八年级数学下册第十九章一次函数19.3课题学习选择方案学案新版新人教版
- 格式:docx
- 大小:39.73 KB
- 文档页数:3
19.3 课题学习选择方案基础知识:1、某地电话拨号入网有两种收费方式:①计时制:0.05元/分;②包月制:50元/月.此外,每一种上网方式都得加收通信费0.02元/分.某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算().A.计时制B.包月制C.两种一样 D.不确定2、小静准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是().A.①②③④ B.①③④ C.①②④ D.①②③3、如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买1件时,售价约为3元,其中正确的说法有.(填序号)4、如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600L,又知单开进水管10min可以把容器注满,若同时打开进、出水管,20min可以把满容器的水放完,现已知水池内有水200L,先打开进水管5min,再打开出水管,两管同时开放,直到把容器中的水放完,则正确反映这一过程中容器的水量Q(L)随时间t(min)变化的图像是:()A. B. C. D.5、我区某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时B.4.4小时C.4.8小时D.5小时6、关于x的一次函数)2()73(-+-=axay的图像与y轴的交点在x轴的上方,则y随x的增大而减小,则a的取值范围是。
第十九章一次函数19.3 课题学习选择方案(2)【教学目标】知识与技能正确理解问题中的数量关系,运用所学知识解决相关的租车类问题过程与方法经历实际问题的分析、探究和解答过程,进一步感受数学中的建模思想能从不同的角度思考问题,优化解决问题的方法;情感、态度与价值观培养学生合作交流的意识和探索的精神,树立学好数学的自信心【教学重难点】重点:综合运用所学的知识解决租车类问题难点:建立准确的数学模型,解决优化方案问题【教学目标】【导学过程】【新知探究】探究、问题2 某学校计划在总费用2 300 元的限额内,租用汽车送234 名学生和6 名教师集体外出活动,每辆汽车上至少要有1 名教师.现在有甲、乙两种大客车,它们的载客量和租金如下表:(1)共需租多少辆汽车?(2)给出最节省费用的租车方案.分析:(1)要保证240名师生有车坐,(2)要使每辆汽车上至少要有1名教师根据(1)可知,汽车总数不能小于______;根据(2)可知,汽车总数不能大于______。
综合起来可知汽车总数为______。
设租用x辆甲种客车,则租车费用y(单位:元)是 x 的函数,则____________。
讨论:根据问题中的条件,自变量x 的取值应有几种可能?为使240名师生有车坐,x不能小于_________;为使租车费用不超过2300元,x不能超过___________。
综合起来可知x 的取值为___________。
在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。
方案一: _____辆甲种客车,_____两乙种客车。
y1=____________方案二: _____辆甲种客车,____辆乙种客车。
y2=____________应选择方案_________。
变式:(1)实验学校计划组织共青团员372人到某爱国主义基地接受教育,并安排8们老师同行,经学校与汽车出租公司协商,有两种型号客车可供选择,它们的载客量和租金如下表,(2)设租甲种客车x辆人,总租金共y(元),写出y与x之间的函数关系式。
19.3课题学习选择方案一、教学目标1.核心素养:通过在实际问题中建立函数模型,根据所列函数解析式的性质,选择合理方案解决问题的学习,结合实际问题的数学信息,进行合情推理,提升建立数学模型的能力,发展应用意识.2.学习目标(1)巩固一次函数知识,进一步明确一次函数与不等式相结合的实际问题处理方法.灵活运用变量之间的关系建立函数模型.(2)让学生通过“选择上网收费方式”,提高运用函数知识解决实际问题的能力.(3)让学生通过“怎样租车”,提高运用函数知识解决实际问题的能力.3.学习重点(1)培养学生自主分析问题的实际背景中包含的变量及对应关系.(2)运用一次函数的性质解决生活中的最佳方案.4.学习难点如何构建一次函数模型.二、教学设计(一)课前设计1.预习任务任务1:预习教材P102-104页,了解上宽带网有几种收费方式,思考影响收费的因素有哪些?任务2:思考租车数量由什么决定,租车费用与哪些因素有关?(二)课堂设计2.知识回顾(1)形如y=kx+b(k,b是常数且k≠0)的函数,y是x的一次函数.(2)一次函数y=kx+b中,当k>0时,y随x的增大而增大.当k<0时,y随x 的增大而减小.(3)一元一次方程kx+b=0可看作是直线y=kx+b与x轴交点的横坐标.(4)一元一次不等式kx+b>0可看作是直线y=kx+b与x轴交点上方图象对应的x的值.3.问题探究问题探究一怎样选取上网收费方式请认真学习课本P102-103页“问题1”的内容,边学习边思考下列问题:【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一1.选择方案的依据是什么?【答】根据省钱原则选择方案2.要比较三种收费方式的费用,需要做什么?【答】分别计算每种方案的费用.3.怎样计算费用?【答】费用=月使用费+超时费超时费=超时使用价格×超时使用时间4.在A,B,C三种上网收费方式中,上网费用是变量的方式有__________,上网费用的多少与__________有关;上网费用是常量的方式是__________.【答】方案A,B的费用在超过一定时间后,随上网时间变化,是上网时间的函数.方案C费用固定.活动二 1.设上网时间为x h,A,B,C三种方式的收费y1,y2,y3各怎样表示?(注意考虑自变量x的取值范围)2.怎样比较y1,y2,y3的大小?分析:对于这个复杂的问题,我们画函数的图象,借助图象的直观性来解决.【详解】结合图象可知:(1)若y 1=y 2,即3t -45=50,解方程,得t =3123(2)若y 1<y 2,即3t -45<50,解不等式,得t <3123(3)若y 1>y 2,即3t -45>50,解不等式,得t >3123(4)若y 2=y 3,即3t -100=120,解方程,得t =7313(5)若y 2>y 3,即3t -100>120,解不等式,得t >7313综上所述:当上网时间不超过31小时40分,选择方案A 最省钱;当上网时间为31小时40分至73小时20分,选择方案B 最省钱;当上网时间超过73小时20分,选择方案C 最省钱.问题探究二怎样租车思考与讨论:阅读教材P103----P104,【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一 1.影响最后的租车费用的因素有哪些?【答】主要影响因素是甲,乙两种车所租辆数.2.汽车所租辆数又与哪些因素有关?【答】与乘车人数有关.3.如何由乘车人数确定租车辆数呢?