填料塔的设计范文
- 格式:docx
- 大小:36.79 KB
- 文档页数:1
由该点的纵坐标得为计算方便,采用与液体喷淋密度无关的泛点填料因子平均值,查表(散装交,由该点的纵坐标得(Dg38)k G a=0.0367×(2900×1.178)0.72×4699.60.38=319.3kmol/(m3·h.Pa) k L a=0.027×4699.60.78=19.75 h -1选择塔径为700mm的数据。
4.除雾沫器选择折流板式除雾器,它是利用惯性原理设计的最简单的除雾装置。
除雾板由50mm ×50mm ×3mm 的角钢组成.板间横向距离为25mm ,如图所示。
除雾器的结构简单、有效,常和塔器构成一个整体,阻力小,不易堵塞,能除去50μm 以下的雾滴,压力降一般为50~I00Pa 。
5.管口结构一般管道为圆形,d 为内径,水流速0.5~1.5m/s,常压下气体流速则气体进口管直径 d 1=u V 4π=1836004.1329004×××=0.239m 气体出口管直径 d 2=0.239m查国家标准规格,圆整直径为273×6u=π23V 4d =s /m 06.153600261.0900242=×××π 吸收剂进口直径 d 3=u V 4π=.503600.29984.13699.644××××=0.0577m8.液体进口管液体的进口管直接通向喷淋装置,若喷淋装置进塔处为直管,其结构和有关尺寸见图和表,若喷淋器为其他结构,则管门结构需根据具体情况而定。
液体进口管选择尺寸76×4,见上表。
9.液体的出口装置液体出口装置的设计应便于塔内液体的排放,防止破碎的瓷环堵塞出口,并且要保证塔内有一定的液封高度,防止气体短路。
常见的液体出口结构如图所示。
10.接管长度填料塔上各股物料的进出门管留在设备外边的长度h,可参照下表确定。
填料塔的计算范文料塔是一种常见的工程结构,用于储存和输送颗粒状物料。
其设计过程中需要进行一系列计算,以确保料塔具有足够的强度和稳定性,能够安全承载预计的荷载。
本文将介绍料塔的计算方法和步骤,并给出一个具体的例子,展示如何进行料塔的计算。
一、料塔的计算方法和步骤1.确定设计参数:包括预计储存物料的密度、颗粒大小和湿度;预计料塔高度和直径;料塔所处环境的温度、湿度和风速等。
2.计算所需容量:根据预计储存物料的总重量和密度,计算料塔的总容量。
3.确定料塔的结构形式:包括筒形、锥形、碗形等,根据具体情况选择合适的结构形式。
4.计算料塔的自重和荷载:根据料塔的几何形状和预计物料的重量,计算料塔的自重;同时考虑其他荷载,如风荷载、地震荷载等。
5.计算料塔的强度和稳定性:根据材料的弹性模量和抗压强度,计算料塔的强度;同时根据料塔的几何形状和与地面的接触方式,计算料塔的稳定性。
6.进行结构优化:根据计算结果,进行结构优化,满足强度和稳定性的要求;同时尽可能减小材料的使用量和成本。
二、料塔计算范例假设我们需要设计一个筒形料塔,用于储存密度为1.2t/m³的玉米,预计储存量为2000t,料塔的高度为20m,直径为8m。
现在我们按照上述步骤进行料塔的计算。
1.设计参数:玉米的密度为1.2t/m³,预计料塔高度为20m,直径为8m,环境温度为25℃,相对湿度为60%,风速为15m/s。
2.计算所需容量:预计储存量为2000t,根据玉米的密度计算料塔的总容量为2000t/1.2t/m³=1666.7m³。
3.结构形式:选择筒形料塔。
5.强度和稳定性:根据材料的弹性模量和抗压强度,计算料塔的强度;根据料塔的几何形状和与地面的接触方式,计算料塔的稳定性。
6.结构优化:根据计算结果,进行结构优化,满足强度和稳定性的要求,同时尽可能减小材料的使用量和成本。
三、结论料塔的计算是一个复杂而重要的工程问题,涉及材料力学、结构力学、流体力学等多个学科。
已知混和气体的流量为6000m3/h 含氨气为5%(体积分数) 要求最后吸收后为0.02%(体积分数),采用清水吸附,温度为20℃,压力为常压。
气相密度:ρv=1.26kg/m3 液相密度:ρL=998.2kg/m3液相黏度:μL=1mPa·s 液相表面张力:δL=73mN/m氨气溶解度:2.5g / 100g(H2O) 遵循Y = 0.76XK Y = 5.26×10-4kmol / (m2·s)考虑到该系统不属于难分离系统,可采用散装填料;系统中含NH3,有一定的腐蚀性,故考虑选用塑料阶梯环填料;由于系统对压降无特殊要求,考虑到不同规格阶梯环的传质性能,选用DN50塑料阶梯环填料。
