《数学建模》04秋模拟试题参考答案
- 格式:doc
- 大小:127.50 KB
- 文档页数:4
数学建模部分课后习题解答1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解:模型假设(1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。
这个假设相当于给出了椅子能放稳的必要条件(3) 椅子在任何位置至少有三只脚同时着地。
为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。
因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
模型建立在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。
首先,引入合适的变量来表示椅子位置的挪动。
生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。
然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。
于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。
注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。
把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置。
为此,在平面上建立直角坐标系来解决问题。
设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。
椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。
其次,把椅脚是否着地用数学形式表示出来。
当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。
由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。
由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。
1为调查大学中某一年级学生参加外语考试作弊的比例,用随机问答法进行调查。
设计的两个问题为:问题1:你在这次考试中有作弊行为;问题2:你在这次考试中无作弊行为。
设计的题号卡共100张,其中75张标有数字1,25张标有数字2。
请200名学生根据任意抽得的卡上的标号对问题1或问题2用“是”或“否”回答(抽出的卡再放回),结果有60名回答为“是”,则该年级学生外语考试作弊的比例约为[ 单选题:6 分]A 1%B 5%C 10%D 15%试题解析您的答案:C回答正确2如果原料钢管的长度为19米,当客户的需求为4米、6米、8米有几种合理的切割模式?[ 单选题:6 分]A 6B 7C 8D 不确定试题解析您的答案:B回答正确3原料钢管的长度为19米,客户的需求为4米50根、6米20根、8米15根,则需要的最少原料钢管数为[ 单选题:6 分]A 24B 25C 26D 27试题解析您的答案:D回答正确4在合理切割模式下,余料的长度应该[ 单选题:6 分]A 小于客户需要钢管的最小长度B 小于客户需要钢管的最大长度C 大于客户需要钢管的最小长度D 大于客户需要钢管的大长度试题解析您的答案:A回答正确5在敏感问题调查中,为了减轻被调查者的抵触情绪,瓦纳设计了一种随机问答法,这种方法需要向调查者提几个问题[ 单选题:6 分]A 1B 2C 3D 4试题解析您的答案:B回答正确6钢管下料问题1中,客户需求的钢管米数为[ 多选题:8分 ]A 4B 6C 8D 10试题解析您的答案:ABC回答正确7钢管下料问题2中,在客户增加了需求之后,客户需求的钢管米数为[ 多选题:8分 ]A 4B 5C 6D 8试题解析您的答案:ABCD回答正确8利用瓦纳的随机问答法进行敏感问题调查时,调查结果与下列哪些量有关[ 多选题:8分 ]A 调查的人数B 回答“是”的人数C 标有不同数字的题号卡所占的比例D 进行调查的时间试题解析您的答案:ABC回答正确9钢管下料问题中,对于大规模问题,用模型的约束条件界定合理模式时采用的做法是[ 多选题:8分 ]A 增加约束B 缩小可行域C 减小约束D 增大可行域试题解析您的答案:AB回答正确10钢管下料问题中,在合理切割模式下,余料的米数可以为[ 多选题:8分 ]A 1B 2C 3D 4试题解析您的答案:ABC回答正确11LINGO软件只能求解整数线性规划问题[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确12敏感问题调查时,直接向被调查者提问该问题就可以得到真实的结果[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确13钢管下料时,不同的切割标准对应的切割方案也不同[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确14用户的需求种类越多,对应的合理切割模式也越多[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确15利用瓦纳的随机问答法进行敏感问题调查时,标有数字1和数字2的题号卡的数量必须相等[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确1市场经济中,若供大于求,则下阶段会出现?[ 单选题:6 分]A 价格上涨B 价格下降C 没有变化D 供求平衡试题解析您的答案:B回答正确2若有10个工作台,传送带上有40个挂钩,稳态情况下,一个周期内运走的产品数占总产品数的比例为?[ 单选题:6 分]A 25%B 50%C 89.4%D 100%试题解析您的答案:C回答正确3市场经济中,生产者管理水平提高会导致?