【答】(1)要保证240名师生都有车坐,汽车总数不能小于6辆;(2)要使每辆汽车上至少有1名教师,汽车总数不能大于6辆.所以共需租6辆车.活动二在汽车总数确定后,租车费用与租车的种类有关.如果租甲类车x 辆,能求出租车费用y=.在这个函数中,y 随x 的增大而.要求y 的最小值,就要先求x 的取值范围,怎样求x 的取值范围?【详解】设租用x辆甲种客车,则租用乙种客车的辆数为(6-x)辆;设租车费用为y,则y=400x+280(6-x)化简得y=120x+1680.(1)为使240名师生有车坐,则45x+30(6-x)≥240;(2)为使租车费用不超过2300元,则400x+280(6-x)≤2300.解得:4≤x≤316据实际意义可取4或5;因为y随着x的增大而增大,所以当x=4时,y最小,y的最小值为2160.所以,租甲种车4辆,乙种车2辆.结论:在涉及多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.3.课堂总结【知识梳理】基础知识思维导图【重难点突破】(1)本节的问题,其实质是运用一次函数选择最佳方案,一是用一次函数的图像性质;二是多变量的问题.(2)用一次函数解决生活中的方案选择问题需要根据题意列出函数解析式及图像,分三种情况:函数值相等、大于、小于,结合方程、不等式进行说明,在此基础上选择合理方案.(3)将实际问题抽象概括成函数模型体现建模思想,其步骤:审清题意---建立数学模型---数学方法解决问题----验证结果.4.随堂检测:参见ppt巩固练习提升题。
《课题学习选择方案》教案【教学目标】1.知识与技能(1)能够正确列出方案问题中相关的一次函数的表达式,写出自变量的取值范围.(2)理解方案选择问题的一般解题方法和步骤2.过程与方法使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识。
3.情感态度和价值观将所学的知识应用到解决实际问题中去选择合适的方案,体会数学的实用价值,帮助学生获得生活经验,并树立正确的人生观和价值观。
【教学重点】建立数学模型,利用代数法和图像法解决选择方案的实际问题。
【教学难点】从实际问题中抽象出分段函数模型,并用方程、不等式知识或借助函数图像的性质进行综合分析问题,从而解决实际生活中方案选择问题。
【教学方法】自学与小组合作学习相结合的方法。
【课前准备】教学课件。
【课时安排】1课时【教学过程】一、情景导入【过渡】在日常生活中,我们通常会遇到这样的问题,该选择哪个旅行团更划算,该选择哪个银行收益更好,等等。
之前的学习中,我们学习过用数学知识去解决实际问题,那么我们能否用我们这章中学习的函数知识去解决上述提出的问题呢?我们先来看几个问题,看大家对之前的知识熟悉不熟悉,看谁回答的快。
如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.判断下列说法正误:①售2件时甲、乙两家售价一样;②买1件时买甲家的合算;③买3件时买乙家的合算;【过渡】这个问题是简单的函数问题,反映了我们可以借助函数解决实际问题,如果问题稍微复杂一点,又该如何解决呢?今天我们就来学习一下,如何正确的选择方案。
二、新课教学1.怎样选取上网收费方式【过渡】我们一起来思考一下课本的问题1。
在这几种选择方案中,我们该如何选择呢?【过渡】结合实际,我们知道,选择的依据一般都是划算,也就是说便宜的更应该选择,这就把问题转化为求三种方案下,哪一个更便宜。
【过渡】我们先对问题进行分析,这三种方案中哪种方式上网费是会变化的?哪种不变?(学生回答)【过渡】从表中,我们知道,A、B方案会变化,C不变。
八年级下册第十九章第三节选择方案课时练习一.填空题1.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.①②C.①③D.②③答案:A知识点:一次函数的图像解析:解答:甲的速度为:8÷2=4米/秒;乙的速度为:500÷100=5米/秒;b=5×100-4×(100+2)=92米;5a-4×(a+2)=0,解得a=8,c=100+92÷4=123,∴正确的有①②③.故选A.分析:易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.2. 李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD ,设BC 的边长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A.y=-2x+24(0<x <12)B. y=-21x+12(0<x <24) C. y=2x-24(0<x <12) D. y=21x-12(0<x <24) 答案:B.知识点:根据实际问题列一次函数表达式解析:解答:由题意得:2y+x=24,故可得:y=-21x+12(0<x <24). 故选B分析:根据题意可得2y+x=24,继而可得出y 与x 之间的函数关系式,及自变量x 的范围.3. 有甲、乙两个大小不同的水桶,容量分别为x 、y 公升,且已各装一些水.若将甲中的水全倒入乙后,乙只可再装20公升的水;若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水,则x 、y 的关系式是( )A.y=20-x B .y=x+10 C .y=x+20 D .y=x+30答案:D知识点:根据实际问题列一次函数表达式解析:解答:设甲、乙两个水桶中已各装了m 、n 公升水,由“若将甲中的水全倒入乙后,乙只可再装20公升的水”得:y=m+n+20;由“若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水”得:x=m+n-10.两式相减得:y-x=30,y=x+30.故选D .分析:设甲、乙两个水桶中已各装了m 、n 公升水,由题意可得:y=m+n+20,x=m+n-10.则y=x+30.4.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A.B.C.D.答案:A知识点:一次函数的性质一次函数的图像解析:解答:由图知蓄水池上宽下窄,深度h和放水时间t的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A正确.B斜率一样,C前者斜率大,后者小,D也是前者斜率大,后者小,因此B、C、D排除.故选A.分析:由于蓄水池不规则,上面宽,下面窄,因此在相同时间内上半部分下降缓慢,图象比较平稳.下半部分下降快,图象比较陡,据此即可解答.5. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁答案:D知识点:根据实际问题列一次函数表达式一次函数的性质解析:解答:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.6. 