人教版高中数学必修概念总结
- 格式:doc
- 大小:564.50 KB
- 文档页数:20
高中数学人教A版必修第一册知识点总结本册教材是高中数学人教版A版(2024)的必修第一册,总共包括了四个单元:集合与常用逻辑、函数与方程、数列与数学归纳法、几何与向量。
接下来将对这四个单元的知识点进行总结。
一.集合与常用逻辑1.集合与元素-集合的表示方法:列举法、描述法、条件法-集合之间的关系:相等、含于、相交、并集、交集、互补集2.集合的运算-并集、交集、差集、补集-嵌套集合的化简-运算律:交换律、结合律、分配律3.常用逻辑关系-全称量词、存在量词-逻辑运算:与、或、非-条件命题、充分条件、必要条件4.命题及命题的逻辑运算-命题的分类:命题主体、命题联结词、命题陈述、命题基础-命题的逻辑运算:否定、合取、析取、蕴含、等价二.函数与方程1.函数的概念-自变量、因变量、函数值-射影函数、指示函数2.函数的表示方法-函数的解析式-函数的图像3.函数的性质-定义域、值域、对应法则、单调性、奇偶性、周期性-奇函数、偶函数-反函数4.一次函数-一次函数的解析式及图像-平移变换、伸缩变换5.二次函数-二次函数的解析式及图像-平移变换、伸缩变换-最值、对称轴、零点及判别式三.数列与数学归纳法1.数列的概念-有限数列、无限数列、数列的一般表示2.等差数列-等差数列的概念及公式-等差数列前n项和公式-通项公式的推导3.等比数列-等比数列的概念及公比-等比数列前n项和公式-通项公式及其推导4.递推数列-递推数列的概念及表示-递推公式5.数学归纳法-数学归纳法三个步骤:证明基础、证明步骤、加强归纳前提四.几何与向量1.向量的概念-向量的定义、表示方法、相等与运算-向量的数量表示-零向量、单位向量2.向量的线性运算-加法、减法、数乘-加减法运算律、数乘运算律3.向量的坐标表示-坐标运算、线性变换4.向量的数量积-向量的点乘、模长及其性质-向量的夹角及性质5.平面向量的应用-共线向量、垂直向量、平行向量-向量在直角坐标系中的投影-多边形面积与向量运算-向量与几何问题的应用以上是《高中数学人教A版(2024)必修第一册》的知识点总结。
新人教版高中数学知识点总结 高中数学必修1知识点第一章集合与函数概念(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法表示自然数集,*或表示正整数集,表示整数集,表示有理数集,表示实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().(6)子集、真子集、集合相等名称记号意义性质示意图子集(或)AB⊇A中的任一元素都属于B(1)A⊆A(2)A∅⊆(3)若BA⊆且B C⊆,则A C⊆(4)若BA⊆且B A⊆,则A B=A(B)或B A N N N+Z QRa M a M∈a M∉x x x∅真子集A ≠⊂B(或B ≠⊃A)B A ⊆,且B中至少有一元素不属于A (1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C≠⊂集合相等A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆A (7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.(8)交集、并集、补集名称记号意义性质示意图交集{|,x x A ∈且}x B ∈(1)A A A= (2)A ∅=∅ (3)A B A ⊆ 并集{|,x x A ∈或}x B ∈(1)A A A= (2)A A ∅= (3)A B A ⊇ 补集(1)∅=⋂A C AU (2)UA C AU =⋃【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|x x a <-或}x a >A (1)n n ≥2n 21n -21n -22n -把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法〖〗函数及其表示(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法A B f A x B ()f x A B A B f A B :f A B →①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做.注意:对于集合与区间,前者可以大于或等于,而后者必须.(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数.②是分式函数时,定义域是使分母不为零的一切实数.③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数大于零且不等于1.⑤中,.⑥零(负)指数幂的底数不能为零.⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.,a b a b <a x b ≤≤x [,]a b a x b <<x (,)a b a x b ≤<a x b <≤x [,)a b (,]a b ,,,x a x a x b x b ≥>≤<x [,),(,),(,],(,)a a b b +∞+∞-∞-∞{|}x a x b <<(,)a b a b a b <()f x ()f x ()f x tan y x =()2x k k Z ππ≠+∈()f x ()f x [,]a b [()]f g x ()a g x b ≤≤(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念()y f x =y x 2()()()0a y x b y x c y ++=()0a y ≠,x y 2()4()()0b y a y c y ∆=-⋅≥①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作.