[ 单选题:6 分]A 平衡点的稳定条件放宽B 平衡点的稳定条件收紧C 没有变化D 市场震荡加剧试题解析您的答案:A回答正确4甲乙丙三系人数分别为103, 63, 34, 总共21个代表席位,按Q值方法进行分配,丙系分得的席位数为?[ 单选题:6 分]A 4B 3C 5D 不确定试题解析您的答案:A回答正确5甲乙丙三系人数分别为103, 63, 34, 总共20个代表席位,按照比例加惯例的方法,甲系分得的席位数为?[ 单选题:6 分]A 9B 10C 11D 不确定试题解析您的答案:B回答正确6若a表示消费者对需求的敏感程度,b表示生产者对价格的敏感程度,则下列说法中正确的是[ 多选题:8分 ]A a越小越有利于经济稳定B a越大越有利于经济稳定C b越小越有利于经济稳定D b越大越有利于经济稳定试题解析您的答案:AC回答正确7市场经济中的蛛网模型主要研究?[ 多选题:8分 ]A 商品数量与价格的变化规律B 商品数量与价格的振荡在什么条件下趋向稳定C 生产者管理水平对平衡点稳定性的影响D 当不稳定时政府能采取什么干预手段使之稳定试题解析您的答案:ABCD回答正确8提高传送带效率的途径有?[ 多选题:8分 ]A 增加工作台数B 减少工作台数C 增加挂钩数D 减少挂钩数试题解析您的答案:BC回答正确9传送系统的效率模型中,主要研究?[ 多选题:8分 ]A 衡量传送带效率的指标B 提高传送带效率的途径C 效率与工作台数量的关系D 效率与挂钩数量的关系试题解析您的答案:ABCD回答正确10席位分配的理想化准则应满足?[ 多选题:8分 ]A 每方分得的席位数介于应得的席位数向上取整和向下取整之间B 当总席位增加时,每方分得的席位数都不会减少C 每方分得的席位数应该四舍五入D 随机分配试题解析您的答案:AB回答正确11席位分配时,Q值方法符合理想化准则的两个条件[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确12席位分配时,比例加惯例方法符合理想化准则的两个条件[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确13在市场经济中,供求关系是一直保持平衡的[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确14挂钩数量越多,传送带的效率就越高[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确15席位分配时,比例加惯例方法和Q值方法各有优缺点[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确1A、B两家电视机厂竞争的二人零和纯策略博弈模型中,A厂应生产的电视机型号为?[ 单选题:6 分]A 1B 2C 3D 4试题解析您的答案:B回答正确2二人零和纯策略博弈求解时采用的原则是?[ 单选题:6 分]A 考虑到最坏的可能性的基础上争取最好结果B 考虑到最好的可能性的基础上争取最好结果C 考虑到最坏的可能性的基础上争取最坏结果D 考虑到最好的可能性的基础上争取最坏结果试题解析您的答案:A回答正确3A、B两家电视机厂竞争的二人零和纯策略博弈模型中,B厂应生产的电视机型号为?[ 单选题:6 分]A 1B 2C 3D 不确定试题解析您的答案:B回答正确41981年美国国会表决里根总统年度财政预算时,民主党应该采取的策略是?[ 单选题:6 分]A 大体支持里根B 反对里根C 完全支持里根D 弃权试题解析您的答案:A回答正确51981年美国国会表决里根总统年度财政预算时,共和党应该采取的策略是?[ 单选题:6 分]A 大体支持里根B 反对里根C 完全支持里根D 与民主党妥协试题解析您的答案:C回答正确6二人零和纯策略博弈问题中,利用最大最小原则(最小最大原则)对A的赢利矩阵进行操作,得到的最优解aij满足?[ 多选题:8分 ]A aij是它所在行中的最小值B aij是它所在列中的最小值C aij是它所在行中的最大值D aij是它所在列中的最大值试题解析您的答案:AD回答正确7求纳什均衡点时,采用的方法是[ 多选题:8分 ]A 对赢利表中的赢利对的第一个元素按列求出最大值,将最大元素标上“*”B 对赢利对的第二个元素按行求出最大值,将最大元素标上“*”C 两个元素同时标有“*”号的即为纳什均衡点D 一个元素标有“*”号的即为纳什均衡点试题解析您的答案:ABC回答正确8二人非零和纯策略博弈模型的求解原则有?[ 多选题:8分 ]A 理性原则B 无悔原则C 自由原则D 随机原则试题解析您的答案:AB回答正确9本节讲述的矩阵博弈模型有?[ 多选题:8分 ]A 二人零和纯策略博弈B 二人非零和纯策略博弈C 三人零和纯策略博弈D 三人非零和纯策略博弈试题解析您的答案:AB回答正确10二人零和纯策略博弈的求解时,采用的原则可以称为?[ 多选题:8分 ]A 最大最小原则B 最小最大原则C 最大最大原则D 最小最小原则试题解析您的答案:AB回答正确11二人非零和纯策略博弈模型中,对应任意的赢利矩阵,纳什均衡点必然存在[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确12二人零和纯策略博弈模型中,鞍点对应的策略符合最小最大原则[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确13二人非零和纯策略博弈模型中,无悔原则和理性原则是一回事[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确14二人零和纯策略博弈模型中,一方之所失即为另外一方之所得[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确15二人非零和纯策略博弈模型中,一方之所失即为另外一方之所得[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确1多阶段决策时,考虑的原则是?