液压机及系统II(精选)
- 格式:ppt
- 大小:349.50 KB
- 文档页数:9
小型液压机:液压系统设计方案概述
1. 概述
本文档旨在提供小型液压机的液压系统设计方案概述。
液压系统是小型液压机的核心部分,其设计直接影响到机器的性能和工作效率。
2. 设计目标
小型液压机的设计目标是实现以下要求:
- 提供足够的压力和力量以完成所需的工作任务
- 保证系统的安全性和可靠性
- 简化系统结构,降低成本和维护难度
3. 液压系统组成
小型液压机的液压系统主要由以下组件组成:
- 液压泵:负责将液压油从油箱中抽取并提供给液压缸
- 液压缸:通过液压油的压力产生力量,完成机器的工作任务- 液压阀:控制液压油的流量和压力,实现液压系统的各种操作功能
- 油箱:贮存液压油,并保持油温稳定
- 液压管路:连接液压泵、液压缸和液压阀,传递液压油的流动
4. 系统设计方案
为了实现设计目标,我们提出以下液压系统设计方案:
- 选择合适的液压泵:根据工作任务的需求,选择合适的液压泵,确保能够提供足够的压力和流量。
- 选择合适的液压缸:根据工作任务的需求,选择合适的液压缸,确保能够产生足够的力量。
- 选择合适的液压阀:根据工作任务的需求,选择合适的液压阀,确保能够控制液压油的流量和压力。
- 设计合理的油箱:根据系统需求和空间限制,设计合理的油箱,确保能够储存足够的液压油,并保持油温稳定。
- 设计合理的液压管路:根据系统需求和空间限制,设计合理的液压管路,确保液压油能够顺畅地流动。
5. 结论
本文档提供了小型液压机液压系统设计方案的概述。
通过选择合适的液压泵、液压缸和液压阀,并设计合理的油箱和液压管路,可以实现小型液压机的高效、安全和可靠的工作。
第八章液压基本回路(二)§4 速度控制回路在很多液压装置中,要求能够调节液动机的运动速度,这就需要控制液压系统的流量,或改变液动机的有效作用面积来实现调速。
一、节流调速回路在采用定量泵的液压系统中,利用节流阀或调速阀改变进入或流出液动机的流量来实现速度调节的方法称为节流调速。
采用节流调速,方法简单,工作可靠,成本低,但它的效率不高,容易产生温升。
1.进口节流调速回路(如下图)节流阀设置在液压泵和换向阀之间的压力管路上,无论换向阀如何换向,压力油总是通过节流之后才进入液压缸的。
它通过调整节流口的大小,控制压力油进入液压缸的流量,从而改变它的运动速度。
2.出口节流调速回路(如下图)节流阀设置在换向阀与油箱之间,无论怎样换向,回油总是经过节流阀流回油箱。
通过调整节流口的大小,控制液压缸回油的流量,从而改变它的运动速度。
3.傍路节流调速回路(如下图)节流阀设置在液压泵和油箱之间,液压泵输出的压力油的一部分经换向阀进入液压缸,另一部分经节流阀流回油箱,通过调整傍路节流阀开口的大小来控制进入液压缸压力油的流量,从而改变它的运动速度。
4.进出口同时节流调速回路(如下图)在换向阀前的压力管路和换向阀后的回油管路各设置一个节流阀同时进行节流调速。
5.双向节流调速回路(如下图)在单活塞杆液压缸的液压系统中,有时要求往复运动的速度都能独立调节,以满足工作的需要,此时可采用两个单向节流阀,分别设在液压缸的进出油管路上。
图(a)为双向进口节流调速回路。
当换向阀1处于图示位置时,压力油经换向阀1、节流阀2进入液压缸左腔,液压缸向右运动,右腔油液经单向阀5、换向阀1流回油箱。
换向阀切换到右端位置时,压力油经换向阀1、节流阀4进入液压缸右腔液压缸向左运动,左腔油液经单向阀3、换向阀1流回油箱。
图(b)为双向出口节流调速回路。
它的原理与双向进口节流调速回路基本相同,只是两个单向阀的方向恰好相反。
6.调速阀的桥式回路(如下图)调速阀的进出油口不能颠倒使用,当回路中必须往复流经调速阀时,可采用如图所示的桥式联接回路。
小型液压机的液压系统设计【摘要】小型液压机在工厂中应用的越来越广泛,液压机的液压系统的设计一直是企业的技术难题,针对这一问题,本文给出了一种小型液压机液压系统的设计方案。