②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象.〖〗函数的基本性质(1)函数的单调性①定义及判定方法函数的性质定义图象判定方法如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在这个区间上是增函数.(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.A B f A B A B A B f A B :f A B →A B ,a A b B ∈∈a b b a a byxo③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减.(2)打“√”函数的图象与性质分别在、上为增函数,分别在、上为减函数.(3)最大(小)值定义①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最大值,记作.②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最小值,记作.(4)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法[()]y f g x =()u g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()(0)af x x ax=+>()fx (,-∞)+∞[()y f x =I M x I ∈()f x M ≤0x I ∈0()f x M =M ()f x max ()f x M =()y f x =I m x I ∈()f x m ≥0x I ∈0()f x m =m ()f x max ()f x m =如果对于函数f(x)定义域内任意一个x ,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(-x)=f(x),那么函数f(x)叫做偶函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数为奇函数,且在处有定义,则.③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换②伸缩变换③对称变换(2)识图()f x 0x =(0)0f =y y对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图第二章基本初等函数(Ⅰ)〖〗指数函数(1)根式的概念①如果,且,那么叫做的次方根.当是奇数时,的是偶数时,正数的正的次方次方根用符号的次方根是0;负数没有次方根.叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶数时,.③根式的性质:;当;当为偶数时,.(2)分数指数幂的概念①正数的正分数指数幂的意义是:且.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:且.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①,,,1n x a a R x R n =∈∈>n N+∈x a n n a n n a n nn a n n a n a n 0a ≥n a =n a =n (0)|| (0) a a a a a ≥⎧==⎨-<⎩0,,,m na a m n N +=>∈1)n >1(0,,,mm n n aa m n N a -+==>∈1)n >(0,,)r s r s a a a a r s R +⋅=>∈②③(4)指数函数〖〗对数函数(1)对数的定义①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.②负数和零没有对数.③对数式与指数式的互化:.(2)几个重要的对数恒等式,,.()(0,,)r s rs a a a r s R =>∈()(0,0,)r r r ab a b a b r R =>>∈(0,1)x a N a a =>≠且x a N log a x N =a N log (0,1,0)x a x N a N a a N =⇔=>≠>log 10a =log 1a a =log b a a b =(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中…).(4)对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:(5)对数函数(6)反函数的概念lg N 10log N ln N log e N 2.71828e =0,1,0,0a a M N >≠>>log log log ()a a a M N MN +=log log log a a a MM N N-=log log ()n a a n M M n R =∈log a N a N =log log (0,)b n a a nM M b n R b =≠∈log log (0,1)log b a b N N b b a=>≠且设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域.