轴的设计计算
- 格式:doc
- 大小:528.50 KB
- 文档页数:14
第四章:轴的设计计算第一节:输入轴的设计:输入轴的设计::选取轴的材料和热处理方法:选取轴的材料为45钢,经过调质处理,硬度240=HB 。
:初步估算轴的直径:30min nP A d ≥ 根据选用材料为45钢,0A 的范围为103~126,选取0A 值为120,高速轴功率kW P 81.7=,min /500r n =,代入数据:mm d .85.4150081.71203min =⨯≥ 考虑到轴的外伸端上开有键槽,将计算轴颈增大3%~7%后,取标准直径为45mm 。
输入轴的结构设计:输入轴系的主要零部件包括一对深沟球轴承,考虑到轴的最小直径为45mm ,而差速器的输入齿轮分度圆为70mm ,设计输入轴为齿轮轴,且外为了便于轴上零件的装卸,采用阶梯轴结构。
(1)外伸段:输入轴的外伸段与带轮的从动齿轮键连接,开有键槽,选取直径为mm 45,长为mm 78。
(2)密封段:密封段与油封毡圈5019974406/-ZQ JB 配合,选取密封段长度为mm 60,直径为mm 50。
(3)齿轮段:此段加工出轴上齿轮,根据主动轮mm B 70=,选取此段的长度为mm 100,齿轮两端的轴颈为mm 5.12,轴颈直径为mm 63。
(4)左右两端轴颈段:左右两端轴颈跟深沟球轴承6309配合,采用过度配合k6,实现径向定位,根据轴承,25mm B =端轴颈直径为mm 60,长度左端为mm 30和右端为mm 28。
(5)退刀槽:为保证加工到位,和保证装配时相邻零件的端面靠紧,在齿轮段两端轴颈处加工退刀槽,选取槽宽为mm 5,槽深为mm 2。
(7)倒角:根据推介值(mm ):50~30>d ,6.15.1或取C 。
80~50>d ,2取C 。
输入轴的基本尺寸如下表:输入轴的结构图::输入轴的受力分析::画出受力简图::计算支座反力:(1)作用于齿轮上的圆周力:N d T F I t 85.4589065.017.149222=⨯== (2)作用于齿轮上的径向力:N F F o t r 33.149120tan 85.458920tan ===ο(3)计算在水平面上的反力:N .F F F r NV NV 67.7452331491221====(4)计算在垂直面上的反力:N F F F t NH NH 93.2294285.4389221====:计算弯矩: (1)计算水平面上的弯矩:m N .L F M NV V ⋅=⨯=⨯=33.50356767.745111m N .L F M NV V ⋅=⨯=⨯=33.50356767.74522221V V V M M M ==(2)计算垂直面上的弯矩:m N L F M NH H ⋅=⨯=⨯=08.15495.6793.2294111m N .L F M NH H ⋅=⨯=⨯=08.154956703.229422221H H H M M M ==(3)计算合成弯矩:m N M M M H V ⋅=+=+=80.162808.154933.5032221211 m N M M M H V ⋅=+=+=80.162808.154933.503222222221M M M ==(4)计算转矩:m N n P T I I ⋅=⨯==17.14950081.795509550 (5)计算截面当量弯矩: ()()m N ..αT M M ⋅=⨯+=+=89.163217.149608016282222 取应力校正系数6.0=α。
五 轴的设计计算一、高速轴的设计1、求作用在齿轮上的力高速级齿轮的分度圆直径为d 151.761d mm =112287542339851.761te T F N d ⨯=== tan tan 2033981275cos cos1421'41"n re te F F N αβ=⋅=⨯=tan 3398tan13.7846ae te F F N β==⨯=。
2、选取材料可选轴的材料为45钢,调质处理。
3、计算轴的最小直径,查表可取0112A =331min 015.2811223.44576P d A mm n ==⨯=应该设计成齿轮轴,轴的最小直径显然是安装连接大带轮处,为使d Ⅰ-Ⅱ 与带轮相配合,且对于直径100d mm ≤的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。
故取25d mm =Ⅰ-Ⅱ 。
4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度(1)根据前面设计知大带轮的毂长为93mm,故取90L mm I-II =,为满足大带轮的定位要求,则其右侧有一轴肩,故取32d mm II-III =,根据装配关系,定35L mm II-III =(2)初选流动轴承7307AC ,则其尺寸为358021d D B mm mm mm ⨯⨯=⨯⨯,故35d mm d III-∨I ∨III-IX ==,III -I∨段挡油环取其长为19.5mm,则40.5L mm III-I∨=。