【关键词】小型液压机系统设计1 工况图根据实际工作过程确定液压机工作循环是快速下行→慢速加压→快速返回→停止。
2 液压系统原理图根据工况图设计的小型液压机的液压系统原理图如下:本系统采用双泵供油方式,在快进和快退工况双泵同时向系统供油,液压缸高速运动,提高工作效率。
在烤锅盖压制时低压大泵卸荷高压小泵向系统供油,液压缸处于低速大输出力工作状态。
同时该系统具备短时保压功能,从而确保烤锅盖成型质量。
设计压制力30t,压制速度约5mm/s,快进速度为压制速度的4倍。
3 液压缸参数确定3.1 液压缸缸径确定3.2 液压缸活塞杆杆径确定压力机使用:可选速比为2;则由并由液压缸活塞杆外径系列可得液压缸活塞杆杆径为:d=110mm;D-液压缸缸径d-活塞杆杆径3.3 验算系统压力4 小泵排量确定确定系统驱动动力为三相异步交流电动机,转速为1400r/min;由液压缸压装工作速度5mm/s得工进时所需流量Q1为:泵每秒钟转数:1400/60=23.33r/s;则泵理论排量为:100.48/23.33=4.3ml/r;由泵的排量系列选择泵的排量为5ml/r。
小泵的负荷较大,可选柱塞泵。
5 大泵排量确定由快速下行速度应为工作速度的4倍,的大泵的排量应为小泵的3倍,按照3倍关系并根据泵的排量系列选择大泵排量为16ml/r。
低压大泵负荷较小,为节约成本可选择齿轮泵。
此系统工作泵为齿轮泵+柱塞泵的双联泵。
系统工作液压缸速度验算:工进速度:5×1400×1000/60÷[(π×1602)/4]≈5.8mm/s;符合要求。
快进速度:21×1400×1000/60÷[(π×1602)/4]≈24.4mm/s;符合要求。
液压机液压传动与控制系统设计手册【实用版】目录一、液压机的概述二、液压传动系统的设计1.液压元件的选择2.液压传动系统的原理图设计3.液压传动系统的性能分析三、控制系统的设计1.控制系统的组成2.控制策略的选择3.控制系统的实现四、液压机液压传动与控制系统的实际应用正文一、液压机的概述液压机是一种利用液体压力来传递动力的机械设备,其主要由液压元件、液压传动系统以及控制系统组成。
液压机的工作原理是利用液压油的压力来驱动液压缸,从而实现机械的运动。
液压机的应用广泛,主要用于锻造、冲压、拉伸等工艺过程。
二、液压传动系统的设计1.液压元件的选择液压元件是液压传动系统的核心部分,主要包括液压泵、液压阀、液压缸等。
液压元件的选择主要根据液压机的工作要求、工作环境和液压油的性质来确定。
2.液压传动系统的原理图设计液压传动系统的原理图设计是液压传动系统设计的重要环节。
原理图设计主要包括液压泵、液压阀、液压缸的连接方式和顺序,以及液压油的流动方向和压力分布。
3.液压传动系统的性能分析液压传动系统的性能分析主要包括液压传动系统的工作压力、流量、效率和稳定性等。
通过对液压传动系统的性能分析,可以确保液压传动系统的正常工作和长期稳定性。
三、控制系统的设计1.控制系统的组成控制系统主要由控制器、传感器和执行器组成。
控制器是控制系统的核心部分,主要负责控制液压传动系统的工作。
传感器是控制系统的输入部分,主要用于检测液压传动系统的工作状态。
执行器是控制系统的输出部分,主要用于控制液压传动系统的工作。
2.控制策略的选择控制策略的选择是控制系统设计的重要环节。
控制策略的选择主要根据液压机的工作要求、工作环境和液压油的性质来确定。
常用的控制策略包括比例 - 积分 - 微分控制(PID 控制)、模糊控制和神经网络控制等。
3.控制系统的实现控制系统的实现主要包括控制器程序的设计和执行器的控制。
控制器程序的设计主要采用 MATLAB 仿真软件进行,通过仿真可以验证控制器程序的正确性和有效性。
