关技术的原理及分类的基础上,主要回顾了软开关技术的由来和发展历程,以及发展现状和未来的发展趋势。
关键词:软开关技术原理发展历程发展趋势一.引言:根据开关元件的工作状态,可以把开关分成硬开关和软开关两类。
硬开关是指开关元件在导通和关断过程中,流过器件的电流和元件两端的电压在同时变化;软开关是指开关元件在导通和关断过程中,电压或电流之一先保持为零,一个量变化到正常值后,另一个量才开始变化直至导通或关断过程结束。
由于硬开关过程中会产生较大的开关损耗和开关噪声。
开关损耗随着开关频率的提高而增加,使电路效率下降,阻碍了开关频率的提高;开关噪声给电路带来了严重的电磁干扰问题,影响周边电子设备的正常工作。
为了降低开关的损耗和提高开关频率,软开关的应用越来越多。
电力电子装置中磁性元件的体积和重量占很大比例,从电机学相关知识知道,使变压器、电力电子装置小型化、轻量化的途径是电路的高频化。
但是, 传统的开关器件工作在硬开关状态,在提高开关频率的同时,开关损耗和电磁干扰也随之增加。
所以,简单地提高开关频率显然是不行的。
软开关技术是使功率变换器得以高频化的重要技术之一, 它应用谐振的原理, 使开关器件中的电流(或电压) 按正弦或准正弦规律变化。
当电流自然过零时, 使器件关断(或电压为零时, 使器件开通) , 从而减少开关损耗。
它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断问题及二极管反向恢复问题, 而且还能解决由硬开关引起的EMI 等问题。
当开关频率增大到兆赫兹级范围, 被抑制的或低频时可忽视的开关应力和噪声, 将变得难以接受。
谐振变换器虽能为开关提供零电压开关和零电流开关状态, 但工作中会产生较大的循环能量, 使导电损耗增大。
为了在不增大循环能量的同时, 建立开关的软开关条件, 发展了许多软开关PWM技术。
软开关技术综述摘要软开关技术是利用在零电压、零电流条件下控制开关器件的导通和关断,有效地降低了电路的开关损耗和开关噪声因而在电力电子装置中得到广泛应用。
本文在讲述软开关技术的原理及分类的基础上,主要回顾了软开关技术的由来和发展历程,以及发展现状和未来的发展趋势。
关键词:软开关技术原理发展历程发展趋势一.引言:根据开关元件的工作状态,可以把开关分成硬开关和软开关两类。
硬开关是指开关元件在导通和关断过程中,流过器件的电流和元件两端的电压在同时变化;软开关是指开关元件在导通和关断过程中,电压或电流之一先保持为零,一个量变化到正常值后,另一个量才开始变化直至导通或关断过程结束。
由于硬开关过程中会产生较大的开关损耗和开关噪声。
开关损耗随着开关频率的提高而增加,使电路效率下降,阻碍了开关频率的提高;开关噪声给电路带来了严重的电磁干扰问题,影响周边电子设备的正常工作。
为了降低开关的损耗和提高开关频率,软开关的应用越来越多。
电力电子装置中磁性元件的体积和重量占很大比例,从电机学相关知识知道,使变压器、电力电子装置小型化、轻量化的途径是电路的高频化。
但是, 传统的开关器件工作在硬开关状态,在提高开关频率的同时,开关损耗和电磁干扰也随之增加。
所以,简单地提高开关频率显然是不行的。
软开关技术是使功率变换器得以高频化的重要技术之一, 它应用谐振的原理, 使开关器件中的电流(或电压) 按正弦或准正弦规律变化。
当电流自然过零时, 使器件关断(或电压为零时, 使器件开通) , 从而减少开关损耗。
它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断问题及二极管反向恢复问题, 而且还能解决由硬开关引起的EMI 等问题。
当开关频率增大到兆赫兹级范围, 被抑制的或低频时可忽视的开关应力和噪声, 将变得难以接受。
谐振变换器虽能为开关提供零电压开关和零电流开关状态, 但工作中会产生较大的循环能量, 使导电损耗增大。