该填料的相关参数如下:比较表面:a = 114.2m2 / m3;泛点填料因子:ΦF=127m-1;压降填料因子:ΦP=89m-1(1) 计算塔体的直径D:D = (4 ×V / 3600 / 3.142 / u) 0.5V = 6000m3/h计算流速u:设全部吸收:含NH3为V ×0.05 = 300 m3/h 吸收氨为300 (m3/h) / 22.4(L/mol) ×17(g/mol) = 277.7kg/h 已知溶解度为: 2.5g / 100g(H2O),因此吸收277.7kg/h氨气,需要水的流量为277.7kg/h / 2.5g/100g = 11108kg/h≈11200kg/h因为要提高用量,因此实际用水量应为:11200(kg/h)×1.5 =16800(kg/h)W L = 16800kg/h ρL=998.2kg/m3W v = 6000kg/h ρv=1.26kg/m3W L / W v×(ρv /ρL)0.5 = (16800 / 6000) ×(1.26 / 998.2) 0.5 = 0.0994采用埃克特通用关联图查得:u2×ΦF×ψ/ g ×(ρv /ρL) ×u L0.2 = 0.025ψ=ρ水/ ρL = 1u2×127×1 / 9.81 ×(1.26 / 998.2) ×10.2 = 0.025u F = 1.53m/s取70%的安全系数得: u = 0.7 ×u F = 1.07 m/sD = (4 ×6000 / 3600 / 3.142 / 1.07) 0.5 = 1.408m ≈1.4m校核D / d = 1400 / 50 = 28 > 8 所以填料适合此塔取(Lw)min = 0.08m3 / (m·h)最小喷淋(Uw)min = (Lw)min×a = 0.08 ×114.2 = 9.136 m3 / (m2·h)操作喷淋密度U = 16800 / 998.2 / ((3.142 / 4) × 1.42) = 10.938 m3 / (m2·h) > (Uw)min操作空塔气速u = 6000 / 3600 / ((3.142 / 4) ×1.42) = 1.08m/s安全系数u / u F×100% = 1.08 / 1.53 = 70.59%经校核选用D = 1.4m合理。
. I大学课程论文课程论文题目:填料塔的设计设计任务书1、设计题目:水吸收二氧化硫过程填料吸收塔的设计2、工艺操作条件:〔1〕操作平均压力常压〔2〕操作温度t=20℃〔3〕每年生产时间:7200h。
〔4〕选用填料类型及规格自选。
3、设计任务:完成填料塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,编写设计说明书。
目录一、摘要二、设计方案简介2.1吸收剂的选择2.2吸收流程的选择2.3吸收塔设备及填料的选择2.3.1吸收塔设备2.3.2吸收塔填料2.4吸收剂再生的选择2.5操作参数的选择三、吸收塔的工艺计算3.1根底物性数据3.1.1液相物性数据3.1.2气相物性数据3.1.3气液相平衡数据103.2物料衡算3.3湍球塔工艺尺寸的计算3.3.1塔径3.3.2填料数据计算和支撑板构造3.4填料层高度3.5流体力学计算3.5.1各阶段工况气速的计算3.5.2球层压力降△P3.5.3球层扩展阶段时的膨胀高度3.6湍球塔的辅助构造3.6.1支承板及档网3.6.2除沫器3.6.3液体分布器3.7填料塔附属高度计算3.8湍球塔的流体力学参数计算3.8.1全塔压降3.8.2气体动能因子3.9附属设备的计算和选择3.9.1接收尺寸的计算举例3.9.2离心泵的选择和计算四、工艺设计计算结果汇总汇总与主要符号说明五、对过程的评述和有关问题的讨论六、完毕语摘要:吸收操作在化学工业中是一种重要的别离方法,本次设计采用水吸收矿石焙烧炉送出的气体,入塔的炉气流量为2000m3/h,其中进塔SO2的摩尔分率为0.05,SO2的吸收率到达95%吸收效果以减少对大气的污染,属于物理吸收。
影响吸收的因素主要为溶质在吸收剂中的溶解度,其吸收速率主要决定于气相或液相与界面上溶质的浓度差,以及溶质从气相向液相传递的扩散速率。
本设计本设计采用填料塔,塔高8.7m,塔径0.7m,采用聚丙烯空心球填料,具有通量大、阻力小、传质效率高等优点,可以到达较好的通过能力和别离效果。
水吸收氨填料塔设计目录一前言 (3)二设计任务 (3)三设计条件 (3)四设计方案 (3)1.吸收剂的选择 (3)2.流程图及流程说明 (3)3.塔填料的选择 (4)五工艺计算 (4)1.物料衡算,确定塔顶、塔底的气液流量和组成 (4)2.塔径的计算 (5)3.填料层高度计算 (6)4。
填料层压降计算 (8)5。
液体分布装置 (8)6.液体再分布装置 (9)7.填料支撑装置 (10)8.气体的入塔分布 (10)六设计一览表 (10)七对本设计的评述 (11)八参考文献 (11)七主要符号说明 (14)八附图(带控制点的工艺流程简图、主体设备设计条件图)二、设计任务:完成填料塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和填料塔装置图,编写设计说明书。
三、设计条件1、气体混合物成分:空气和氨;2、氨的含量: 4。
5%(体积);3、混合气体流量: 4000m3/h;4、操作温度:293K;5、混合气体压力:101。
3KPa;6、回收率: 99。
8%。
四、设计方案1.吸收剂的选择根据所要处理的混合气体,可采用水为吸收剂,其廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。
2.流程图及流程说明该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。
经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。