某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A .20kgB .25kgC .28kgD .30kg答案:A知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:设y 与x 的函数关系式为y=kx+b ,由题意可知 ⎩⎨⎧+=+=bk b k 5090030300 所以k=30,b=-600,所以函数关系式为y=30x-600,当y=0时,即30x-600=0,所以x=20.故选A .分析:根据图中数据,用待定系数法求出直线解析式,然后求y=0时,x 对应的值即可.7. 三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km ,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )A.1B.2C.3D.4答案:D知识点:一次函数的图像解析:解答:由图可知:甲、乙的起始时间分别为0h 和2h ;因此甲比乙早出发2小时; 在3h-4h 这一小时内,甲的函数图象与x 轴平行,因此在行进过程中,甲队停顿了一小时; 两个函数有两个交点:①甲行驶4.5小时、乙行驶2.5小时时,两函数相交,因此乙队出发2.5小时后追上甲队;②甲行驶6小时、乙行驶4小时后,两函数相交,此时两者同时到达目的地.所以在整个行进过程中,乙队用的时间为4小时,行驶的路程为24千米,因此它的平均速度为6km/h.这四个同学的结论都正确,故选D.分析:本题主要考查的是分段函数的应用,应结合函数的图形,按不同的时间段进行逐段分析.8. 小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P 的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是()A.3km/h和4km/h B.3km/h和3km/hC.4km/h和4km/h D.4km/h和3km/h答案:D知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:设小敏的速度为:m,则函数式为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=-4,b=11.2,小敏离B地的距离y(km)与已用时间x(h)之间的关系为:y=-4x+11.2;由实际问题得小敏的速度为4km/h.设小聪的速度为:n,则函数图象过原点则函数式为,y=nx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h .故选D .分析:由已知图象上点分别设出两人的速度,写出函数关系式,求出两人的速度.9. 的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为( )A .23B .24C .25D .26答案:B知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:设号数为x ,用水量为y 千克,直线解析式为y=kx+b .根据题意得⎩⎨⎧+=+=b k b k 15151018 解得:⎪⎩⎪⎨⎧=-=2453b k所以直线解析式为y=-53x+24, 当y=10时,有-53x+24=10,解之得x=2331, 根据实际情况,应在24号开始送水.故选B .分析:根据两天的用水量易求直线解析式,当函数值为10时自变量的值即为开始送水的号数.10. 如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量( )A.小于3t B.大于3t C.小于4t D.大于4t答案:D知识点:一次函数的性质一次函数的图像解析:解答:盈利时收入大于成本,即l1>l2,在图上应是l1在上面,在交点右边的部分满足条件.故选D.分析:从图象得出,当x>4t时,盈利收入大于成本,即l1>l2.11. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁答案:D知识点:一次函数的性质解析:解答:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.12. 2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图象表示正确的是()A.B.C.D.答案:C知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:由题意知,y与x的函数关系为分段函数.y= 2x(0≤x<4)和y= 4.5x-10(x≥4).故选C.分析:根据题意列出x与y之间的函数关系式,根据函数的特点解答即可.13. 汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.答案:C知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:根据题意可知s=400-100t(0≤t≤4),∴与坐标轴的交点坐标为(0,400),(4,0).要注意x、y的取值范围(0≤t≤4,0≤y≤400).故选C.分析:先根据题意列出s、t之间的函数关系式,再根据函数图象的性质和实际生活意义进行选择即可.14. 在西部大开发中,为了改善生态环境,鄂西政府决定绿化荒地,计划第1年先植树1.5万亩,以后每年比上一年增加1万亩,结果植树总数是时间(年)的一次函数,则这个一次函数的图象是()A.B.C.D.答案:B知识点:一次函数的性质一次函数的图像解析:解答:根据题意:计划第1年先植树1.5万亩,即函数图象左端点为(1,1.5).以后每年比上一年增加1万亩,即第二年的植树量为2.5万亩,即x=2时,y=2.5.故选B.分析:根据题意先找出函数图象的最低点,再找出点(2,2.5)在图象上的函数即可.15. 学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()新鞋码(y)225 245 (280)原鞋码(x)35 39 (46)A.270 B.255 C.260 D.265答案:D知识点:根据实际问题列一次函数表达式一次函数的性质解析:解答:由题中的表格知,y是x的一次函数,可设y与x的关系为y=kx+b,由题意得⎩⎨⎧+=+=bk b k 3924535225 解得⎩⎨⎧==505b k ∴y 与x 之间的函数关系式为y=5x+50,当x=43时,y=265.故选D .分析:由表格可知,给出了3对对应值,销售原鞋码每增加4,新鞋码增加20,即销售量与销售单价是一次函数关系,设y=kx+b ,把表中的任意两对值代入即可求出y 与x 的关系.二.填空题16. 为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排都多站一人,则每排人数y 与该排排数x 之间的函数关系式为____(x 为1≤x≤60的整数)答案:y=39+x知识点:根据实际问题列一次函数表达式解析:解答:根据题意得y=40+(x-1)×1=x+39(x 为1≤x≤60的整数).分析:根据“第一排40人,后面每一排都比前一排都多站一人”可列出y 与x 之间的关系式y=40+(x-1)×1,整理即可求解,注意x 的取值范围是1到60的整数.17. 