为了在不增大循环能量的同时, 建立开关的软开关条件, 发展了许多软开关PWM技术。
电力电子软开关技术综述摘要:电力电子软开关技术是一种应用于电力电子系统的关键技术,具有提高系统性能、降低开关损、增强系统可靠性的优点。
本文对电力电子软开关技术的应用现状和发展趋势进行了综述,探讨了不同软开关技术的优缺点,并提出了未来的研究方向。
引言:电力电子软开关技术是一种新型的电力电子变换技术,旨在减少开关器件的开关损,提高系统效率,同时降低系统噪声和电磁干扰。
随着电力电子技术的不断发展,软开关技术已成为研究热点之一。
本文旨在对电力电子软开关技术的应用现状和发展趋势进行综述,以推动该技术的进一步发展。
电力电子软开关技术的基本概念是利用电容或电感等储能元件实现开关器件的软化。
通过合理控制开关器件的导通和关断时间,以及储能元件的充放电过程,可以实现开关器件在导通和关断过程中的损耗最小化。
电力电子软开关技术的实现方法主要包括谐振变换、准谐振变换、多脉冲变换等。
虽然软开关技术具有降低开关损、提高效率等优点,但也会导致系统复杂度增加、成本提高等问题。
电力电子软开关技术在电力系统中的应用主要包括电力电子变换器、直流输电、柔性交流输电等方面。
其中,电力电子变换器是最为广泛的应用之一,可以用于电源、负载、储能等设备的控制和调节。
在控制策略方面,软开关技术可以用于改善系统的性能和稳定性,例如在PWM控制中引入软开关技术可以降低系统的谐波含量。
在设备制造方面,软开关技术也被广泛应用于各种电力电子设备中,例如开关电源、不间断电源等。
随着电力电子技术的不断发展,电力电子软开关技术的未来发展趋势主要包括以下几个方面:新型电力电子软开关技术的研发:随着技术的不断进步,将会有更多新型的电力电子软开关技术出现,例如更为高效的软开关技术、新型的谐振变换技术等。
这些新型的软开关技术将会在更广泛的领域得到应用,例如新能源、智能电网等领域。
集成化和模块化:未来电力电子软开关技术将更加注重集成化和模块化,通过将多个器件和电路集成在一起,实现更高效、更可靠、更小型化的电力电子系统。
软开关技术及其应用1.软开关技术的简介1.1软开关技术的基本概念软开关:在原电路中增加了小电感、电容等谐振元件,在开关过程前后引入谐振,消除电压、电流的重叠。
降低开关损耗和开关噪声。
近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。
和硬开关工作不同,理想的软关断过程是电流先降到零,电压在缓慢上升到断态值,所以关断损耗近似为零。
由于器件关断前电流已下降到零,解决了感性关断问题。
理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压亦为零,解决了容性开通问题。
同时,开通时,二极管反向恢复过程已经结束,因此二极管方向恢复问题不存在。
1.2软开关技术的工作原理图一软开关的开关、关断过程通过在开关过程前后引入谐振,使开关开通前电压先降到零,关断前电流先降到零,就可以消除开关过程中电压、电流的重叠,降低他们的变化率,从而大大减小甚至消除开关消耗。
同时,谐振过程限制了开关过程中电压电流的变化率,这使得开关噪声显著减小。
理想开关过程:零压导通零压关断,开通和关断零损耗零噪声。
2.软开关电路的种类及特点根据电路中主要的开关元件是零电压开通还是零电流关断,可以将软开关电路分成零电压电路和零电流电路两大类。
通常,一种软开关电路要么属于零电压电路,要么属于零电流电路。
但也有个别电路中,有些开关是零电压开通,另一些开关是零电流关断的。
根据软开关技术发展的历程,可以将软开关电路分成以下三种:1)准谐振电路. 是最早出现的软开关电路。
准谐振电路中电压或电流的波形为正弦半波,谐振的引入使得电路的开关损耗和开关噪声大大下降,谐振周期随输入电压、负载变化而改变,因此电路只能采用脉冲频率调制方式来控制。