(如右图所示)3.塔填料选择 该过程处理量不大,所用的塔直径不会太大,可选用38mm聚丙烯阶梯环塔填料,其主要性能参数如下:比表面积a:132.532/m m 空隙率ε:0。
91 干填料因子Φ:1175-m 五、工艺计算对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据.混合气体的黏度可近似取为空气的黏度。
空气和水的物性常数如下: 空气:35/205.1)/(065.01081.1mkg h m kg s Pa =⋅=⋅⨯=-ρμ水:sPa m kg L L ⋅⨯==-53104.100/2.998μρ1. 物料衡算,确定塔顶、塔底的气液流量和组成查表知,20C 下氨在水中的溶解度系数)/(725.03kpa m kmol H ⋅= 亨利系数SLHM E ρ=相平衡常数754.03.10102.18725.02.998=⨯⨯===P HM PE m S Lρ进塔气相摩尔比为:04712.0045.01045.01=-=Y出塔气相摩尔比为:00009424.0045.01)998.01(045.02=--⨯=Y 对于纯溶剂吸收过程,进塔液相组成为:02=X (清水)混合气体的平均摩尔质量为:)/(46.2829)045.01(17045.0kmol kg M =⨯-+⨯= 混合气体流量:)/(382.1664.2212932734000h kmol =⨯⨯惰性气体流量:)/(895.158)045.01(382.166h kmol V =-⨯=最小液气比:752.00754.004712.000009424.004712.0)(21212121min =--=--=--=*X mY Y Y X X Y Y V L取实际液气比为最小液气比的1.5倍,则可得吸收剂用量为:)/(233.1795.1895.158752.0h kmol L =⨯⨯=04169.05.1752.000009424.004712.0)(211=⨯-=-=LY Y V X液气比682.0183.1400018233.179=⨯⨯=V L ωω 2.塔径计算混合气体的密度 333/183.1293315.81046.28103.101m kg RT M P G =⨯⨯⨯⨯==-ρ 采用贝恩-霍根泛点关联式计算泛点速度:s m u g a u a g u F L LG t F L LG t F /942.3004.1183.15.1322.99891.081.93304.03304.0481.0)2.998183.1()183.1400018233.179(75.1204.0]lg[2.032.03281412.032=⨯⨯⨯⨯⨯==⋅-=⨯⨯⨯⨯-=⋅⋅⋅μρερμρρε取泛点率为0。
填料塔的计算范文填料塔是一种常见的化工设备,广泛应用于石油、化工、制药、冶金等领域。
它既可以用于物理吸附、化学吸附和蒸馏等过程,也可以用于分离、净化、吸收和反应等操作。
填料塔的设计和计算是确保设备正常运行和达到预期效果的关键步骤,本文将介绍填料塔的计算方法和相关问题。
填料塔的设计和计算需要考虑以下几个方面:塔径的确定、填料高度的确定、液体负荷的确定、气液流量的确定和塔底液体的冷却。
首先,确定塔径是设计填料塔的第一步。
在一定程度上,填料塔的塔径决定了设备的规模和投资成本。
塔径的确定通常基于液相线速度和气相线速度的经验公式。
液相线速度一般在0.3-0.7m/s,而气相线速度一般在0.7-2.0m/s。
根据所需处理的物质性质和运行条件,选择合适的液相线速度和气相线速度,就可以计算出初步的塔径。
其次,确定填料高度是设计填料塔的重要步骤。
填料高度的选择取决于所需的传质效率和分离效果。
填料高度越高,传质效率和分离效果越好,但同时也增加了设备的投资成本。
填料高度的计算通常基于传质速率和质量传递系数的经验公式。
传质速率与填料高度成正比,而质量传递系数与填料表面积成正比。
通过确定所需的传质效率和分离效果,就可以计算得到合适的填料高度。
然后,确定液体负荷是设计填料塔的重要步骤。
液体负荷是指单位塔体积内液体的流量。
液体负荷的选择取决于填料的覆盖度和液相混合的要求。
覆盖度一般在50-80%之间,液相混合要求则根据工艺需求决定。
液体负荷的计算通常基于液体流量和填料容积的经验公式。
通过确定所需的覆盖度和液相混合要求,就可以计算得到合适的液体负荷。
接下来,确定气液流量是设计填料塔的重要步骤。
气液流量的选择取决于所需的气液接触时间和气液相对速度。
气液接触时间一般在0.1-10秒之间,气液相对速度则根据具体情况决定。
气液流量的计算通常基于气相流量和液相流量的经验公式。
通过确定所需的气液接触时间和气液相对速度,就可以计算得到合适的气液流量。
学校:华东交通大学学院:基础科学学院姓名:王业贵学号:20100810030111指导老师:周枚花老师时间:2013.12.30-2014.1.10一、设计任务书一、设计题目年处理量为42.0410 吨氮气填料吸收塔的设计二、设计任务及操作条件试设计一座填料吸收塔,用于脱除混于空气中的氨气。
混合气体的处理量为2400 m 3/h ,其中含空气95%,含氨气为5%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数)。