(3)III -I∨段右边有一定位轴肩,故取42d mm III-II =,根据装配关系可定100L mm III-II =,为了使齿轮轴上的齿面便于加工,取5,44L L mm d mm II-∨I ∨II-∨III II-∨III ===。
(4)齿面和箱体内壁取a=16mm,轴承距箱体内壁的距离取s=8mm,故右侧挡油环的长度为19mm,则42L mm ∨III-IX =(5)计算可得123104.5,151,50.5L mm L mm L mm ===、(6)大带轮与轴的周向定位采用普通平键C 型连接,其尺寸为10880b h L mm mm mm⨯⨯=⨯⨯,大带轮与轴的配合为76H r ,流动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为m6. 求两轴承所受的径向载荷1r F 和2r F带传动有压轴力P F (过轴线,水平方向),1614P F N =。
仅供参考一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1)工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2)原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;滚筒直径D=220mm。
运动简图二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用Y系列三相异步电动机。
2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.97×0.99×0.95=0.86(2)电机所需的工作功率:Pd=FV/1000η总=1700×1.4/1000×0.86=2.76KW3、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD=60×1000×1.4/π×220=121.5r/min根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min符合这一范围的同步转速有960 r/min和1420r/min。
由【2】表8.1查出有三种适用的电动机型号、如下表方案电动机型号额定功率电动机转速(r/min)传动装置的传动比KW 同转满转总传动比带齿轮1 Y132s-6 3 1000 960 7.9 3 2.632 Y100l2-43 1500 1420 11.68 3 3.89综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。
方案2适中。
故选择电动机型号Y100l2-4。
轴的设计计算2)根据轴向定位的要求确定轴的各段直径和长度如上图 从左到右依次为1d 2d 3d 4d 5d 6d 7d 与大带轮配合的轴 mm d 381= mm d d d 08.4408.63808.02112=+=⨯+= 取mm d 452= mm d d 4523=≥ 且此处为基孔制配合(其中孔为轴承内孔) 取mm d 503=mm d d 5034=≥ 取mm d 554= mmd d d 8.638.85508.02445=+=⨯+=取mm d 645=mm d d d 5885008.02336=+=⨯+= mm d d 5037== mm l 831=mm l 502252=⨯=∆++=s b l 3由于使用的轴承为深沟球轴承6010(GB/T276-1993)查《机械设计手册》P64表6-1得b=16mm主动轴如左图的装配方案mm d 381=mm d 452=mm d 503=mm d 554=mm d 645=mm d 586=对于从动轴:1)拟定轴上零件的装配方案现选用如图所示的装配方案从动轴如左图所示的装配方案mm mm h b 1422⨯=⨯,键槽用键槽铣刀加工,长为80mm ,选择齿轮轴毂与轴的配合为67k H ;同样半联轴器与轴的连接,选用平键为mm mm mm l h b 901118⨯⨯=⨯⨯,半联轴器与轴的配合为67k H 。
滚动轴承与轴的周向定位是通过过渡配合来保证的,此处选轴的直径尺寸公差为m64)确定轴上圆角和倒角尺寸 参考《机械设计》教材P365表15-2 mm d 601= mm d 757= 取轴端倒角为0452⨯,各轴肩处的圆角半径见轴的俯视图上标注(3) 按弯扭合成应力校核轴的强度 1)主动轴的强度校核圆周力 1t F =112000d T =2000×255.86/93=5502.37N 径向力1r F =1t F tan α=5502.37×tan20°=5502.37×0.36=1980.85N 由于为直齿圆柱齿轮,轴向力1a F =0带传动作用在轴上的压力齿轮轴毂与轴的配合为67k H半联轴器与轴的配合为67k H 。
轴的设计计算【一】能力目标1.了解轴的功用、分类、常用材料及热处理。
2.能合理地进行轴的结构设计。
【二】知识目标1.了解轴的分类,掌握轴结构设计。
2.掌握轴的强度计算方法。
3.了解轴的疲劳强度计算和振动。
【三】教学的重点与难点重点:轴的结构设计难点:弯扭合成法计算轴的强度【四】教学方法与手段采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。