准谐振电路可以分为零电压开关准谐振电路、零电流开关准谐振电路、零电压开关多谐振电路和用于逆变器的谐振直流环。
2) 零开关PWM电路.电流和电压基本上是方波。
开关承受的电压明显降低。
电路不采用开关频率固定的PWM控制方式。
一种应用软开关技术的大功率开关电源的设计摘要:开关电源随着输出功率的提升无疑会导致开关管所承受的电压或电流增加,如果仅仅使用普通的脉宽调制技术,那么将会导致开关管的开关损耗大幅度的增加。
在硬开关环境下,传统开关器件的电磁干扰与开关损耗也较大,而软开关的出现就有效解决了这一问题。
软开关技术的发展,使开关损耗以及开关噪音都大大减少,电路的效率也有了很大的提高。
基于此,文章就一种应用软开关技术的大功率开关电源的设计进行分析。
关键词:软开关技术;大功率开关电源;设计方法1 软开关技术的工作原理软开关是以硬开关为基础的,是对传统硬开关的继承与改善。
和硬开关不同,软开关增加了一些谐振器件,包括小电感、电容等。
新增加的谐振器件构成了辅助换流网络,开关的条件也因此得到了很大的改善。
硬开关不仅会造成开关损耗,还会产生噪音,但随着开关条件的改善,这一问题也得到了妥善解决。
在软开关技术的支持下,开关损耗以及开关噪音都大大减少,电路的效率也因此有了很大的提高。
软开关主要包括两个方面,一是软开通,二是软关断。
软开通开关又可以称之为零电压开关,而软开断开关就是零电流开关,在运行过程中,一般先将电压下降到零,再将电流提升至通态值,这是理想的软开通过程。
理想的软开关过程是不会产生开关损耗与开关噪音的,符合低碳、节能、环保的要求。
2 软开关技术的分类2.1 谐振变换器谐振变换器的实质是负载谐振变换器,最早被提出来是在上世纪七十年代。
在标准脉宽调制变换器上附加谐振网络就会得到谐振变换器。
根据谐振元件的不同谐振方式,可以将谐振变换器分为串联皆振和并联谐振两大类变换器。
它的工作原理就是通过负载的谐振与谐振网络,调整经过开关元件的电压或电流,成为正弦波形,使开关元件在电流过零开通,在电压过零时关断,从而实现软开关的过程。
2.2 准谐振变换器和多谐振变换器上世纪八十年代初期,李泽元教授在美国的UPEC和众多研究人员一起研究提出了谐振开关。
开关电源中软开关技术应用探析
摘要:未来技术的发展方向是软开关技术,其主要的发展态势是轻量化、小型化。
与此同时,对电磁兼容性与效率提出了较为严格的标准。
应用软开关技术,
其主要的价值是解决开关噪声与开关损耗的状况,以此提升开关的频率。
文章是
针对开关电源中软开关技术的应用,展开的深入全面的探究,并且提出相关建议,供相关人员参考。
关键词:开关电源;软开关;技术应用;探析
在应用与设计开关电源的过程中,需要全面系统的应用软开关技术,实施技
术攻关,全面设计与规划出使用时间较长、效率高、用途广泛的全新环保性能的
开关电源。
促使开关电源中的软开关技术,得到有效应用。
一、概述软开关技术
软开关技术具体是指,电压是零时开关管导通,电流是零时开关管关断。
一
般状况下,将开关元件当中的电压波形的正弦波的叫做电压谐振开关电路。
其主
要的工作方式是零电压开关ZVS,并且将流过开关的电流波形式正弦波形的叫做
电流谐振开关电路,主要的工作方式是零电流开关。
二、软开关存在的主要弊端与不足
(一)逆变器中软开关的应用
逆变器是直流-交流转换电路。
在非接触式能量转换、高频加热及金属熔的解
炉的转化过程中,具体是应用电流或者高频交流电压。
为减少损失与消耗、抑制
浪涌,逆变器都会应用软开关技术。
在使用燃料电池、太阳能电池等质量过关电
源的直流输电体系中,通常是高频逆变器对直流电压实施PWM控制,然后借助
低通滤波器获取正弦电压,所以在逆变器当中可使用软开关。