通用液压机系统说明1)启动按下启动按钮,主泵1和辅助泵2同时启动,此时系统中所有电磁铁均处于失电状态,主泵1输出的油经电液换向阀6中位及阀21中位流回油箱(处于卸荷状态),辅助泵2输出的油液经低压溢流阀3流回油箱,系统实现空载启动。
2)上液压缸快速下行按下上缸快速下行按钮,电磁铁1YA、5YA得电,电液换向阀6换右位接入系统,控制油液经电磁阀8右位使液控单向阀9打开,上缸带动上滑块实现空载快速运动。
此时系统的油液流动情况为进油路主泵1→换向阀6右位→单向阀13→上缸16上腔。
回油路上缸16下腔→液控单向阀9→换向阀6右位→换向阀21中位→油箱。
由于上缸竖直安放,且滑块组件的重量较大,上缸在上滑块组件自重作用下快速下降,此时泵1虽处于最大流量状态,但仍不能满足上缸快速下降的流量需要,因而在上缸上腔会形成负压,上部油箱15的油液在一定的外部压力作用下,经液控单向阀14(充液阀)进入上缸上腔,实现对上缸上腔的补油。
3)上缸慢速接近工件并加压当上滑块组件降至一定位置时(事先调好),压下行程开关2S后,电磁铁5YA 失电,阀8左位接入系统,使液控单向阀9关闭,上缸下腔油液经背压阀10、阀6右位、阀21中位回油箱。
这时,上缸上腔压力升高,充液阀14关闭。
上缸滑块组件在泵1供油的压力油作用下慢速接近要压制成型的工件。
当上缸滑块组件接触工件后,由于负载急剧增加,使上腔压力进一步升高,压力反馈恒功率柱塞变量泵1的输出流量将自动减小。
此时系统的油液流动情况为进油路主泵1→换向阀6右位→单向阀13→上缸16上腔。
回油路上缸16下腔→背压阀10→换向阀6右位→换向阀21中位→油箱。
4)保压当上缸上腔压力达到预定值时,压力继电器7发出信号,使电磁铁1YA失电,阀6回中位,上缸的上、下腔封闭,由于阀14和13具有良好的密封性能,使上缸上腔实现保压,其保压时间由压力继电器7控制的时间继电器调整实现。
在上腔保压期间,主泵1经由阀6和21的中位后卸荷。
小型液压机的液压系统设计解析1. 引言液压系统在各种工程机械和工业设备中得到了广泛应用,其优点在于能够实现精确的力量传递和控制。
小型液压机作为其中的一种应用,其液压系统设计的要求同样遵循液压系统设计的基本原则和规律。
本文将详细解析小型液压机的液压系统设计要点。
2. 液压系统设计原则2.1 系统安全性在设计小型液压机液压系统时,首先要确保系统运行的安全性。
这包括:- 系统压力设计要合理,确保在正常工作和意外情况下的安全性;- 要有完善的安全保护措施,如压力继电器、溢流阀等;- 系统中的所有元件应符合国家或行业的安全标准和规定。
2.2 系统可靠性系统可靠性是液压系统设计的重要指标,主要包括:- 系统元件的选择应保证其在规定的工作条件下能够稳定运行;- 系统应具备足够的抗干扰能力,以适应不同的环境条件;- 系统的设计寿命应满足使用要求,减少维修和更换的频率。
2.3 系统经济性在保证安全和可靠的前提下,液压系统设计还应考虑经济性:- 系统应尽量简化,减少不必要的元件和管路,以降低成本;- 应选择性价比高的元件,以降低系统的整体成本;- 设计应考虑运行和维护成本,以提高系统的经济性。
3. 液压系统设计要点3.1 液压泵的选择液压泵是液压系统的动力源,其选择应考虑以下因素:- 泵的类型和数量应满足系统的工作压力和流量的要求;- 泵的效率和能耗应满足系统的经济性要求;- 泵的安装方式和维护要求应满足使用条件。
3.2 液压缸的选择液压缸是液压系统的执行器,其选择应考虑以下因素:- 液压缸的类型和规格应满足系统的工作压力和行程的要求;- 液压缸的安装方式和连接方式应满足使用条件;- 液压缸的密封性能应满足系统的可靠性要求。
3.3 控制元件的选择控制元件是液压系统的指挥中心,其选择应考虑以下因素:- 控制元件的类型和功能应满足系统控制要求;- 控制元件的安装方式和连接方式应满足使用条件;- 控制元件的性能和可靠性应满足系统的可靠性要求。
摘要本次毕业设计为压力机总体及控制系统设计。