[ 单选题:6 分]A 风险越低越好B 风险越高越好C 期望收益越大越好D 决策过程越简单越好试题解析您的答案:C回答正确2随机事件是?[ 单选题:6 分]A 在一定条件下可能发生也可能不发生的事件B 在一定条件下一定发生的事件C 在一定条件下不可能发生的事件D 从来没发生过的事件试题解析您的答案:A回答正确3有一大批产品,其中15%为一等品,75%为二等品,10%为三等品.一、二、三等产品的单价分别为10元8元和6元.有人要采购一批这种产品,但来不及检验,商品的价格可定为[ 单选题:6 分]A 10元B 8元C 6元D 8.1元试题解析您的答案:D回答正确4口袋中有大小重量相同的红黄球各1个,黑球2个,任摸一球,摸到红球的概率为?[ 单选题:6 分]A 0.25B 0.5C 0.75D 1试题解析您的答案:A回答正确5某船主要对下月渔船是否出海做出决策。
《数学建模》复习资料参考答案一、不定项选择1、建模能力包括 A、B、C、D 。
A、理解实际问题的能力B、抽象分析问题的能力C、运用工具知识的能力D、试验调试的能力2、按照模型的应用领域分的模型有 A、E 。
A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型3、对黑箱系统一般采用的建模方法是 C 。
A、机理分析法B、几何法C、系统辩识法D、代数法4、一个理想的数学模型需满足 A、B 。
A、模型的适用性B、模型的可靠性C、模型的复杂性D、模型的美观性5、按照建立模型的数学方法分的模型有 B、C、D 。
A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型6、下列说法正确的有 A、C 。
A、评价模型优劣的唯一标准是实践检验。
B、模型误差是可以避免的。
C、生态模型属于按模型的应用领域分的模型。
D、白箱模型意味着人们对原型的内在机理了解不清楚。
7、力学中把 A 的量纲作为基本量纲。
A、质量、长度、时间B、密度、时间、长度C、质量、密度D、时间、长度8、下列说法错误的有 B 。
A、评价模型优劣的唯一标准是实践检验。
B、模型误差是可以避免的。
C、生态模型属于按模型的应用领域分的模型。
D、白箱模型意味着人们对原型的内在机理了解清楚。
9、建立数学模型的方法和步骤有ABCDE。
A、模型假设。
B、模型求解。
C、模型构成。
D、模型建立。
E、模型分析。
10、模型按照替代原型的方式可以简单分为AB。
A、形象模型B、抽象模型C、生态模型D、白箱模型11、形象模型可以具体分为ABC。
A.直观模型B、物理模型C、分子结构模型等;12、抽象模可以具体分为ABC。
A 思维模型B符号模型C数学模型D分子结构模型13建模的一般原则为ABCD。
A目的性原则B简明性原则C真实性原则D全面性原则;14 模型的结构大致分为ABC。
A、灰箱模型B、白箱模型C、黑箱模型15A、建立递阶层次结构模型;B、构造出各层次中的所有判断矩阵;C、层次单排序及一致性检验;D、层次总排序及一致性检验。
《数学建模》试卷 第 1 页 共 4 页《数学建模》试题一、填空题(每题5分,满分20分):1. 设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为 .2. 设年利率为0.05,则10年后20万元的现值按照复利计算应为 .3. 所谓数学建模的五步建模法是指下列五个基本步骤,按一般顺序可以写出为 .4. 设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 .二、分析判断题(每题10分,满分20分):1. 从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决。
2. 某公司经营的一种产品拥有四个客户,由公司所辖三个工厂生产,每月产量分别为3000,5000和4000件.公司已承诺下月出售4000件给客户1,出售3000件给客户2以及至少1000件给客户3,另外客户3和4都想尽可能多购剩下的件数.已知各厂运销一件产品给客户可得到的净利润如表1所示,问该公司应如何拟订运销方案,才能在履行诺言的前提下获利最多?表1单位:元/件上述问题可否转化为运输模型?若可以则转化之(只需写出其产销平衡运价表即可),否则说明理由。
三、计算题(每题20分,满分40分):1. 有一批货物要从厂家A 运往三个销售地B 、C 、D ,中间可经过9个转运站.,,,,,,,,321321321G G G F F F E E E 从A 到321,,E E E 的运价依次为3、8、7;从1E 到21,F F 的运价为4、3;从2E 到321,,F F F 的运价为2、8、4;从3E 到32,F F 的运价为7、6;从1F 到21,G G 的运价为10、12;从2F 到321,,G G G 的运价为13、5、7;从3F 到32,G G 的运价为6、8;从密线封层次报读学校专业姓名317《数学建模》试卷 第 2 页 共 4 页1G 到C B ,的运价为9、10;从2G 到D C B ,,的运价为5、10、15;从3G 到D C ,的运价为8、7。
数学建模及应用试题汇总1. 假如你站在崖顶且身上带着一只具有跑表功能的计算器, 你也会出于好奇心想用扔下一 块石头听回声的方法来估计山崖的高度,假定你能准确地测定时间,你又怎样来推算山 崖的高度呢,请你分析一下这一问题。
2. 建立理想单摆运动满足的微分方程,并得出理想单摆运动的周期公式。
3. 一根长度为 l 的金属杆被水平地夹在两端垂直的支架上,一端的温度恒为 T1, 另一端温 度恒为 T2, (T1、T2 为常数, T1> T2)。
金属杆横截面积为 A ,截面的边界长度为 B ,它 完全暴露在空气中,空气温度为 T3, (T3< , T3 为常数), 导热系数为α,试求金属杆 上的温度分布 T(x), (设金属杆的导热 2为λ)4. 甲乙两队进行一场抢答竞赛,竞赛规则规定:开始时每队各记 2 分,抢答题开始后,如 甲取胜则甲 加 1 分而乙减 1 分,反之则乙加 1 分甲减 1 分,(每题必需决出胜负 )。