在电动机控制之中,应用传感器方式的过程中,使用传感器检查转角和电流等微变量,迅速算出转矩
等诸多参数,正交控制好电流和磁通。
所以,在电动机的驱动过程,也要使用软
开关技术。
(二)磁性元器件的多功能化
第一,转换电流当中一般应用变压器,科学应用变压器的遗漏或者励磁电感
当成软开关的L与C,由此,变压器具备诸多功能;第二,在应用磁性元件的过
程中,为缩小体积,最为主要的是需要除掉直流偏磁,应用有源钳位电炉,能够
由谐振电容促使变压器磁复位,所以,针对软开关实用性能,最为重要的是磁性
元器件之间的配合;第三,介于软开关的L要经过高频电流,并且大振幅的工作,所以,存在高频损耗的状况,出现发热现象,为除去铁损耗而应用空心线圈电感
导致线圈变大;介于邻近效应、集肤效应的价值,扩大了阻性损耗。
三、探究软开关电路的具体类型
(一)准谐振开关电路
电子开关具备零电流关断、零电压导通的因素,这样的变换电路的名称是准
谐振变换电炉。
QRC软开关的输出电压受频率的直接影响,频率越低,输出电压
越小,但是和占空比没有关联,由此可见,QRC是变频电源中的一种,其和脉宽
调制的变换电路相对比,控制具备繁琐性,这便是准谐振变换电路的重大价值。
(二)ZVS-PWM开关电路
ZVS-PWM开关电路和ZCS-PWM开关电路是相同的,其主要的优点是,工作
频率高、功率损耗少等,但是主开关漏源极电压在关断的过程中,大约是输入电
压的两倍,这样电压应力对ZVS-PWM开关电路有一定的弊端,因此,在ZVS-
PWM开关电路上,要选取具有耐压性能的开关功率管。
(三)不对称半桥型电路
此电路主电路构造和一般半桥电路是一致的,区别在于,一次侧开关管的控
制方法,规避了一般半桥在两开关管均位于关断状况时,变压器漏感所导致的电
压振荡状况,和移相全桥电路相比较,有高电压输入时,环流电流不会有损耗的
状况出现。
与此同时,不对称半桥电路的电路较为单一,需要的器件非常少,能
够更多的应用在小功率电源当中。
(四)ZVT-PWM转换电路
ZVT-PWM转换电路和ZCS-PWM开关电路的运行方式、工作理念存在相同之处,存在的差距是谐振网络和主开关并联,但是ZCS-PWM开关电路是谐振电容
与主开关的并联。
ZVT-PWM或者ZCT-PWM转换电路能够促使主开关管在导通与
关闭的过程中,电路运行的电压应力较小,可以负担输入与负载电压在非常规模
内出现的改变。
与此同时,工作电流与损耗都非常少,不会对电路的工作效率造
成一定的影响。
这种类型的开关电路时长被用在功率因数校正装置中。
(五)软开关PWM三电平直流转换电路
在DC-DC转换电路的输入电压升高的过程中,主电路所应用的器件耐压也要
提升,但是高耐压的开关器件的特征不符合标准,譬如:高耐压的IGBT开关特性非常差,高耐压的MOSFET的导通电阻明显提升。
软开关三电转换电路,促使开
关管的电压应力降低到输入电压的二分之一。
三电平直流转换电路按照拓扑构造上,能够分成全桥拓扑、半桥拓扑,两者之间的工作理念是存在相同之处的,譬如:在软开关方法上和移相全桥拓扑是存在相同之处的。
结语:
综上所述,文章是针对开关电源中软开关技术应用,展开的具体全面的探究,并且简单介绍了软开关技术的含义、软开关存在的弊端与不足及软开关电路的具
体种类,譬如:软开关PWM三电平直流转换电路、准谐振开关电路、不对称半
桥型电路、ZVS-PWM开关电路及ZVT-PWM转换电路,并且提出了针对性的建议,其主要的目的是为相关工作人员提供参考意见,并且能够研制出用途广泛的新型
环保节能开关电源,奠定强有力的根基。
参考文献:
[1]张志龙.软开关技术在数字化弧焊逆变电源中的应用研究[D].哈尔滨工程大学,2011.
[2]曹毅.软开关技术在开关电源中的应用及谐波分析研究[D].河南科技大学,2013.
[3]李书杰.软开关技术在大功率开关电源中的应用研究[D].武汉工程大学,2015.。