(8)反函数的性质①原函数与反函数的图象关于直线对称.②函数的定义域、值域分别是其反函数的值域、定义域.③若在原函数的图象上,则在反函数的图象上.④一般地,函数要有反函数则它必须为单调函数.〖〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分()y f x =A C ()y f x =x ()x y ϕ=y C ()x y ϕ=x A ()x y ϕ=x y ()x y ϕ=()y f x =1()x f y -=1()y f x -=()y f x =1()x f y -=1()x f y -=1()y f x -=()y f x =1()y f x -=y x =()y f x =1()y f x -=(,)P a b ()y f x ='(,)P b a 1()y f x -=()y f x =y x α=x αy布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在都有定义,并且图象都通过点.③单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.(0,)+∞(1,1)0α>[0,)+∞0α<(0,)+∞x y ααqpα=,p q p q Z ∈p q qp y x =p q qp y x =p q q py x =,(0,)y x x α=∈+∞1α>01x <<y x =1x >y x =1α<01x <<y x =1x >y x =2()(0)f x ax bx c a =++≠2()()(0)f x a x h k a =-+≠12()()()(0)f x a x x x x a =--≠③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便.(3)二次函数图象的性质①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是.②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,.③二次函数当时,图象与轴有两个交点(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程的两实根为,且.令,从以下四个方面来分析此类问题:①开口方向:②对称轴位置:③判别式:④端点函数值符号.①k<x 1≤x 2x ()f x 2()(0)f x ax bx c a =++≠,2bx a=-24(,24b ac b a a--0a >(,2ba-∞-[,)2b a -+∞2b x a=-2min 4()4ac b f x a -=0a <(,]2ba -∞-[,)2b a -+∞2bx a=-2max 4()4ac b f x a -=2()(0)f x ax bx c a =++≠240b ac ∆=->x 11221212(,0),(,0),||||M x M x MM x x =-20(0)ax bx c a ++=≠20(0)ax bx c a ++=≠12,x x 12x x ≤2()f x ax bx c =++a 2bx a=-∆⇔②x1≤x2<k③x1<k<x2af(k)<0④k1<x1≤x2<k2⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2此结论可直接由⑤推出.(5)二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令.(Ⅰ)当时(开口向上)①若,则②若,则③若,则x叫做函数))((Dxxfy∈=的零点。
高中数学必修1知识点总结目录高中数学必修1知识点总结............................. 错误!未定义书签。
第一章集合与函数概念............................... 错误!未定义书签。
〖〗集合 ............................................ 错误!未定义书签。
【】集合的含义与表示................................. 错误!未定义书签。
【】集合间的基本关系................................. 错误!未定义书签。
【】集合的基本运算................................... 错误!未定义书签。
〖〗函数及其表示 .................................... 错误!未定义书签。
【】函数的概念 ...................................... 错误!未定义书签。
【】函数的表示法 .................................... 错误!未定义书签。
〖〗函数的基本性质................................... 错误!未定义书签。
【】单调性与最大(小)值............................. 错误!未定义书签。
【】奇偶性 .......................................... 错误!未定义书签。
【】函数周期性和对称性............................... 错误!未定义书签。
〖补充知识〗函数的图象............................... 错误!未定义书签。