如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s 、t 分别表示行驶距离和时间,则这两人骑自行车的速度相差____km/h .(2012答案:4知识点:一次函数的性质 一次函数的图像 解析:解答:根据图象可得:∵甲行驶距离为100千米时,行驶时间为5小时,乙行驶距离为80千米时,行驶时间为5小时,∵甲的速度是:100÷5=20(千米/时);乙的速度是:80÷5=16(千米/时); 故这两人骑自行车的速度相差:20-16=4(千米/时); 故答案为:4.分析:根据图中信息找出甲,乙两人行驶的路程和时间,进而求出速度即可.18. 一辆汽车在行驶过程中,路程y (千米)与时间x (小时)之间的函数关系如图所示.当 0≤x≤1时,y 关于x 的函数解析式为y=60x ,那么当1≤x≤2时,y 关于x 的函数解析式为____.答案:y=100x-40知识点:一次函数的性质 一次函数的图像解析:解答::∵当时0≤x≤1,y 关于x 的函数解析式为y=60x , ∴当x=1时,y=60.又∵当x=2时,y=160,当1≤x≤2时,将(1,60),(2,160)分别代入解析式y=kx+b 得, ⎩⎨⎧=+=+160260b k b k解得⎩⎨⎧-==40100b k由两点式可以得y 关于x 的函数解析式y=100x-40.分析:由图象可知在前一个小时的函数图象可以读出一个坐标点,再和另一个坐标点就可以写出函数关系式.19. 利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克____元. 品种水果糖 花生糖 软 糖 单价(元/千克) 10 12 16 重量(千克) 334答案:13知识点:一次函数的性质解析:解答:3种糖果的总价=10×3+12×3+16×4=130,总重量=3+3+4=10,所以单价为13. 分析:单价=总价÷总重量.所以必须求出三种糖的总价格和总重量,然后进行解答. 20. 如图所示中的折线ABC 为甲地向乙地打长途电话需付的电话费y (元)与通话时间t (分钟)之间的函数关系,则通话8分钟应付电话费____元.答案:13知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像 解析:解答:由图象可得,点B (3,2.4),C (5,4.4), 设射线BC 的解析式为y=kt+b (t≥3), 则⎩⎨⎧=+=+4.454.23b k b k解得⎩⎨⎧-==6.01b k所以,射线BC 的解析式为y=t-0.6(t≥3), 当t=8时,y=8-0.6=7.4元. 故答案为:7.4.分析:根据图形写出点B 、C 的坐标,然后利用待定系数法求出射线BC 的解析式,再把t=8代入解析式进行计算即可得解. 三.解答题21. 张勤同学的父母在外打工,家中只有年迈多病的奶奶.星期天早上,李老师从家中出发步行前往张勤家家访.6分钟后,张勤从家出发骑车到相距1200米的药店给奶奶买药,停留14分钟后以相同的速度按原路返回,结果与李老师同时到家.张勤家、李老师家、药店都在东西方向笔直大路上,且药店在张勤家与李老师家之间.在此过程中设李老师出发t (0≤t≤32)分钟后师生二人离张勤家的距离分别为S 1、S 2.S 1与t 之间的函数关系如图所示,请你解答下列问题:(1)李老师步行的速度为____(2)求S 2与t 之间的函数关系式,并在如图所示的直角坐标系中画出其函数图象; (3)张勤出发多长时间后在途中与李老师相遇?答案:(1)50米/分.(2)当0≤t≤6时,S 2=0,当6<t≤12时,S2=200t-1200,当12<t≤26时,S2=1200,当26<t≤32时,S2=-200t+6400,(3)张勤出发5.2分钟后在途中与李老师相遇.知识点:一次函数的性质,一次函数的图像根据实际问题列一次函数表达式,解析:解答:(1)李老师步行的速度为1600÷32=50米/分;故答案为:50米/分.(2)根据题意得:当0≤t≤6时,S2=0,当6<t≤12时,S2=200t-1200,当12<t≤26时,S2=1200,当26<t≤32时,S2=-200t+6400,(3)S 1=-50t+1600,由S 1=S 2得,200t-1200=-50t+1600, 解得t=11.2,可得t-6=11.2-6=5.2(分)则张勤出发5.2分钟后在途中与李老师相遇. 分析:(1)根据速度=时间路程,再结合图形,即可求出李老师步行的速度; (2)根据题意分0≤t≤6,6<t≤12,12<t≤26,26<t≤32四种情况进行讨论,即可得出S 2与t 之间的函数关系式;(3)由S 1=S 2得,200t-1200=-50t+1600,然后求出t 的值即可;22. 某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费) 答案: (1)甲材料每千克15元,乙材料每千克25元; (2)共有三种方案,如下表:A (件) 20 21 22B (件)302928(3)当m=22时,总成本最低,此时W=-200×22+55000=50600元.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组)解析:解答::(1)设甲材料每千克x 元,乙材料每千克y 元,则⎩⎨⎧=+=+1053240y x y x解得⎩⎨⎧==2515y x所以甲材料每千克15元,乙材料每千克25元;(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000, 由题意:-100m+40000≤38000,解得m≥20, 又∵50-m≥28,解得m≤22, ∵20≤m≤22,∵m 的值为20,21,22, 共有三种方案,如下表: A (件) 20 21 22 B (件)302928(3)设总生产成本为W 元,加工费为:200m+300(50-m ),则W=-100m+40000+200m+300(50-m )=-200m+55000,∵W 随m 的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=-200×22+55000=50600元.分析:(1)设甲材料每千克x 元,乙材料每千克y 元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组⎩⎨⎧=+=+1053240y x y x ,解方程组即可得到甲材料每千克15元,乙材料每千克25元; (2)设生产A 产品m 件,生产B 产品(50-m )件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到-100m+40000≤38000,根据生产B 产品不少于28件得到50-m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m 为整数,则m 的值为20,21,22,易得符合条件的生产方案;(3)设总生产成本为W 元,加工费为:200m+300(50-m ),根据成本=材料费+加工费得到W=-100m+40000+200m+300(50-m )=-200m+55000,根据一次函数的性质得到W 随m 的增大而减小,然后把m=22代入计算,即可得到最低成本.23. 