采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。
20℃氨在水中的溶解度系数为H =0.725kmol/(m 3.kPa ) 三、工艺操作条件1.厂址为南昌地区2.操作压力为101.3kpa3.操作温度20℃4.每年生产时间:300天,每天24小时5.自选填料类型及规格 四、设计内容1. 吸收流程选择2. 填料选择(根据处理量选择)3. 基础物性数据的搜集与整理4. 吸收塔的物料衡算5. 填料塔的工艺尺寸计算(塔径,填料层高度,填料层压降)6. 流体分布器简要设计7.辅助设备的计算及选型8.设计结果一览表9.后记(对设计过程的评述和有关问题的讨论) 10.绘制有关图纸 11.编写设计说明五、化工设计说明书的内容完整的化工设计报告由说明书图纸两部分组成。
设计说明书中应包括所有论述、原始数据、计算、表格等,编排顺序如下:(1)标题页;(2)设计任务书;(3)目录;(4)设计方案简介;(5)工艺流程草图;(6)工艺计算以主体设备设计计算及选型;(7)辅助设备的计算及选择;(8)设计结果概要或设计一览表;(9)对本设计的评述;(10)附图(工艺流程图(设计说明书中)、主体设备工艺条件图(A3));(11)参考文献;二、设计方案(一)流程图及流程说明该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。
经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。
填料塔的设计范文
填料塔是一种常用的化工设备,主要用于气体的物质转移和反应过程中的质量传递。
设计一个填料塔需要考虑到塔的结构设计、填料的选择和布置、气液分布的优化以及安全性等因素。
首先,填料塔的结构设计是一个关键的环节。
塔的高度和直径直接影响着塔的流体力学性能和传质传热效果。
对于普通的填料塔来说,一般采用塔径比为3-6,高径比为10-20的设计参数。
此外,填料塔还应设计合理的进出料口,以便更好地控制进出料的速度和流量。
其次,填料的选择和布置也是填料塔设计的重要一环。
不同的物质需要选择不同的填料来达到预期的传质和传热效果。
常用的填料有旋流板、环状填料、网格填料、管状填料等。
填料的布置应考虑到填料与气相和液相之间的接触面积和流动的通路。
通常,填料的布置越密集,接触面积越大,传质传热效果越好。
气液分布的优化也是设计填料塔的一个关键问题。
不同物质的分布方式也会影响填料塔的传质效果。
常用的气液分布方式有平板液面、喷洒液面、液滴液面等。
优化气液分布的方式可以使得液相和气相更加均匀地流过填料床,提高传质传热效果。
填料塔的设计还需要考虑到其安全性能。
安全是设计的首要考虑因素之一、必须保证填料塔的结构稳定,能够承受内部和外部的力。
此外,还需要设置相应的安全装置,如压力传感器、温度传感器、液位控制器等,以及紧急停机装置,以保障塔的安全运行。
总之,填料塔的设计需要综合考虑结构设计、填料选择和布置、气液分布的优化以及安全性等因素。
通过合理的设计和优化,填料塔可以实现更好的传质和传热效果,提高化工生产的效率和质量。
填料塔技术要求范文填料塔是一种常用的化工设备,主要用于气体液体或液体液体的质量传递和分离。
为了确保填料塔的正常运行和高效性能,有一些技术要求需要满足。
首先,填料塔的填料材料需要具备良好的耐腐蚀性能。
填料材料应能够耐受化学物质的腐蚀,并保持结构的稳定性。
常见的填料材料包括陶瓷、金属、塑料等。
选择合适的填料材料能够延长填料塔的使用寿命,并减少维护成本。
其次,填料塔的填料应具备良好的传质性能。
填料的形状、尺寸和材质都会影响传质效果。
适当选择填料的类型和形状,可以增加接触面积和提高质量传递效率。
填料的密度、孔隙率和润湿性等也会影响传质效果,因此需要根据具体工艺要求来选择填料。
第三,填料塔的塔板设计应考虑到气体液体的均匀分配和收集。
塔板的布置要合理,以保证流体沿着填料塔的理想路径流动。
塔板上的孔板或波纹板应设计合理,能够均匀分布气液流量,减少液体的偏-集和阻力损失。
孔板孔径的大小和布局的间距也需要根据具体工艺要求进行调整。
第四,填料塔的塔体结构需要确保结构稳定和密封性能。
填料塔的塔体应具备足够的强度和刚度,以承受装填料、气体液体压力和风荷载等外力。
为了确保填料塔的安全运行,塔体的设计和施工必须符合相关的规范和标准。
另外,填料塔的连接处需要具备良好的密封性能,以防止泄漏。
最后,填料塔的操作和维护需要便捷和安全。
填料塔的进出料口、检修口和排污口等应布置合理,方便操作和维护人员进行操作和维护工作。
填料塔的内部结构设计应避免死角和积液,以减少清洗和维护的困难。
综上所述,填料塔的技术要求涉及填料材料、填料传质性能、塔板设计、塔体结构和操作维护等方面。
只有满足这些技术要求,填料塔才能正常运行,实现高效的质量传递和分离效果。
化工机械基础填料塔设计填料塔是化工装置中常用的一种塔式设备,用于进行物质传递和化学反应。
其基本结构包括主体塔体和填料层。
填料层是填充在塔体内的,用于增加有效接触面积,提高物质的传质效果。
本文将以化工机械基础填料塔设计为主题,介绍填料塔的设计原理、基本参数和设计过程。
一、设计原理填料塔的设计原理是通过填充物料的大表面积和较小的孔隙,使液体和气体相接触,有利于物质的传质和反应。