第二章基本初等函数(Ⅰ) ............................. 错误!未定义书签。
第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O 一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
高中数学(新人教版)必修一知识点归纳
本文将归纳高中数学(新人教版)必修一的主要知识点。
以下是
各个主题的简要概述:
1. 数与式
- 数的分类:自然数、整数、有理数、实数等。
- 代数式:基本概念、多项式、公式等。
- 幂与乘方:指数、乘方、幂等运算。
- 整式的加减法:同类项、整式的加减法规则。
- 分式:基本概念、分式的性质与化简等。
2. 一元一次方程与不等式
- 一元一次方程:基本概念、解方程的方法、应用问题等。
- 一元一次不等式:基本概念、解不等式的方法、应用问题等。
3. 函数及其图像
- 函数与自变量、函数与因变量的关系。
- 函数的表示与性质:映射、函数图像、奇偶性等。
- 一次函数:定义、性质、图像、方程等。
- 反函数与复合函数:定义、性质、求反函数、求复合函数等。
4. 等差数列
- 等差数列的定义与性质。
- 等差数列的前n项和与通项公式。
- 应用问题:等差数列应用于数学与生活中的实际问题。
5. 平面向量
- 向量的基本概念与表示法。
- 向量的运算:加法、数乘等。
- 向量共线与共面的判定。
- 向量的数量积与模的概念与性质。
6. 不等式与线性规划
- 不等式的基本性质与解法。
- 一元一次不等式组:基本概念、解法、应用问题等。
- 线性规划的基本概念与常见问题。
以上是高中数学(新人教版)必修一的主要知识点的简要归纳。
详细内容可以参考相关教材或课堂讲义。
希望这份归纳对你有帮助!。
第一章 集合与简易逻辑1 集合的概念与运算 1.1 集合的有关概念(1)定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。
(2)元素的三要素:集合中的元素具有确定性、互异性和无序性;表示一个集合要用{ }。
(3)集合的表示法:列举法、描述法、图示法; (4)集合的分类:有限集、无限集和空集,空集记作φ; (5)元素a 和集合A 之间的关系:a ∈A ,或a ∉A ; (6)常用数集:自然数集:N ;正整数集:*N 或N +;整数集:Z ;有理数集:Q ;实数集:R 。
*N N Z Q R ⊂⊂⊂⊂1.2 子集(1)定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B ,注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ(2)性质:①A A A ⊆⊆φ,;②若C B B A ⊆⊆,,则C A ⊆;③若A B B A ⊆⊆,则A =B ; 1.3 真子集(1)定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂; (2)性质:①,A A φφ≠⊂;②若,A B B C ⊂⊂,则A C ⊂; 1.4 补集:(1)定义:记作:},|{A x U x x A C U ∉∈=且;(2)性质:A A C C U A C A A C A U U U U ===)(,, φ; 1.5 交集与并集 (1)交集:{|,且}AB x x A x B =∈∈性质:①φφ== A A A A , ②若B B A = ,则A B ⊆ (2)并集:{|,或}AB x x A x B =∈∈性质:①A A A A A ==φ , ②若B B A = ,则B A ⊆ 1.6 集合运算中常用结论 (1)德摩根公式: ();()U U U U U U C A B C A C B C A B C A C B ==.(2)U U A B A A B B A B C B C A =⇔=⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=(3)含n 个元素的集合的所有子集有n2个2 一元二次不等式的解法 2.1 一元一次不等式的解法通过去分母、去括号、移项、合并同类项等步骤化为ax b >的形式,若0a >,则bx a>;若0a <,则bx a<;若0a =,则当0b <时,x R ∈;当0b ≥时,x ∈∅。
【精华】人教版高中数学必修一第一章集合与函数概念一、集合的概念集合是数学中最基本的概念之一,它是某些指定对象的总体。
这些对象被称为集合的元素。
集合可以是有序的,也可以是无序的。
例如,自然数集合{1, 2, 3, }是无序的,而有序对集合{(1, 2), (2, 3), }是有序的。
集合的表示方法有两种:列举法和描述法。
列举法是将集合中的所有元素一一列出,用花括号{}括起来。
例如,集合{1, 2, 3}表示包含元素1、2、3的集合。
描述法是使用文字描述集合中元素的特征,例如,自然数集合可以表示为{所有大于0的整数}。
集合的基本运算包括交集、并集、差集、补集等。
交集是指两个集合共同拥有的元素组成的集合;并集是指两个集合所有元素组成的集合;差集是指一个集合中有而另一个集合中没有的元素组成的集合;补集是指一个集合中所有不属于另一个集合的元素组成的集合。
二、函数的概念函数是数学中另一个基本的概念,它描述了两个变量之间的依赖关系。
在函数中,一个变量被称为自变量,另一个变量被称为因变量。
函数的表示方法有三种:解析法、表格法和图像法。
解析法是使用数学公式来表示函数的方法,例如,y = x^2 表示一个二次函数。