某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x 度时,应交电费y 元. (1)分别求出0≤x≤200和x >200时,y 与x 的函数表达式; (2)小明家5月份交纳电费117元,小明家这个月用电多少度?答案: (1)y=0.7x-30;(2)210度.知识点:一次函数的性质 根据实际问题列一次函数表达式,解析:解答:(1)当0≤x≤200时,y 与x 的函数表达式是y=0.55x ; 当x >200时,y 与x 的函数表达式是 y=0.55×200+0.7(x-200), 即y=0.7x-30;(2)因为小明家5月份的电费超过110元, 所以把y=117代入y=0.7x-30中,得x=210. 答:小明家5月份用电210度.分析:(1)0≤x≤200时,电费y 就是0.55乘以相应度数;x>200时,电费y=0.55×200+超过200的度数×0.7;(2)把117代入x>200得到的函数求解即可.24. 某商店销售A,B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.(1)该商店销售A,B两种商品共100件,获利润1350元,则A,B两种商品各销售多少件?(2)根据市场需求,该商店准备购进A,B两种商品共200件,其中B种商品的件数不多于A种商品件数的3倍.为了获得最大利润,应购进A,B两种商品各多少件?可获得最大利润为多少元?答案:(1)A种商品销售30件,B种商品销售70件.(2)应购进A种商品50件,B种商品150件,可获得最大利润为2750元.知识点:一次函数的性质一次函数的图像根据实际问题列一次函数表达式一次函数与二元一次方程(组)解析:解答:(1)设A种商品销售x件,则B种商品销售(100-x)件.依题意,得10x+15(100-x)=1350解得x=30.∵100-x=70.答:A种商品销售30件,B种商品销售70件.(2)设A种商品购进a件,则B种商品购进(200-a)件.依题意,得0≤200-a≤3a解得50≤a≤200设所获利润为w元,则有w=10a+15(200-a)=-5a+3000∵-5<0,∵w随a的增大而减小.∵当a=50时,所获利润最大W最大=-5×50+3000=2750元.200-a=150.答:应购进A种商品50件,B种商品150件,可获得最大利润为2750元.分析:(1)设A 种商品销售x 件,B 种商品销售y 件,根据“销售A ,B 两种商品共100件,获利润1350元”列出二元一次方程组求解即可;(2)设A 种商品购进a 件,则B 种商品购进(200-a )件,根据“B 种商品的件数不多于A 种商品件数的3倍”列出不等式即可求得结果.25. 在社会主义新农村建设中,衢州某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式. (3)若该项工程由甲、乙两工程队一直合作施工,需几天完成? 答案: (1)乙工程队每天修公路120米; (2)y 甲=60x ,y 乙=120x-360;(3)该项工程由甲、乙两工程队一直合作施工,需9天完成.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组)解析:解答:(1)由图得:720÷(9-3)=120(米) 答:乙工程队每天修公路120米. (2)设y 乙=kx+b ,则⎩⎨⎧=+=+720903b k b k解得:⎩⎨⎧-==360120b k所以y 乙=120x-360, 当x=6时,y 乙=360, 设y 甲=k 1x ,∵y 乙与y 甲的交点是(6,360) ∵把(6,360)代入上式得: 360=6k 1,k 1=60, 所以y 甲=60x ;(3)当x=15时,y 甲=900,所以该公路总长为:720+900=1620(米), 设需x 天完成,由题意得: (120+60)x=1620, 解得:x=9,答:该项工程由甲、乙两工程队一直合作施工,需9天完成.分析:(1)根据图形用乙工程队修公路的总路程除以天数,即可得出乙工程队每天修公路的米数;(2)根据函数的图象运用待定系数法即可求出y 与x 之间的函数关系式;(3)先求出该公路总长,再设出需要x 天完成,根据题意列出方程组,求出x ,即可得出该项工程由甲、乙两工程队一直合作施工,需要的天数.。
第十九章一次函数19.3 课题学习选择方案●教学目标1.利用一次函数知识,根据实际问题背景建立一次函数模型.2.灵活运用变量关系建立一次函数模型并且选择最佳方案解决相关实际问题.●过程与方法1.让学生在探索过程中,体会“问题情境——建立模型——解释应用——回顾拓展”这一数学建模的基本思想,感受函数知识的应用价值.2.让学生结合自身的生活经历,模仿尝试解决一些身边的函数应用问题,体会数学与现实的密切联系,提高解决问题的能力,体会一次函数在分析和解决实际问题中的作用.●情感、态度与价值观1.通过对实际问题的数据关系的探索,使学生领会分类讨论的思想和善于总结的学习态度.2.通过小组讨论交流合作,培养学生的合作意识和探索精神;认识到函数与现实有密切关系,感受到数学的实际价值.●重点与难点【重点】建立一次函数模型解决实际问题.【难点】分类讨论的分析方法.●教学准备【教师准备】教学中出示的教学插图和例题.【学生准备】复习一次函数的知识.●新课导入:做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划是非常必要的.应用数学的知识和方法对各种方案进行比较分析,可以帮助我们清楚地认识各种方案,作出合理的选择.提问:你能说说生活中需要选择方案的例子吗?学生各抒己见,引出本节课要解决的问题如何选择上网收费方式的问题和租车问题.某单位需要用车,准备和一个体车主或一国有出租公司其中的一家签订合同,设汽车每月行驶x km,应付给个体车主的月租费是y1元,付给出租公司的月租费是y2元,y1,y2与x之间的函数关系是如图所示的两条直线.(1)每月行驶的路程在什么范围内时,租国有出租公司的出租车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家的车合算?学生观察图象,独立思考后,讨论交流.1.怎样选取上网收费方式思路一:(教材问题1)怎样选取上网收费方式?下表给出A,B,C三种上宽带网的收费方式:选取哪种方式能节省上网费?引导学生阅读教师给出的材料,并思考下列问题:(1)“选择哪种方式上网”的依据是什么?(2)方式A,B中,上网费由哪些部分组成的?方式C上网费是多少钱?学生通过阅读材料进行思考,交流老师提出的问题.教师解析:(1)“选择哪种方式上网”的依据是先确定三种方式的上网费分别是多少,费用最少的就是最佳方案.(2)方式A,B收费为:①当上网时间不超过规定时间时,上网费用=月使用费;②当上网时间超过规定时间时,上网费用=月使用费+超时费.方式C收费为:120元.追问:(1)你能用适当的方法表示出A,B,C三种方式的上网费用吗?(2)设上网时间为x h,上网费用为y元,你能用数学关系式表示y与x的关系吗?学生思考后,小组讨论,得出结论,老师适时引导和点拨.