压力机主要由主机、液压系统和电气控制系统三部分组成。
本文重点对电气控制系统进行了设计和编程,对压力机主机进行了简单的设计,并设计了压力机控制系统配套电气控制柜。
压力机的主机主要由横梁、滑块、工作台、导柱、主缸和顶出缸等组成,通过对主机载荷的分析,对横梁、滑块、工作台和导柱及其互相间的连接进行了简单的设计,进而完成了总体结构设计。
由给定设计参数,通过对压力机工作过程的分析,绘制了压力机工作流程图,确定了控制方案,完成了PLC选型、输入输出分配、器件选择及硬件接线等设计过程,并进行了相应的程序分析和编程。
对其中的保压过程闭环控制进行了一定的分析计算,确定了一些设计参数。
所设计控制系统能实现压力机启停、送料、手动/自动工作和安全互锁等工作要求,保证液压机安全准确工作.最后,本文对专用控制柜进行了设计,包括柜体外形尺寸、室内结构分布、器件安装、通风散热方案等.关键词压力机控制系统 PLCABSTRACTThe graduation design is general structure and control system design of 6300kN hydraulic press。
Hydraulic press mainly composed of three parts: the mainframe,the hydraulic system and the electrical control system。
This paper focuses on the design and programming of the electrical control system, and gives a simple design for the mainframe, and designed the complete electrical control cabinet of the machine。
小型液压机:液压系统设计方案概述1. 介绍本文件主要阐述了一款小型液压机的液压系统设计方案。
该方案旨在为小型液压机提供安全、稳定、高效的液压动力,以满足各种工业应用需求。
本文档将详细介绍液压系统的组成、工作原理、主要参数及应用范围。
2. 液压系统组成小型液压机的液压系统主要由以下几个部分组成:1. 液压泵:为整个液压系统提供动力来源,将液体从油箱吸入,然后高压输出至液压缸或液压马达。
2. 控制阀:控制液压系统的工作状态,包括方向、压力、流量等,确保系统按照预定的方式运行。
3. 液压缸/液压马达:将液压泵提供的压力能转化为机械能,完成各种工程任务。
4. 油箱:储存液压油,为液压系统提供充足的冷却和过滤。
5. 管路及连接件:连接液压系统的各个部分,确保液压油畅通无阻。
6. 传感器及监控系统:实时监测液压系统的运行状态,确保系统安全、稳定运行。
3. 工作原理小型液压机的液压系统工作原理如下:1. 启动液压泵,将液体从油箱吸入,经过过滤器过滤后,高压输出至控制阀。
2. 控制阀根据操作指令,调节液压系统的方向、压力、流量等参数,将液压油输送至液压缸或液压马达。
3. 液压缸或液压马达将液压油的压力能转化为机械能,完成各种工程任务。
4. 液压油回流至油箱,经过冷却和过滤,再次被液压泵吸入,形成循环。
5. 传感器及监控系统实时监测液压系统的运行状态,如压力、流量、温度等,确保系统安全、稳定运行。
4. 主要参数小型液压机液压系统的主要参数包括:1. 液压泵额定压力:根据液压机的工作需求,选择合适的液压泵额定压力。
2. 液压泵额定流量:确保液压泵在规定时间内提供足够的液压油。
3. 液压缸/液压马达额定功率:根据工程任务需求,选择合适的液压缸/液压马达额定功率。
4. 管路直径及长度:根据液压系统的压力损失和流量要求,合理设计管路直径及长度。
5. 控制阀规格:根据液压系统的需求,选择合适的控制阀规格,确保系统稳定运行。