规 则还规定,当其中一方的得分达 到 4 分时,竞赛结束。
现希望知道:(1)甲队获胜的概率有多大?(2)竞赛从开始到结束,平均转移的次数为多少?(3)甲获得 1 、2、3 分的平均次数是多少?5. 由于指派问题的特殊性, 又存在着由匈牙利数学家提出的更为简便的解法——匈牙利算 法。
当系数矩阵为下式,求解指派问题。
「16 15 19 22]C =L17 19 22 16 」6. 在遥远的地方有一位酋长,他想把三个女儿嫁出去。
假定三个女儿为 A 、B 、C , 三位求 婚者为 X 、Y 、Z 。
每位求婚者对 A 、B 、C 愿出的财礼数视其对她们的喜欢程度而定: A B C x 「 3 5 26]问酋长应如何嫁女,才能获得最多的财礼(从总体上讲,他的女婿最喜欢他的女儿。
7. 某工程按正常速度施工时,若无坏天气影响可确保在 30 天内按期完工。
但根据天气预 报, 15 天后天气肯定变坏。
09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。
当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),()f θ,()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。
在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3然后保存即可2 编写函数M 文件SQRT.M;函数 x=567.889与0.0368处的近似值(保留有()f x =效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2 x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算的值,其中a=2.3,b=4.89.()f x >> syms a b >> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans = 2.08644用matlab 计算函数在x=处的值.()f x =3π>> syms x >> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans = 12.09625用matlab 计算函数在x=1.23处的值.()arctan f x x =+>> syms x >> x=1.23;>> atan(x)+sqrt(log(x+1))ans = 1.78376 用matlab 计算函数在x=-2.1处的值.()()f x f x ==>> syms x >> x=-2.1;>> 2-3^x*log(abs(x))ans =1.92617 用蓝色.点连线.叉号绘制函数在[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x);>> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数在上步长为0.2的图像.ln 10y x =+[20,15]-->> syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>> plot(x,y,'mx-')ln 10[20,y x =+--9 用红色.加号连线 虚线绘制函数在[-10,10]上步长为0.2的图像.sin(22x y π=->> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数在上步长为0.2的图像.sin(2)3y x π=+[0,4]πsin(2)sin()[0,4]322x y x y πππ=+=->> syms x y >> x=0:0.2:4*pi;y=sin(2*x+pi/3);>> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=与.y =>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x));>> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数这三条曲线的图标,并要求用两种方法加234,,y x y x y x ===各种标注.234,,y x y x y x ===>> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线的3维图像2sin x t y t z t ⎧=⎪=⎨⎪=⎩>> syms x y t z >> t=0:1/50:2*pi;>> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面在上的3维图像(1cos )cos (1cos )sin sin x u v y u v z u =+⎧⎪=+⎨⎪=⎩(0,2)(0,2)ππ⨯>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u);>> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right') ans = 216 求极限1201lim (3x x +→>> syms y x >> y=(1/3)^(1/(2*x));>> limit(y,x,0,'right') ans = 017求极限lim x >> syms x y >> y=(x*cos(x))/sqrt(1+x^3);>> limit(y,x,+inf) ans = 018 求极限21lim (1x x x x →+∞+->> syms x y >> y=((x+1)/(x-1))^(2*x);>> limit(y,x,+inf) ans = exp(4)19 求极限01cos 2lim sin x xx x →->> syms x y >> y=(1-cos(2*x))/(x*sin(x));>> limit(y,x,0) ans = 220 求极限 x →>> syms x y >> y=(sqrt(1+x)-sqrt(1-x))/x;>> limit(y,x,0) ans = 121 求极限2221lim 2x x x x x →+∞++-+>> syms x y >> y=(x^2+2*x+1)/(x^2-x+2);>> limit(y,x,+inf) ans = 122 求函数y=的导数5(21)arctan x x -+>> syms x y >> y=(2*x-1)^5+atan(x);>> diff(y) ans = 10*(2*x - 1)^4 + 1/(x^2 + 1)23 求函数y=的导数2tan 1x x y x=+>> syms y x>> y=(x*tan(x))/(1+x^2);>> diff(y)ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数的导数3tan x y e x -=>> syms y x >> y=exp^(-3*x)*tan(x)>> y=exp(-3*x)*tan(x) y = exp(-3*x)*tan(x) >> diff(y) ans = exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x)25 求函数y=在x=1的导数22ln sin 2x x π+>> syms x y >> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3 >> syms x y >> y=2*log(x)+sin(pi*x/2)^2;>> dxdy=diff(y) dxdy = 2/x + pi*cos((pi*x)/2)*sin((pi*x)/2)zhi=subs(dxdy,1)zhi = 226 求函数y=的二阶导数01cos 2lim sin x x x x →-11x x-+>> syms x y>> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数的导数;>> syms x y >> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2;>> diff(y) ans = (((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x - 1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间()内求函数的最值.,-∞+∞43()341f x x x =-+>> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaN y = NaN >> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf)x = NaN y = NaN29在区间(-1,5)内求函数发的最值.()(f x x =->> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x =0.3750y = -0.3470>> >> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x = 4.9999y = -10.505930 求不定积分(ln 32sin )x x dx -⎰(ln 32sin )x x dx -⎰>> syms x y >> y=log(3*x)-2*sin(x);>> int(y) ans = 2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ⎰>> syms x y>> y=exp(x)*sin(x)^2;>> int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分 >> syms x y >> y=x*atan(x)/(1+x)^0.5;>> int(y)Warning: Explicit integral could not be found. ans = int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x e dx --⎰>> syms x y >> y=1/exp(x^2)*(2*x-cos(x));>> int(y)Warning: Explicit integral could not be found. ans = int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分10(32)xe x dx -+⎰>> syms x y >> y=exp(-x)*(3*x+2);>> int(y,0,1) ans = 5 - 8*exp(-1)10(32)x e x dx -+⎰35.计算定积分0x →120(1)cos x arc xdx+⎰>> syms y x>> y=(x^2+1)*acos(x);>> int(y,0,1)ans =11/936.计算定积分10cos ln(1)x x dx +⎰>> syms x y >> y=(cos(x)*log(x+1));>> int(y,0,1)Warning: Explicit integral could not be found. ans = int(log(x + 1)*cos(x), x == 0..1)37计算广义积分;2122x x dx +∞++-∞⎰>> syms y x >> y=(1/(x^2+2*x+2));>> int(y,-inf,inf) ans = pi 38.计算广义积分;20x dx x e +∞-⎰>> syms x y>> y=x^2*exp(-x);>> int(y,0,+inf)ans =2。