表格法是使用表格来表示函数的方法,表格中的每一行都代表一个函数值。
图像法是使用图形来表示函数的方法,图形中的每个点都代表一个函数值。
函数的基本性质包括单调性、奇偶性、周期性等。
单调性是指函数在某个区间内是递增或递减的;奇偶性是指函数在自变量取相反数时,函数值也取相反数;周期性是指函数在一定区间内重复出现。
三、集合与函数的关系集合与函数有着密切的关系。
集合可以用来表示函数的定义域和值域,而函数可以用来描述集合中元素之间的关系。
例如,一个函数可以将一个集合中的元素映射到另一个集合中的元素,从而建立两个集合之间的对应关系。
在解决数学问题时,集合与函数的概念常常被结合起来使用。
例如,在求解函数的值域时,需要先确定函数的定义域,然后根据函数的性质来求解值域。
高中数学必修1知识讲解讲义目录第一讲集合的概念 (1)第二讲集合的关系与运算 (6)第三讲映射与函数 (11)第四讲函数的表示方法——解析式法 (16)第五讲函数单调性 (20)第六讲函数奇偶性 (27)第七讲指数与指数幂的运算 (36)第八讲指数函数 (42)第九讲对数函数 (50)第十讲对数与对数运算 (56)第十一讲幂函数 (61)第十二讲方程的根与函数的零点 (66)第十三讲用二分法求方程的近似解 (71)第十四讲几类不同增长的函数模型 (76)第十五讲函数的图像 (85)第十六讲函数的综合应用 (93)第十七讲二次函数性质与函数的图像 (111)第一讲 集合的概念一. 知识思维导图二. 知识要点解读 (一)集合的概念1. 含义:一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set)(简称为集)。
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大括号{ }或大写的拉丁字母表示,如A 、B 、C 、…… 元素通常用小写的拉丁字母表示,如a 、b 、c 、……2. 元素与集合的关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A (2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A 要注意“∈”的方向,不能把a ∈A 颠倒过来写. 3. 集合中元素的三个特性:集合集合的概念集合及元素集合的分类及表示集合的关系包含子集真子集集合的运算交集并集补集集合的应用(1)元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
高一数学必修一知识点总结人教1.知识网络图复数知识点网络图2.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.3.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.数学教学心得如果以上的表述并不具有数学学科的特点的话,那么加上一个定语——让学生用数学的眼光进行数学思考。
比如,百货店的促销信息,人们不仅会关注哪个折扣低,还会关注标价的高低。
美国统计学家戴维穆尔的《统计学的世界》一书中有幅漫画,画的是一个人误以为平均水深就是每一个地方都是这样的水深而溺水死亡,从侧面反映了数学常识在现实生活中的作用。
数学地思考,是数学学习的更高目标。
数学学习过程中所倡导的思考方式是具有学科特点的。
看到一幅图画时,别的学科可能关注的是这幅图是多么的美观,但是对于数学学习来说,教师需要引导学生关注这个图形的组成与分解,引导学生思考的是多边形线的条数等。
这种量化、精确化的思考方式是数学教学最根本的目标价值所在。
高中数学新教材人教A版必修第一册知识点总结专题01 集合与常用的逻辑用语 (3)知识点一集合的概念 (3)知识点二集合间的关系 (4)知识点三集合的基本运算 (5)知识点四充分条件与必要条件 (5)知识点五全称量词与存在量词 (6)专题02 一元二次方程、函数与不等式 (7)知识点一不等式的性质 (7)知识点二基本不等式 (7)知识点三二次函数与一元二次方程、不等式 (8)专题03 函数的概念与性质 (9)知识点一函数的概念与分段函数 (9)知识点二函数的三要素 (10)知识点三函数的单调性 (12)知识点四函数的奇偶性 (14)知识点六幂函数 (16)专题04指数函数与对数函数的概念、简单性质 (17)知识点一指数运算、对数运算与幂运算 (17)知识点二指数函数与对数函数的概念及图像 (18)知识点三比较大小(常与0、1、-1作比较) (18)知识点四函数的零点 (19)专题05 指数型与对数型复合函数的性质 (20)知识点一复合函数简单的单调性与奇偶性问题 (20)知识点二复合函数的单调性 (20)知识点三复合函数的最大值与最小值 (21)知识点四最值问题(含有参数) (22)知识点五恒成立问题 (22)专题06 三角函数的图像与性质 (23)知识点一任意角和弧度制 (23)知识点二常用的角的集合表示方法 (23)知识点三弧度与弧度制 (24)知识点四三角函数定义 (25)知识点五三角函数在各象限的符号 (26)知识点六特殊角的三角函数值: (26)知识点七同角三角函数的关系与诱导公式 (26)知识点八两角和与差公式的基本应用 (27)知识点九辅助角公式 (27)知识点十二倍角公式 (27)知识点十一降幂公式 (27)知识点十二基本三角函数的图像与性质(正弦、余弦与正切) (28)知识点十三函数y=Asin(ωx+φ)的图像 (29)知识点十四三角函数的实际应用 (30)专题07 三角函数的综合运用 (30)专题01 集合与常用的逻辑用语知识点一集合的概念1.集合的有关概念(1)集合的描述:我们把研究对象称为元素,把一些元素组成的总体叫做集合.元素通常用小写字母a,b,c,⋯表示,集合通常用大写字母A,B,C,⋯表示.(2)集合元素的特性:确定性:集合中的元素是确定的,即给定一个元素可以判断该元素在或者不在该集合中。