五个工作循环小型液压机的液压系统总结液压系统是液压机的重要组成部分,它负责产生和传递液压能量,实现液压机的工作循环。
以下是五个常见的工作循环小型液压机的液压系统总结。
1.单作用循环液压系统:单作用循环液压系统是最简单的液压系统之一、它包括一个单向阀和一个液压缸,工作循环为单作用往复运动。
液压泵通过单向阀将压力油送入液压缸,使活塞向前运动,当液压泵停止工作时,单向阀关闭,油液无法回流,从而保持活塞在前进状态。
经过时间或其它条件的控制,单向阀打开,油液回流,活塞向后退运动,完成一个循环。
2.双作用循环液压系统:双作用循环液压系统是最常见的液压系统之一、它包括两个单向阀和一个液压缸,工作循环为双作用往复运动。
液压泵通过一个单向阀将压力油送入液压缸的一侧,使活塞向前运动。
当需要反向运动时,液压泵通过另一个单向阀将压力油送入液压缸的另一侧,使活塞向后运动。
通过不同阀的开关控制,活塞可在一个循环内完成正向和负向运动。
3.循环液压系统:循环液压系统是一种特殊的液压系统,它通过运动探测器或时间控制器控制循环运动。
工作循环为循环运动或间歇运动。
液压泵将压力油送入液压缸,使活塞向前运动,当液压泵停止工作时,液压缸内的压力油无法回流。
当探测器或时间控制器信号到达时,液压泵重新启动,液压缸的压力油通过探测器或控制器进行控制,使活塞向后退运动,完成一个循环。
4.闭式液压系统:闭式液压系统是一种使用闭式液压马达的液压系统。
液压泵将压力油送入液压马达,使动力元件旋转或产生线性运动。
液压马达通过液压泵回收液压油,并将压力油送回油箱。
闭式液压系统不需要安装油缸,因此体积小巧,适用于对空间要求较高的设备。
5.比例液压系统:比例液压系统是一种使用比例阀的液压系统,能够实现对液压系统压力、流量和速度的精确控制。
它通过比例阀调节油液流量或压力,实现对液压元件的精确控制。
比例液压系统适用于对液压控制要求较高的设备,如机床、模具和注塑机等。
液压机液压传动与控制系统设计手册液压机液压传动与控制系统设计手册导言:在现代工业中,液压传动与控制系统起到了至关重要的作用。
液压机是一种广泛应用于工程和制造领域的机械设备,它利用液体的力学性质传输和控制力,实现各种工作任务。
本文旨在为液压机液压传动与控制系统的设计提供一份全面而又深入的手册,帮助读者更好地理解和应用这一技术。
第一章:液压传动基础1.1 液压传动的基本原理液压传动是利用液体在封闭的系统中传递能量,实现力或运动控制的方法。
通过利用液压元件,如液压缸、液压马达和液压阀,液压传动系统能够转换机械能为液压能,并将其再次转换为机械能。
1.2 液压元件的基本工作原理主要介绍了液压元件的基本组成和工作原理,包括液压缸、液压马达、液压泵和液压阀。
液压传动系统中的这些元件起到了关键的作用,通过合理地设计和组合,可以实现各种工作任务。
1.3 液压流体的特性与选用探讨了液压系统中所使用的液压流体的特性和选用。
液压流体应具有一定的黏度、抗磨性和耐高温性能,同时还需要考虑系统的工作压力和环境因素。
第二章:液压控制系统2.1 液压控制系统的基本组成介绍了液压控制系统的基本组成,包括执行元件、执行元件、控制元件和电气元件。
这些组件相互配合,实现对液压传动系统的精确控制。
2.2 液压控制系统的工作原理详细阐述了液压控制系统的工作原理,包括液压马达的控制、液压缸的控制和液压阀的控制等方面。
通过对系统工作原理的理解,能更好地设计和操作液压传动系统。
2.3 液压控制系统的性能参数列举了液压控制系统的主要性能参数,包括系统的输出力、速度、位置精度以及系统的动态响应。
这些参数对于系统设计和优化非常关键。
第三章:液压传动系统的设计3.1 液压传动系统的设计要点讨论了液压传动系统的设计要点,包括选用合适的液压元件、合理布局和连接、确定工作压力和流量,并注意系统可靠性和安全性等方面。
3.2 液压传动系统的设计实例通过实例介绍了液压传动系统的设计过程和方法。