数学建模模拟试题及答案一、填空题(每题 5 分,共 20 分)1.一个连通图能够一笔画出的充分必要条件是.2. 设银行的年利率为 0.2,则五年后的一百万元相当于现在的万元.3. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:(1) 参加展览会的人数n; (2)气温T 超过10o C;(3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为 .4. 如图一是一个邮路,邮递员从邮局 A 出发走遍所有 A长方形街路后再返回邮局 .若每个小长方形街路的边长横向均为 1km,纵向均为 2km,则他至少要走 km .二、分析判断题(每题 10 分,共 20 分)1. 有一大堆油腻的盘子和一盆热的洗涤剂水。
为尽量图一多洗干净盘子,有哪些因素应予以考虑?试至少列出四种。
2. 某种疾病每年新发生 1000 例,患者中有一半当年可治愈 .若 2000 年底时有1200 个病人,到 2005 年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向 2000 人,但不会达到 2000 人,试判断这个说法的正确性 .三、计算题(每题 20 分,共 40 分)1. 某工厂计划用两种原材料A, B 生产甲、乙两种产品,两种原材料的最高供应量依次为 22 和 20 个单位;每单位产品甲需用两种原材料依次为 1 、1 个单位,产值为 3 (百元);乙的需要量依次为 3、1 个单位,产值为 9 (百元);又根据市场预测,产品乙的市场需求量最多为 6 个单位,而甲、乙两种产品的需求比不超过 5: 2,试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由 .(2) 原材料的利用情况 .2. 两个水厂A1 , A2将自来水供应三个小区B1 , B2 , B3 , 每天各水厂的供应量与各小区的需求量以及各水厂调运到各小区的供水单价见下表 .试安排供水方案,使总供水费最小?四、 综合应用题(本题 20 分)某水库建有 10 个泄洪闸,现在水库的水位已经超过安全线,上游河水还在不断地流入 水库.为了防洪,须调节泄洪速度 .经测算,若打开一个泄洪闸, 30 个小时水位降至安全线, 若打开两个泄洪闸, 10 个小时水位降落至安全线 .现在,抗洪指挥部要求在 3 个小时内将水 位降至安全线以下,问至少要同时打开几个闸门?试组建数学模型给予解决 .注:本题要求按照五步建模法给出全过程 .小区 单价/元水厂A1A供应量 / t170B34B11 07 1B26数学建模 06 春试题模拟试题参考解答一、填空题(每题 5 分,共 20 分)1. 奇数顶点个数是 0 或 2;2. 约 40.1876 ;3. N = Kn(T10) / p, (T > 10 0 C), K 是比例常数; 4. 42.二、分析判断题(每题 10 分,共 20 分)1. 解: 问题与盘子、水和温度等因素直接相关,故有相关因素:盘子的油腻程度,盘子的温度,盘子的尺寸大小;洗涤剂水的温度、浓度; 刷洗地点 的温度等.注:列出的因素不足四个,每缺一个扣 2.5 分。
2004数学建模试题及答案1.设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。
解:设Pn 表示t=n 时的市场价格,由供求平衡可知: )()(1n n p f p =-ϕ 9431+-=+-n n kp p即: kp k p n n 531+-=-经递推有:kk p kk k k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。
某植物园的植物基因型为AA 、Aa 、aa ,人们计划用AA 型植物与每种基 因型植物相结合的方案培育后代(遗传方式为常染色体遗传),经过若干代后,这种植物后代的三种基因型分布将出现什么情形?总体趋势如何?依题意设未杂交时aa 、Aa 、AA 的分布分别为000,,a c b ,杂交n 代后分别为an bn cn (向为白分手)由遗传学原理有: ⎪⎪⎪⎩⎪⎪⎪⎨⎧++⋅=⋅++=⋅+⋅+⋅=---------111111111210021000n n n n n n n n n n n n cb ac c b a b c b a a设向量Tn n n n c b a x )..(= 1-⋅=n n X M x 式中 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=12100211000M递推可得:0X M X n n ⋅=对M 矩阵进行相似对角化后可得: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ100021000其相似对角阵1111012001-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=p p 从而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⋅Λ=-111012001)21(111012001101n n n p p M ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=----1)21(1)21(10)21()21(0001111n n n n nM10101010))21(1())21(1(0)21()21(0b ac c b a b a n n n n n n n ⋅-+⋅-+=++==---- 当∞→n 时,1,0,0→→→n n n c b a 。
《数学建模》04秋模拟试题参考解答
一、1.