高一数学必修1概念一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。
一般地,我们把不含任何元素的集合叫做空集,记作Φ。
一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作ABA⊇⊆或,读作“A包含于B”,或“B包含于A”。
B如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作AA⊇⊆或,读作“A真包含于B”,或“B真BB包含A”。
一般地,如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,那么我们就说集合A等于集合B,记作A=B。
一般地,对于两个给定的集合A,B,由属于A又属于B的所有元素构成的集合,叫做A,B的交集,记作BA⋂,读作“A交B”。
一般地,对于两个给定的集合A,B,由两个集合的所有元素构成的集合,叫做A与B的并集,记作BA⋃,读作“A并B”。
如果给定集合A是全集U的一个子集,由U中不属于A的所有元素构成的集合,叫做A在U中补集,记作CuA,读作“A在U中的补集”。
函数是一种关系,在一个变化过程中,有两个变量x和y,如果给定了一个x值,相应地就确定唯一的一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
定义设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有且仅有一个元素y与x对应,则称f是集合A到集合B的映射。
这时,称y是x在映射f的作用下的象,记作f(x)。
于是y=f(x),x称作y的原象。
映射f也可记为:f:A→B,x→f(x),其中A叫做映射f的定义域(函数定义域的推广),由所有象f(x)构成的集合叫做映射f的值域,通常叫作f(A)。
因为函数的值域被函数的定义域和对应法则完全确定,所以确定一个函数就只需要两个要素:定义域和对应法则。
函数的定义域和值域通常用区间表示,下面给出区间的概念:设Ra<,,,且ba∈b满足b≤的全体实数x的集合,叫做闭区间,记作[a,b]a≤x满足b<的全体实数x的集合,叫做开区间,记作(a,b)a<x满足ba≤x<的全体实数x的集合,都叫做半开半闭区间,分别记作[a,a<x≤或bb)或(a,b]分别满足a>≥,,的全体实数的集合分别记作x<,≤axxaxa[a,+∞),(a,+∞),(-∞,a],(-∞,a)a与b叫做区间的端点,在数轴上表示区间时,属于这个区间端点的实数,用实心点表示,不属于这个区间端点的实数,用空心点表示。
如果映射f是集合A到集合B的映射,并且对于集合B中的任意一个元素,在集合A中都有且只有一个原象,这时我们说这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A到集合B的一一映射。
函数的表示方法:列表法、图象法、解析法(公式法)列表法:通过列出自变量与对应函数值的表来表示函数关系的方法叫做列表法。
图象法:用“图形”表示函数的方法叫做图象法。
解析法:如果在函数))((A x x f y ∈=中,)(x f 是用代数式(解析式)来表示的,则这种表示函数的方法叫做解析法,(也称为公式法)在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应法则,这样的函数通常叫作分段函数。
一般地,设函数)(x f y =的定义域为A ,区间M ⊆A 。
如果取区间M 中的任意两个值21x x ,,改变量012>-=∆x x x ,则当0)()(12>-=∆x f x f y ,就称函数)(x f y =在区间M 上是增函数当0)()(12<-=∆x f x f y ,就称函数)(x f y =在区间M 上是减函数如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性。
(区间M 称为单调区间)设函数)(x f y =的定义域为D ,如果对D 内的任意一个x ,都有-x ∈D ,且f(-x)=-f(x),则这个函数叫做奇函数。
设函数)(x f y =的定义域为D ,如果对D 内的任意一个x ,都有-x ∈D ,且g(-x)=g(x),则这个函数叫做偶函数。
函数)0(≠+=k b kx y 叫做一次函数,它的定义域为R ,值域为R 。
一次函数)0(≠+=k b kx y 的图象是直线,以后简写为直线b kx y +=,其中k 叫做该直线的斜率,b 叫做该直线在y 轴上的截距。
一次函数又叫做线性函数。
函数)0(2≠++=a c bx ax y 叫做二次函数,它的定义域是R 。
一般地,在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写为一般形式,其中系数待定,然后再根据题设条件求出这些待定系数,这种通过求待定系数来确定变量之间关系式的方法叫做待定系数法。
一般地,如果函数)(x f y =在实数α处的值等于零,即0)(=αf则α叫做这个函数的零点。
在坐标系中表示图像与x 轴的公共点是(α,0)点。
如果函数图像通过零点时穿过x 轴,则称这样的零点为变号零点。