填料塔的设计要满足以下基本原理:1.塔底到塔顶的液体高度差应保证液体在塔体内的留存时间,以便完成化学反应。
2.塔底至塔顶的气体流速要满足传质与反应的需要,通常气速不宜超过液速。
3.塔底液体的引入和塔顶气体的排出要保证均匀分布,减小液体横向流动和气体穿透。
4.填料的选择和填充密度要保证塔内物质的充分接触和扩散。
二、基本参数填料塔的设计需要考虑以下几个基本参数:1.塔体高度:根据填料特性和传质反应要求确定,一般不超过50米。
2.塔体直径:根据其高度和填料性能确定,常采用塔底直径约为塔高的1/8或1/10。
3.填料类型和填充密度:根据物质传质和反应的需要选择填料类型和填充密度。
填料一般是球形、片状或丝状,填充密度应保证填料间有充分的间隙。
4.液位控制:根据反应的需要和塔内液体高度的变化确定液位控制系统。
5.气体进出口:根据传质和反应要求设计进出口位置和尺寸,保证气体均匀分布和流速适宜。
三、设计过程填料塔的设计过程包括以下几个步骤:1.确定填料类型和填充密度:根据传质反应的需要选择合适的填料类型和填充密度,填料的表面积越大、孔隙越多,则传质效果越好。
2.计算填料体积:根据填料种类、填充密度和塔体直径计算填料的体积,一般使用公式V=πD^2H/4,其中V为填料体积,D为塔体直径,H为塔体高度。
3.确定液体高度和液位控制:根据反应的需要和物料的流动性质确定液体的高度范围,并设计液位控制系统,保证液位的稳定。
4.设计气体进出口:根据填料塔的传质需求和反应类型设计合理的气体进出口位置和尺寸。
填料塔计算部分范文填料塔是一种常用的固体分离设备,适用于化工、石油、制药等多个行业。
它的主要功能是通过不同填料层的接触和作用,将气体和液体的混合物分离为洁净的组分。
在填料塔的设计和计算中,需要考虑多个参数和工艺要求,包括填料选择、填料层高度、气体和液体流量等。
下面将详细介绍填料塔计算的相关部分。
首先,填料的选择是填料塔计算的关键步骤之一、填料的种类繁多,包括板式填料、环状填料、网状填料等。
不同的填料具有不同的特性,如表面积、孔隙率、压降等。
在选择填料时,需要考虑操作条件、物料性质和设备成本等因素。
通常情况下,需要选取一种具有较大表面积和孔隙率的填料,以提高分离效果。
其次,填料层高度的计算是填料塔设计的重要部分。
填料层高度一般根据物料质量传递要求、液体停留时间和压降等因素来确定。
物料质量传递要求通常由输入和输出组分的浓度差异来衡量,较大的浓度差异需要更高的填料层高度。
液体停留时间是指液体在填料层中停留的平均时间,通常需要满足物料传递速率和回流比例的要求。
压降是指气体在填料层中通过的单位高度的压力损失,需要在一定范围内控制。
此外,填料塔计算还需要考虑气体和液体的流量。
气体的流量通常以体积流率或质量流率来表示,取决于不同的场景。
液体的流量一般由输入和输出组分的速率来确定。
在计算过程中,需要确保气体和液体能够充分接触和混合,以实现有效的分离效果。
为此,可以采用计算模型或实验数据来进行流量的估算和验证。
综上所述,填料塔计算部分的关键内容包括填料选型、填料层高度的计算、气体和液体流量的确定等。
在计算过程中,需要考虑多个因素和要求,并结合具体的工艺条件和设备特点来进行综合评估。
通过合理的填料塔计算,可以提高设备的性能和效率,实现更好的分离效果。
ﻩ目录水吸收二氧化硫填料塔设计摘要:本设计的目的在于除去工业放空尾气中的有害物质。
尾气的初始条件为:20℃,常压下,体积流量为2500m3/h混合气(空气+SO2),其中SO2体积分数5%,出塔SO2含量为0.25%。
设计方案:用水吸收SO2属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流程。
因用水作为吸收剂,且SO2不作为产品,故属用纯溶剂吸收过程。
对于水吸收SO2的过程,操作温度及操作压力较低,工业上通常选用塑料散装填料。
在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用DN38聚丙烯阶梯环填料。
根据以上条件本设计的结果如下:塔径D=1.2m;填料层高度h=5000mm;填料设计层压降△P=107.91×5=539.55Pa。
关键词:水,二氧化硫,填料塔吸收塔WaterAbsorptionof Sulfur Dioxide in a Packed Tower Abstract:Theabsorption ofthe design aims toremove harmful substances in theexhaust of industrialventing.Thesulfur dioxideabsorption water, design and operating conditions for the task is: At the temperatureof 20 and under theatmosphericpressure,th egas mixture (air+SO2)inthe amount of procesing :2500m3/h,volumefraction of sulfue dioxideinthe inlet gas mix