.)1(
1)()0(),1(0
0rt
m m m
e
x x x t x x x x x rx dt
dx --+=
⇒=-
=
2.
;
万元)(5779.3220
21
9
10= 3. .2090,19**=≈Q T
4. 最优运输方案不惟一;总运费均相等。
二、1.(1)车流的密度
(2)车的行驶速度
(3)道路的宽度
(4)行人穿越马路的速度
(5)设置斑马线地点的两侧视野等。
(注意:最少写出3个因素。
每少写对一个因素扣3分)
2. (1)因为可行域的右上方无界,故将出现目标函数趋于无穷大的情形,结果是问题具有无界解; …………………………5分
(2)将最优解代入约束条件可知第二个约束条件为严格不等式,而其他为严格等式。
这说明,铁和钙的摄入量达标,而蛋白质的摄入量超最低标准18个单位。
………………………..10分
三、1. 首先建立图模型如图2-1。
图2-1 ………………………10分
利用双标号法求最短路线过程如图2-2.
图2-2 …………………………15分
利用逆向搜索法可得最优运输方案为
方案1 ,223E D C B A ⇒⇒⇒⇒ 方案2 ,113E D C B A ⇒⇒⇒⇒
方案3 .112E D C B A ⇒⇒⇒⇒ .110m i n =l ………………20分 ( 注意:少给一个方案扣2分。
) 2. 建立决策树模型如图2-3.
图2-3 …………………….10分 使用期望值法计算过程见图2-4.
图2-4 ………………………..15分
最优决策为:不必搬走机械,但要筑一个护堤,期望损失1335元。
……20分
四、1. 问题分析
由题设,只须在不允许缺货模型条件下,考虑因缺货造成的损失即可。
而缺货损失按天计算与下列因素有关:货物总需求量、缺货量、缺货时刻、每单位的缺货费用等。
………………………5分 2. 模型假设
(1)每次定货费为C 1,每天每单位货物的存储费为.2C (2)每天货物的需求量为r 单位.
(3) 每T 天定货Q 单位,所定货物可在瞬间到达。
-1800
-500 -60500
-10000 -60000
-1800
-500 -60500
-10000 -60000
(4)允许缺货,每天每单位货的缺货费为.3C 缺货时,存储量q 视为负值,则)(t q 的图形变为,Q rt q +-=如图2-5所示。
…………..10分 3. 模型建立
货物在1T t =时售完,则必有一段 时间缺货。
又在T t =时下一次定货量
Q 到达,于是有
1rT Q = (1) …………12分
在一个定货周期内的总费用包括定货费1C 、存储费Q T C dt t q C T 10
2
22
1)(1
⎰=和缺货费
.)(1
3dt t q C T
T ⎰注意到
2
1)(2
)()(1
1
T T r dt Q rt dt t q T
T T
T -=
-=
⎰⎰
其中用到了(1)式。
于是总费用应为
2/)(2/2
13121T T r C QT C C C -++= (2)
注意我们的建模目的,则由(1)式解出r Q T /1=并代入(2)式可得
r Q rT C r Q C C C 2/)(2/2
3221-++= (3)
从而每天的平均总费用便是
rT Q rT C rT Q C T C T C Q T C 2/)(2///),(2
3221-++== (4)
(4)式即为所求的数学模型。
……………………15分 4. 模型求解
对(4)式分别求总费用对定货周期和定货量的偏导数,并令其为零解得
0)()(2232
2
32
222
1=-+
--
-
-=∂∂Q rT T
C Q rT rT
C rT
Q C T
C T
C
0)(32=--
=
∂∂Q rT rT
C rT
Q C Q
C
由
3
230C C rT C Q Q
C +=
⇒=∂∂,代入
0=∂∂T
C 便可解出
3
23
21*
3
322
1*
2;2C C C C r C Q C C C rC C T +=
+=
. (5)
(5)式就是在允许缺货情形下,最佳定货周期与最佳定货量公式。
………..18分 5. 模型分析
易见,当3C 远远超过2C 时,(5)式就转化为不允许缺货模型中的相应结论,这也说明所建模型是合理的,结论也是正确的。
…………20分。