对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度ε,用二分法求函数)(x f 的零点近似值的步骤如下:1.确定区间a [,]b ,验证)(a f ·)(b f 0<,给定精度ε;2.求区间a (,)b 的中点1x ;3.计算)(1x f :①若 = ,则 就是函数的零点;②若)(a f ·)(1x f <0,则令b =1x (此时零点),(10x a x ∈);③若)(1x f ·)(b f <0,则令a =1x (此时零点),(10b x x ∈);4.判断是否达到精度ε;即若ε<-||b a ,则得到零点零点值a (或b );否则重复步骤2~4。
a n 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数。
并规定a 1=a在上述定义中,n 必须是正整数,所以这样的幂叫做正整指数幂。
如果存在实数x ,使得),1,(+∈>∈=N n n R a a x n ,则x 叫做a 的n 次方根。
求a的n次方根,叫做把a开n次方,称作开方运算。
正数a的正n次方根叫做a的n次算术根。
当n a有意义时,n a叫做根式,n叫做根指数。
一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。
一般的,对于指数式Na b=,我们把“以a为底N的对数b”记作()1Nba且,其中,数a叫做对数的底数,N叫做真数,读作“b等于以=a>log≠aa为底N的对数”。
以10为底的对数叫做常用对数。
以e为底的对数叫做自然对数。
函数y=log a x (a>0,且a≠1)叫做对数函数,其中x是自变量,函数定义域是(0,+∞)。
当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数。
一般地,形如αy∈=αx(R)的函数称为幂函数,其中α为常数。
高一数学必修2概念长方体由六个矩形(包括它的内部)围成,围成长方体的各个矩形,叫做长方体的面;相邻两个面的公共边,叫做长方体的棱;棱与棱的公共点,叫做长方体的顶点。
多面体是由若干个平面多边形所围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻的两个面的公共边叫做多面体的棱,棱和棱的公共点叫做多面体的顶点,连接不在不同一个面上的两个顶点的线段叫做多面体的对角线。
把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做凸多面体。
一个几何体和一个平面相交所得到的平面图形(包含它的内部),叫做这个几何体的截面。
棱柱的两个相互平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两侧面的公共边叫做棱柱的侧棱。
棱柱两底面之间的距离叫做棱柱的高。
侧棱与底面不垂直的棱柱叫做斜棱柱。
侧棱与底面垂直的棱柱叫做直棱柱。
底面是正多边形的直棱柱叫做正棱柱。
底面是平行四边形的棱柱叫做平行六面体。
侧棱与底面垂直的平行六面体叫做直平行六面体。
棱锥有一个面是多边形,而其余各面都是有一个公共顶点的三角形。
棱锥中有公共顶点的各三角形,叫做棱锥的侧面;各侧面的公共顶点叫做叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱;棱锥中的多边形叫做棱锥的底面;顶点到底面的距离,叫做棱锥的高。
如果棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,则这个棱锥叫做正棱锥。
正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高。
棱锥被平行于底面的一个平面所截后,截面和底面之间的部分叫做棱台(truncated pyramid)。
原棱锥的底面和截面分别叫做棱台的下底面和上底面;原棱锥的侧面被平面截去后剩余的平面叫做棱台的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;棱台的侧面与底面的公共顶点叫做棱台的顶点。
由正棱锥截得的棱台叫做正棱台。
正棱台各侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高。
旋转轴叫做围成的几何体的轴;在轴上的这条边(或它的长度)叫做这个几何体的高;垂直于轴的边旋转而成的圆面叫做这个几何体的底面;不垂直于轴的边旋转而成的曲面叫做这个几何体的侧面,无论旋转到什么位置,这条边都叫做侧面的母线。
球面可以看做一个半圆绕着它的直径所在的直线旋转一周所形成的曲面,球面围成的几何体,叫做球。
形成求的半圆的圆心叫球心;连接球面上的一点与球心的线段叫球的半径;连接球面上两点且通过球心的线段叫球的直径。
球面也可以看作空间中到一个定点的距离等于定长的点的集合。
球面被经过球心的平面截得的圆叫做求的大圆;被不经过球心的平面截得的圆叫做求的小圆。
圆柱、圆锥、圆台、球等几何体,都是由一个平面图形绕着一条直线旋转产生的曲面所围成的几何体,这类几何体叫做旋转体,这条直线叫做旋转体的轴。
已知图形F,直线l与平面α相交,过F上任意一点M作直线MM'平行于l,交平面α于点M',则点M'叫做点M在平面α内关于直线l的平行投影(或象)。
如果图形F上的所有点在平面α内关于直线l的平行投影构成图形F',则F'叫做图形F在α内关于直线l的平行投影。
平面α叫做投射面,l叫做投射线。
用来表示空间图形的平面图形,叫做空间图形的直观图。
在物体的平行投影中,如果投射线与投射面垂直,则称这样的平行投影为正投影。