ture:5﹪,emissions(sulfurdioxide by volume) : 0.25﹪.Desig nscheme: The sulfur dioxide absorption water, tobelongto medium solubility absorption process,inorder to improve the mass transfer efficiency, choose counter-current absorptionproces s,because waterabsorbent do,andsulfur dioxide, notasproducts, so the pure solvents. Choice of filler:the process of water absorption of SO2,the operating temperature andoperatingpressure islow,theindustryusually useplastic bulk packin g. Inthe plastic bulk packing,plasticladderring packing performance isbetter, therefore theDN38 polypropylene ladder ring packing is being choiced.Thedesign of thetower diameter is 1.2m, packing layer height is 5000mm,packing design pressure dropis539.55Pa.Key Words: H2O;SO2;PackedTower引言填料塔70年代以前,在大型塔器中,板式塔占有绝对优势,出现过许多新型塔板。
填料吸收塔工艺设计报告书班级 :环境工程071班姓名 : 钟旭东学号 : 200718050719指导老师: 宋成芳填料吸收塔工艺设计报告书一、 设计任务及操作条件:试设计常压填料塔,以水作为吸收剂,丙酮作为吸收质。
任务及操作条件为: ①、混合气(空气、丙酮)处理量为1400m3/h ;②、进塔混合气含丙酮体积分数3%,相对湿度70%,温度30℃; ③、进塔吸收剂(清水)的温度20℃; ④、丙酮回收率90%; ⑤、操作压力为常压;二、设计方案选择:吸收剂:清水温度:进水温度20℃、混合气进塔温度30℃ 操作压力:常压101.325KPa填料:选用填料为:50N D 聚丙烯塑料阶梯环填料。
为提高传质效率,吸收工艺流程采用常规逆流操作流程,工艺流程图见附图图一三、工艺计算:1、基础性物性数据: (一)、液相物性数据:本吸收过程为低浓度吸收过程,吸收过程中溶液的物性数据近似取纯水的物性数据,以塔底温度为准。
有手册查得,具体如下:温度T 压力P 密度黏度表面张力24.50℃101.325kpa 996.6kg/m3 3.254㎏/(m.h)933120kg/h 2(二)气相物性数据温度压力密度黏度30℃101.325kpa 1.166kg/m 30.06696㎏/(m.h)1.06E-5㎡/s 1.19E-9㎡/sv D LD其中:v D 、L D 为溶质在气液相中的扩散系数,㎡/s(三)、基本物料数据计算: (1)、进塔混合气体各组分的量计算:取吸收塔的平均操作气压101.325KPa ,混合气体的进塔量=140027312733022.4⎛⎫⨯⎪+⎝⎭=56.31Kmol/h 混合气中丙酮含量=56.31×0.03=1.6893Kmol/h=1.6893×58=97.9794Kg/h查附录,30℃饱和水蒸汽压力为4.2474KPa ,则相对是度为70%的混合气中水蒸气含量=70%×4.2474÷101.325×56.31=1.6523Kmol/h=1.6523×18=29.74Kg/h混合气中空气量=56.31-1.6523-1.6893=52.9684Kmol/h=52.9684×29=1528.25Kg/h(2)、混合气进出塔的物质的量比的计算: 将空气与水蒸气视为惰性气体,则:惰气量nG q =56.31-1.6893=54.6207Kmol/hY 1=1.6893÷54.6207=0.0309Y 2=1.6893×(1-0.9)÷54.6207=0.00309(3)出塔混合气的量=54.6207+1.6893×0.1=54.7896 Kmol/h (二)、热量衡算丙酮溶于水是放热反应,水在吸收丙酮蒸汽的过程中水温会逐渐上升。
目录第一章前言 (2)1。
1 塔设备设计简介 (2)1。
2 填料塔结构简介 (2)第二章设计方案的确定 (3)2.1 装置流程的确定 (3)2.2 吸收剂的选择 (3)2。
3 填料的选择 (3)2.4 材料选择 (3)第三章工艺参数 (4)第四章机械设计 (5)4。
1 塔体厚度计算 (5)4.2 封头厚度计算 (5)4。
3 填料塔的载荷分析及强度校核 (5)4。
4 塔体的水压试验 (6)4。
4.1 水压试验时各种载荷引起的应力 (6)4.4。
2 水压试验时应力校核 (7)第五章零部件选型 (8)5。
1 人孔 (8)5。
2 法兰 (8)5.3 除雾沫器 (8)5。
4 填料支撑板 (8)第六章总结 (9)参考文献..。