教师解析:方式A:当上网时间不超过25h时,上网费=30元;当上网时间超过25h时,上网费=30+超时费=30+0.05×60×(上网时间-25).方式A:当0≤x≤25时,y1=30;当x>25时,y1=30+0.05×60(x-25),即y1=3x-45.故y1=教师讲解A的方式后,让学生类似地写出B,C方式的收费关系式:方式B:y2=方式C:y3=120(x≥0).知上网费用随上网时间的变化而变化,并把这两个变量作为研究对象,引导学生最终把问题转化为一次函数问题.提问:用什么方法比较函数y1,y2,y3的大小呢?学生独立思考, 有的学生可能会用不等式或方程考虑,但发现由于y1,y2是分段函数,用不等式或方程比较麻烦,此时教师引导学生还可以借助函数图象来分析问题和解决问题.教师解析:(1)设上网时间为x h,方式A上网费用为y1元,方式B上网费用为y2元,方式C上网费用为y3元,则y1=y2=y3=120(x≥0).问题转化为比较y1,y2,y3的大小.(2)引导学生画出函数的图象:由函数图象可知:(1)函数y1=3x-45与函数y2=50的图象的交点横坐标满足:3x-45=50,故交点的横坐标为x=31,(2)函数y2=3x-100与函数y3=120的图象的交点横坐标满足:3x-100=120, 故交点的横坐标为x=73.由数形结合思想可知:当上网时间不超过31小时40分钟时,选择方式A最省钱;当上网时间为31小时40分钟至73小时20分钟时,选择方案B最省钱;当上网时间超过73小时20分钟时,选择方案C最省钱.引导学生写出详细的解答过程:解:设上网时间为x h,方式A上网费用为y1元,方式B上网费用为y2元,方式C上网费用为y3元,则y1=y2=y3=120(x≥0).(1)令y1=y2,即3x-45=50,解方程,得x=31.(2)令y2=y3,即3x-100=120,解方程,得x=73.画出函数的图象如下图:结合函数的图象可知:当上网时间不超过31小时40分时,选择方案A最省钱;当上网时间为31小时40分至73小时20分时,选择方案B最省钱;当上网时间超过73小时20分时,选择方案C最省钱.●课堂小结1.本节课学习了用一次函数解决实际问题的基本思路:2.本节课渗透的数学思想方法.(建立数学模型、数形结合、分类讨论)3.在选择方案时,往往需要从数学角度进行分析,涉及变量的问题常用到函数.解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.●布置作业【必做题】教材第105页活动1.【选做题】教材第105页活动2.●教学后记:。
教学设计课题课题学习选择方案授课人素养目标1.根据实际问题背景建立分段函数模型,体会数学分类讨论思想在解决实际问题中的应用2.灵活运用变量关系建立一次函数模型并选择最佳方案解决销售相关实际问题.3.体会“问题情境—建立模型—解释应用—回顾拓展”这一数学建模的基本思想,感受函数知识的应用价值.教学重点建立一次函数模型解决实际问题.教学难点函数建模思想的理解与应用.教学活动教学步骤师生活动活动一:创设情境,导入新课设计意图通过实际问题引出方案决策的主题. 【情境导入】做一件事情,有时有不同的实施方案.比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.应用数学的知识和方法对各种方案进行比较分析,可以帮助我们清楚地认识各种方案,作出理性的决策.(教材P102问题1)下表给出A,B,C三种上宽带网的收费方式.选取哪种方式能节省上网费?当我们面对不同的方案,怎样运用数学方法进行比较并作出合理的选择?这就是我们今天将要学习的内容.【教学建议】引导学生讨论,可指定学生回答.探究点运用一次函数的知识选择最佳方案1.对于活动一中的问题,我们按如下顺序进行探究.(1)哪种方式上网费是会变化的?哪种不变?A,B会变化,C不变(2)在A,B两种方式中,上网费由哪些部分组成?上网费=月使用费+超时费(3)影响超时费的变量是什么?上网时间(4)这三种方式中有一定最优惠的方式吗?答:没有一定最优惠的方式,与上网的时间有关. (5)设月上网时间为xh,方式A,B,C的收费金额分别为y1,y2,y3,请分别求出y1,y2,y3关于x的函数解析式,并画出函数图象.答:方式A:19.3 课题学习选择方案教学步骤师生活动设计意图自行选择自变量构建函数模型解决实际问题. 化简得y1=⎩⎪⎨⎪⎧30,3x-45,0≤x≤25,x>25.方式B:y2=化简,得y2=⎩⎪⎨⎪⎧50,3x-100,0≤x≤50,x>50.方式C:y3=120,x≥0.图象如图所示.(6)结合函数图象和解析式填空:当上网时间不超过3123h时,选择方式A最省钱;当上网时间超过3123h而不超过7313h时,选择方式B最省钱;当上网时间超过7313h时,选择方式C最省钱.2.阅读教材P103问题2,回答下列问题.(1)影响租车费用的因素有哪些?答:甲、乙两种车所租辆数.(2)汽车所租辆数又与哪些因素有关?答:与乘车人数有关.(3)如何由乘车人数确定租车辆数呢?答:234名学生和6名教师共240人,240÷45=513,240÷30=8.以发现对于上网时间有不同需求的人可以从中选择不同的收费方式,以达到省钱的目的.教师让学生体会通过分析变量间的关系,列出函数解析式,然后比较三个函数解析式或相应的图象,找出不同的上网时间范围内上【随堂训练】见《创优作业》“随堂小练”册子相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:选择最佳方案,往往可以用函数有关知识解决问题,你能说说建立函数模型的步骤和方法吗?【知识结构】【作业布置】《创优作业》主体本部分相应课时训练.解题方法:一、方案选取型问题的解题策略:1.若给定自变量的取值,则将自变量的值代入解析式,得到因变量的值,再进行选取;2.若给定因变量的取值,则将因变量的值代入解析式,得到自变量的值,再进行选取;3.若自变量、因变量均未给定取值:(1)方法一:可分别求出y 1<y 2,y 1=y 2,y 1>y 2的解集,再根据结果进行选取;(2)方法二:画出函数图象,求出交点坐标,再利用图象的上、下位置关系进行判断.二、方案设计型问题的解题策略:方案设计型问题一般是利润最大或费用最少问题,一般步骤如下: 1.根据题意求出函数解析式;2.由图象、题设信息列不等式(组)求得自变量的取值范围;3.利用一次函数的增减性确定利润最大或费用最少时自变量的值,从而设计出符合要求的方案.三、物资调运方案问题的解题策略:1.用表格或图示的方法,厘清数量关系;2.根据表格或图示中的数量关系列出函数解析式;3.根据题意确定自变量的取值范围;4.根据函数解析式及自变量的取值范围,结合一次函数的增减性,按题设要求确定调运方案.例某商店销售一种产品,该产品成本价为6元/件,售价为8元/件,销售人员将该产品一个月(30天)销售情况绘成如下图象,图中的折线ODE表示日销量y(单位:件)与销售时间x(单位:天)之间的函数关系,若线段DE表示的函数关系中,时间每增加1天,日销量减少5件.(1)第25天的日销量是325件,这天销售利润是650元;(2)求y关于x的函数解析式,并写出x的取值范围;(3)日销售利润不低于640元的共有多少天?销售期间日销售利润最大是多少元?解:(1)解析:340-(25-22)×5=325(件),(8-6)×325=650(元),故答案为325,650.