...。
....。
.。
.......。
.。
.。
...。
.。
.。
....。
......。
.。
.。
..。
..。
.。
.。
....。
.。
.。
..。
...。
....。
.。
..。
..。
.。
10第一章前言1.1塔设备设计简介塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。
塔设备的设计主要包括填料的选择、塔径的计算、填料层总高度的计算、压力降的计算、结构设计、机械设计等方面。
其中塔设备的机械设计为本设计的主要部分,包括设计计算塔体壁厚,考虑操作压力、内件及物料重力、荷载等条件,进行塔体应力校核,水压试验等。
本设计选用填料塔为设计对象,在操作压力为101。
3kpa,温度为20摄氏度时,完成填料塔的机械设计。
1.2填料塔结构简介填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。
填料的上方安装填料压板,以防被上升气流吹动。
液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。
气体从塔底送入,经气体分布装置分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质.填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相.图1-1 填料塔结构图填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以它特别适用于处理量肖,有腐蚀性的物料及要求压降小的场合。
水吸收二氧化硫填料吸收塔设计说明书示例文章篇一:《水吸收二氧化硫填料吸收塔设计说明书》嗨,大家好!今天我要和大家说说一个超级厉害又特别有趣的东西——水吸收二氧化硫填料吸收塔。
你可能会想,这是个啥呀?听我慢慢道来。
我呀,就像一个小小的发明家。
我在想,咱们生活的世界里有很多工厂会排出二氧化硫这种不好的气体呢。
二氧化硫就像一个调皮捣蛋的小恶魔,它跑到空气里,会让空气变得脏脏的,还会对我们的身体和环境造成很多危害。
那怎么办呢?这时候,水吸收二氧化硫填料吸收塔就像是一个超级英雄登场啦。
那这个吸收塔到底长啥样呢?它就像一个高高的大柱子。
里面呢,有着各种各样的填料。
这些填料就像是住在塔里的小居民,它们形态各异。
有的像小小的珠子,圆滚滚的;有的像一片片的小薄片,整整齐齐地排列着。
这些填料的存在可重要啦。
它们就好比是一个个小助手,在吸收二氧化硫的过程中发挥着巨大的作用。
我来给大家讲讲这个吸收塔的工作原理吧。
水就像一个温柔的大姐姐,它从吸收塔的上面慢慢地流下来。
而二氧化硫呢,就像一群不听话的小坏蛋,从吸收塔的下面往上跑。
当水和二氧化硫相遇的时候呀,就像是一场激烈的战斗。
水这个大姐姐可不会放过二氧化硫这些小坏蛋。
她张开自己的怀抱,把二氧化硫一点点地拉到自己的身边。
这时候,填料这些小居民也没闲着,它们就像是一个个小媒人,在水和二氧化硫之间牵线搭桥,让水能够更好地吸收二氧化硫。
我想象着在工厂里,有这样的场景呢。
工程师叔叔站在吸收塔旁边,他看着这个吸收塔,就像看着自己的宝贝孩子一样。
旁边有个小徒弟好奇地问:“叔叔,这个吸收塔为啥就能把二氧化硫给抓住呢?”工程师叔叔笑着说:“哈哈,孩子啊,这就像你用一个大网去抓小鱼一样。
水就是那个大网,填料就是网上面的那些小钩子,二氧化硫就像小鱼,被网和钩子一起就抓住喽。
”小徒弟眼睛亮晶晶的,好像一下子就明白了。
那这个吸收塔的大小怎么确定呢?这可需要我们好好地计算一番呢。
我们要考虑工厂排出的二氧化硫的量有多少。
填料塔设计案例.填料吸收塔简介在化学工业中,吸收操作广泛应用于石油炼制,石油化工中分离气体混合物,原料气的精制及从废气回收有用组分或去除有害组分等。
吸收操作中以填料吸收塔生产能力大,分离效率高,压力降小,操作弹性大和持液量小等优点而被广泛应用。
目前国内对填料吸收塔设计大部分是经验设计方法,该方法是在给定生产任务的条件下,由经验确定出一个液气比的值,然后手算出吸收塔的有关设计参数。
该设计手段落后,没有考虑经济技术指标,不符合工厂实际生产中成本最低要求,故提出了填料吸收塔的优化设计方法。
下面简要介绍一下填料塔的有关内容。
填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。
填料塔以塔内的填料作为气液两相间接触构件的传质设备。
填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。
填料的上方安装填料压板,以防被上升气流吹动。
液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。
气体从塔底送入,经气体分布装置分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。
与板式塔相比,在填料塔中进行的传质过程,其特点是气液连续接触,而传质的好坏与填料密切相关。
填料提供了塔内的气液两相接触面积。
填料塔的流体力学性能,传质速率等与填料的材质,几何形状密切相关,所以长期以来人们十分注中填料的性能和新型填料的开发,使得填料塔在化工生产中应用更加广泛。