(2)设直线OD的解析式为y=kx.将(17,340)代入y=kx,得17k=340,解得k=20.所以直线OD的解析式为y =20x +n ,得⎩⎪⎨⎪⎧22m +n =340,25m +n =325,解得⎩⎪⎨⎪⎧m =-5,n =450.所以直线DE 的解析式为y =-5x +450.联立⎩⎪⎨⎪⎧y =20x ,y =-5x +450,解得⎩⎪⎨⎪⎧x =18,y =360.所以点D 的坐标为(18,360).所以y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧20x ,0≤x≤18,-5x +450,18<x≤30.(3)640÷(8-6)=320(件),当y =320时,由20x =320或-5x +450=320,解得x =16或x =26,所以26-16+1=11(天),所以日销售利润不低于640元的共有11天.因为折线ODE 的最高点D 的坐标为(18,360),360×2=720(元),所以当x =18时,日销售利润最大,最大为720元.例1 某校组织师生参加夏令营活动,现准备租用A ,B 两种型号的客车(每种型号的客车至少租用一辆).A 型车每辆租金为500元,B 型车每辆租金为600元.若5辆A 型车和2辆B 型车坐满后共载客310人;3辆A 型车和4辆B 型车坐满后共载客340人.(1)每辆A 型车、B 型车坐满后分别载客多少人?(2)若该校计划租用A 型和B 型两种客车共10辆,总租金不高于5 500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A ,B 两种客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300 km ,甲车从学校出发0.5 h 后,乙车才从学校出发,但乙车却比甲车早0.5 h 到达目的地.如图是两车离开学校的路程s(单位:km)与甲车行驶的时间t(单位:h)之间的函数图象.根据图象信息,求甲、乙两车第一次相遇后,t 为何值时两车相距25 km.分析:(1)设每辆A 型车、B 型车坐满后分别载客x 人、y 人,由题意列出二元一次方程组,解方程组即可求解;(2)设租用A 型车m 辆,则租用B 型车(10-m)辆,由题意列出一元一次不等式组,解不等式组,求整数解即可得出m 可取的值,设总租金为w 元,根据一次函数的增减性即可求解;(3)设s 甲=kt ,s 乙=k 1t +b ,由题意可知,甲车的函数图象经过点(4,300),乙车的函数图象经过(0.5,0),(3.5,300)两点.求出函数解析式,进而即可求解.解:(1)设每辆A 型车、B 型车坐满后分别载客x 人、y 人.由题意得⎩⎪⎨⎪⎧5x +2y =310,3x +4y =340,解得⎩⎪⎨⎪⎧x =40,y =55.答:每辆A 型车、B 型车坐满后分别载客40人、55人.(2)设租用A 型车m 辆,则租用B 型车(10-m)辆.由题意得⎩⎪⎨⎪⎧500m +600(10-m )≤5 500,40m +55(10-m )≥420,解得5≤m≤823. 因为m 取正整数,所以m 可以取5,6,7,8.所以共有4种租车方案. 设总租金为w 元,则w =500m +600(10-m)=-100m +6 000.因为-100<0,所以w随m的增大而减小,所以当m=8时,w最小.所以租8辆A型车,2辆B型车最省钱.(3)设s甲=kt,s乙=k1t+b.由题意可知,甲车的函数图象经过点(4,300),乙车的函数图象经过(0.5,0),(3.5,300)两点.所以易得s甲=75t,s乙=100t-50.因为甲、乙两车第一次相遇后相距25 km,所以s乙-s甲=25,即100t-50-75t=25,解得t=3,或300-75t=25,解得t=113.所以,在甲、乙两车第一次相遇后,t=3或113时两车相距25 km.例2 (教材P109复习题T15拓展)A城有肥料200 t,B城有肥料300 t.现要把这些肥料全部运往C,D两乡.从A城往C,D两乡运肥料的费用分别为20元/t和25元/t;从B城往C,D两乡运肥料的费用分别为15元/t和24元/t.现C乡需要肥料240 t,D乡需要肥料260 t,设A城运往C乡的肥料为xt,A,B两城往C乡运肥料的总费用为y1元,A,B两城往D乡运肥料的总费用为y2元.(1)分别写出y1,y2关于x的函数解析式,并指出自变量的取值范围;(2)怎样调运可使总运费最少?请求出最少总运费;(3)由于从B城到D乡开辟了一条新的公路,使B城到D乡的运输费用每吨减少了a元(2≤a≤8),现在又该怎样调运才能使总运费最少?请求出最少总运费(用含a的式子表示).分析:(1)从A,B两城分别运往C,D 两乡的肥料,不得大于两城各自的肥料储量,且不能小于0,即可得到取值范围;(2)结合(1)中的取值范围与函数增减性求解;(3)a的取值可能影响到函数的增减性,需要对a的取值进行分类讨论并结合自变量的取值范围来确定最值.解:(1)根据题意,得y1=20x+15(240-x),化简得y1=5x+3 600,0≤x≤200;y2=25(200-x)+24[300-(240-x)],化简得y2=-x+6 440,0≤x≤200.(2)设总运费为y元.根据题意,得y=y1+y2,所以y=5x+3 600+(-x+6 440)=4x+10 040,即y关于x的函数解析式为y=4x+10 040.因为4>0,所以y随x的增大而增大,所以当x=0时,y有最小值,最小值为10 040.所以从A城运往D乡200 t,从B城运往C乡240 t,从B城运往D 乡60 t,此时总运费最少,最少总运费为10 040元.(3)设开辟新公路后的总运费为y′元.根据题意,得y′=20x+15(240-x)+25(200-x)+(24-a)[300-(240-x)],整理,得y′=(4-a)x+10 040-60a,0≤x≤200.因为2≤a≤8,所以分以下几种情况讨论:①当4-a>0,即2≤a<4时,y′随x的增大而增大,所以当x=0时,y′有最小值,最小值为10 040-60a;②当4-a<0,即4<a≤8时,y′随x的增大而减小,所以当x=200时,y′有最小值,最小值为10 840-260a;③当4-a=0,即a=4时,y′=9 800.综上所述,当2≤a<4时,从A城运往D乡200 t,从B城运往C乡240 t,从B城运往D乡60 t,此时总运费最少,最少总运费为(10 040-60a)元;当4<a≤8时,从A城运往C乡200 t,从B城运往C乡40 t,从B城运往D乡260 t,此时总运费最少,最少总运费为(10 840-260a)元;当a=4时,在满足实际的情况下可自由调运,总运费恒定不变,为9 800元.。
19.3课题学习选择方案
学习目标
1.会用一次函数知识解决方案选择问题,能进行解决问题过程的反思,总结解决问题的方法.(重点)
2.能从不同角度思考问题,优化解决问题的方法.(难点)
学习过程
一、合作探究
某商店试销一种成本为10元的文具.经试销发现,每天销售件数y(件)是每件销售价格x(元)的一次函数,且当每件按15元的价格销售时,每天能卖出50件;当每件按20元的价格销售时,每天能卖出40件.