填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。
填料塔还有以下特点:1.当塔径不是很大时,填料塔因为结构简单而造价便宜。
2.对于易起泡物系,填料塔更适合,因填料对气泡有限制和破碎作用。
3.对于腐蚀性物系,填料塔更适合,因为可以采用瓷质填料。
4.对于热敏性物系宜采用填料塔,因为填料塔的持液量比板式塔少,物料在塔内的停留时间短。
填料塔的压强降比板式塔小,因而对真空操作更有利。
基本信息•项目名称:填料塔设计报告•项目类型:工程设计•项目起始日期:20XX年X月X日•项目预计完成日期:20XX年X月X日概述本文档旨在对填料塔的设计过程进行详细阐述,包括设计背景、设计要求、设计方案、计算分析及结论等内容,以确保填料塔在实际应用中能够达到预期的效果,提高工程效率。
设计背景填料塔是一种用于气体-液体传质、吸收、冷却等过程的装置。
根据工艺要求,我公司需要设计一座带填料的填料塔。
填料塔的设计关系到工艺过程的稳定性和效率,因此设计过程需要严谨细致。
设计要求•塔体材质:不锈钢•塔体高度:X米•塔径:X米•塔内填料:XXX填料•塔底设有分布器,用于均匀分布液体设计方案塔体结构设计根据设计要求,塔体选用不锈钢材质,具有优良的耐腐蚀性能和强度。
塔体采用圆柱形结构,底部设置液体分布器,上部安装填料。
塔内填料设计填料的选用对于塔的传质效率和分离效果具有重要影响。
根据工艺要求,我们选择XXX填料,该填料表面积大、孔隙率高,能够提高气液传质效率。
计算分析塔高计算根据传质过程的理论模型,我们进行了塔高的计算,并确定了最佳塔高以保证传质效率。
塔径计算通过考虑填料的堆密度和分布情况,我们计算了塔径,确保填料的均匀分布和传质效率。
结论经过设计和计算分析,我们确定了填料塔的设计方案,并最终得出符合工艺要求的设计结果。
填料塔结构合理、传质效率高,能够满足工艺过程的需要。
以上是填料塔设计报告的详细内容,我们将按照设计方案进行后续工程实施,以确保项目顺利完成。
目录摘要 (Ⅲ)Abstract (Ⅳ)第1章前言 (1)第2章流程确定和说明 (2)2.1加料方式 (2)2.2进料状况 (2)2.3塔顶冷凝方式 (2)2.4回流方式 (2)2.5加热方式 (2)2.6加热器 (3)第3章精馏塔设计计算 (3)3.1操作条件与基础数据 (3)3.2精馏塔工艺计算 (5)3.3精馏塔主要工艺设计 (9)3.4填料的选择 (13)3.5塔径设计计算 (14)3.6填料层高度计算 (15)第4章塔附件的选型与设计 (16)4.1冷凝器 (16)4.2加热器 (17)4.3塔内管径的计算及选择 (17)4.4液体分布器 (18)4.5填料支承板的选择 (18)4.6塔釜设计 (19)4.7裙座设计 (19)4.8吊柱 (19)4.9人孔 (20)4.10法兰 (20)4.11除沫器 (20)第5章塔总体高度设计 (21)5.1塔顶部空间高度 (21)5.2进料部位空间高度 (21)5.3塔立体高度 (21)第6章塔设备的机械设计 (21)6.1设计条件 (21)6.2按压力计算筒体和封头厚度 (22)6.3塔的质量计算 (22)6.4塔的自振周期计算 (24)6.5地震载荷计算 (24)6.6风载荷计算 (25)6.7各种载荷引起的轴向应力 (28)6.8筒体和裙座危险截面的强度与稳定性校核 (29)6.9筒体和裙座水压试验应力校核 (30)6.10基础环设计 (32)6.11地脚螺栓计算 (33)6.12开孔补强 (35)参考文献 (36)致谢 (37)附录1 (38)附录2 (40)甲醇回收填料精馏塔设计摘要精馏是借助回流技术来实现高纯度和高回收率的分离操作,在抗生素药物生产中,需要用甲醇溶媒洗涤晶体,洗涤过滤后产生废甲醇溶媒,然后对甲醇溶媒进行精馏,从而将甲醇进行回收利用。
精馏操作一般在塔设备中进行,塔设备分为两种,板式塔和填料塔。
填料塔结构简单、装置灵活、压降小、持液量少、生产能力大、分离效率高、耐腐蚀,且易于处理易起泡、易热敏、易结垢物系。
填料塔的设计范文
一、填料塔的概念概述
填料塔(Packed Tower)是一种混合液塔,采用立式或斜面拱形结构,塔内安装有专用的填料,是一种常用的精馏、干燥、蒸发、净化设备以及
容积单位面积效率高的换热器,是把混合液分离、换热及净化为一体的设备,是混合液净化、分离及换热的优良设备,广泛应用于精细化工、医药、食品、制革、航空、船舶、电子、太阳能等多种领域。
二、填料塔的基本结构
1、塔体:塔体可以采用钢材或者铝合金材料。
它有半圆形、拱形和
矩形三种形状,其中,半圆形和拱形的塔体具有良好的稳定性,而矩形塔
体则能在有限的空间内获得较大的比表面积。
2、填料:填料是填料塔的主要构成部分,主要由各种热处理后的支
撑结构和功能填料组成,例如活性炭、碳酸钙、硅胶、苯乙烯等,填料的
应用范围很广,可以分为层流填料、排混填料、浓淡填料、搅拌填料等。
3、混合液加热器:用于加热混合液的加热器,通常是管内加热器,
其中采用不锈钢焊接热交换管,可以提高混合液的温度,让混合液内的分
子产生运动以达到进一步的分离效果。
4、液体冷却器:用于冷却混合液的冷却器,通常采用水冷却器。