(1)试求y关于x的函数解析式(不用写出定义域);
(2)如果每天要通过销售该种文具获得450元的利润,那么该种文具每件的销售价格应该定为多少元?(不考虑其他因素)
二、跟踪练习
某校运动会需购买A,B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A,B两种奖品单价各是多少元?
(2)学校计划购买A,B两种奖品共100件,购买费用不超过1 150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数解析式,求出自变量m的取值范围,并确定最少费用W的值.
三、变化演练
某公司市场营销部的某营销员的个人月收入与该营销员每月的销售量成一次函数关系,其图象如图所示.根据图象提供的信息,解答下列问题:
(1)求营销员的个人月收入y元与该营销员每月的销售量x万件(x≥0)之间的函数解析式;
(2)若两个月内该营销员的销售量从2万件猛增到5万件,月收入两个月大幅度增长,且连续两个月的月收入的增长率是相同的,试求这个增长率( ≈1.414,保留到百分位);
四、达标检测
1.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P 的两条线段l1,l2分别表示小敏、小聪离B地距离y km与已用时间x h之间的关系,则小敏、小聪行走速度分别是()
A.3 km/h和4 km/h
B.3 km/h和3 km/h
C.4 km/h和4 km/h
D.4 km/h和3 km/h
2.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(-2,0),且两直线与y轴围城的三角形面积为4,那么b1-b2等于.
第1题图
第2题图
3.如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.
(1)填空:A,B两地相距千米;
(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数解析式;
(3)客、货两车何时相遇?
图1
图2
4.已知某服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.
(1)求y(元)与x(套)之间的函数解析式,并求出自变量的取值范围.
(2)当生产M型号的时装多少套时,能使该厂所获利润最大?最大利润是多少?
参考答案
一、合作探究
解:(1)由题意,知:当x=15时,y=50;当x=20时,y=40
设所求一次函数解析式为y=kx+b.
由题意得 0
0 0
解得
∴所求的y关于x的函数解析式为y=-2x+80.
(2)由题意,可得:(x-10)(-2x+80)=450,
解得:x1=x2=25.
答:该种文具每件的销售价格应该定为25元.
二、跟踪练习
解:(1)设A,B两种奖品单价分别为x元、y元,由题意,得
解得: 0
答:A,B两种奖品单价分别为10元、15元.
(2)由题意,得W=10m+15(100-m)=10m+1 500-15m=1 500-5m,
由 00 0
00)
解得:70≤m≤7 .由一次函数W=1 500-5m可知,W随m增大而减小,
∴当m=75时,W最小,最小为W=1 500-5×75=1 125.
答:当购买A种奖品75件,B种奖品25件时,费用W最小,最小为1 125元.
三、变化演练
解:(1)设函数解析式为y=kx+b,
将(0,800)、(2,2 400)代入得到:
00
00解得
00
00
∴函数解析式为y=800x+800.
(2)当x=5时,y=800×5+800=4 800,
设这个增长率为a,由题意有2 400(1+a)2=4 800,
解得a1=-1+,a2=-1-(舍),
a=-1+ ≈0.414≈0.41=41%,
∴这个增长率为41%.
四、达标检测
1.D解析:小敏行走的速度为4.8÷(
2.8-1.6)=4(km/h),小聪行走的速度为
4.8÷1.6=3(km/h).故选D.
2.4解析:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y
轴交于C,则OC=-b2,∵△ABC的面积为4,∴OA·OB+OA·OC=4,∴×2b1+×2(-b2)=4,解
得:b1-b2=4.故答案为4.
3.解:(1)填空:A,B两地相距420千米;
(2)由图可知货车的速度为60÷2=30千米/小时,货车到达A地一共需要2+360÷30=14小时,
设y2=kx+b,代入点(2,0),(14,360)得0
解得
所以y2=30x-60;
(3)设y1=mx+n,代入点(6,0),(0,360)得
解得
所以y1=-60x+360.
由y1=y2得30x-60=-60x+360解得x=.
答:客、货两车经过小时相遇.
4.解:(1)y=50x+45(80-x)=5x+3 600.
∵两种型号的时装共用A种布料1.1x+0.6(80-x)≤70
共用B种布料0.4x+0.9(80-x)≤ 解得 0≤x≤ .
而x为整数,∴x=40,41,42,43,44,∴y与x的函数解析式是y=5x+3 600(x=40,41,42,43,44).
(2)∵y随x的增大而增大,∴当x=44时,y最大=3 820,
即生产M型号的时装44套时,该厂所获利润最大,最大利润是3 820元.。