【五】教学任务及内容任务 知识点轴的设计计算 1. 轴的分类、材料及热处理2. 轴的结构设计3. 轴的设计计算一、轴的分类(一)根据承受载荷的情况,轴可分为三类1、心轴 工作时只受弯矩的轴,称为心轴。
心轴又分为转动心轴(a )和固定心轴(b)。
2、传动轴 工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。
3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。
(二)按轴线形状分:1、直轴(1)光轴作传动轴(应力集中小)(2)阶梯轴优点:1)便于轴上零件定位;2)便于实现等强度2、曲轴另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置。
如牙铝的传动轴。
二、轴的结构设计轴的结构设计就是确定轴的外形和全部结构尺寸。
但轴的结构设计原则上应满足如下要求:1)轴上零件有准确的位置和可靠的相对固定;2)良好的制造和安装工艺性;3)形状、尺寸应有利于减少应力集中;4)尺寸要求。
(一)轴上零件的定位和固定轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。
作为轴的具体结构,既起定位作用又起固定作用。
1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。
2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。
(二)轴的结构工艺性轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。
为此,常采用以下措施:1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。
第七章 轴的设计计算一、初步确定轴的尺寸1、高速轴的设计及计算:高速轴功率kw p 11.21=,转速min /7101r n =。
选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取1000=A ,得mm 377.14mm 71011.210033110min ≈⨯==n p A d 考虑轴上开有一个键槽对轴强度的削弱,轴径增大%7~%5,并圆整后mm d 15=,轴承选用角接触球轴承7205C ,B=15mm ,综合减速器其他零件的布置和减速器箱体的轮廓,高速轴初步设计如下:2、中间轴的设计及计算:中间轴功率kw p 03.22=,转速min /4.1612r n =。
选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取1050=A ,得mm 419.24mm 4.16103.210533220min ≈⨯==n p A d 考虑轴上开有两个键槽对轴强度的削弱,轴径增大%15~%10,并圆整后mm d 25=,轴承选用角接触球轴承7205C ,B=15mm ,综合减速器其他零件的布置和减速器箱体的轮廓,中间轴初步设计如下:安装大齿轮处的键型号为:键10⨯36GB1096-79 安装小齿轮处的键型号为:键10⨯70GB1096-79 3、低速轴的设计及计算:低速轴功率kw p 95.13=,转速min /4.433r n =。
选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取970=A ,得mm 484.34mm 4.4395.19733330min ≈⨯==n p A d 考虑轴上开有两个键槽对轴强度的削弱,轴径增大%15~%10,并圆整后mm d 35=,轴承选用角接触球轴承7209C ,B=19mm ,综合减速器其他零件的布置和减速器箱体的轮廓,低速轴初步设计如下:安装大齿轮的键型号为:键18⨯65GB1096-97 安装联轴器处的键为:键16⨯125GB1096-97二、轴的校核以中间轴的校核为代表,中间轴的功率为kw p 03.22=,转速为min /4.1612r n =,转矩11.1202=T N ·m 。
轴的设计计算
轴的设计计算主要包括以下步骤:
1.确定轴上零件的布局:根据工作要求确定轴上零件的位置和装配关系,为后续计算提供依据。
2.确定各轴段的直径:根据轴上零件的布局和载荷情况,确定各轴段的直径。
通常情况下,轴段直径与轴上零件的尺寸有关,需要考虑轴的弯曲刚度和疲劳强度等因素。
3.确定轴的结构细节:根据轴上零件的布局和装配要求,确定轴的结构细节,如轴承盖、密封件、联轴器等。
这些细节对轴的设计计算和制造都有重要影响。
4.计算轴的载荷:根据轴的工作要求和载荷情况,计算轴的载荷。
需要考虑径向载荷、轴向载荷和扭矩等,为后续的强度校核提供依据。
5.强度校核:根据轴的载荷和材料特性,进行强度校核。
通常需要进行弯扭合成校核和剪切校核等,以确保轴的强度满足工作要求。
6.确定支承方式:根据轴的工作要求和载荷情况,确定合适的支承方式。
支承方式的选择对轴的稳定性和疲劳寿命有很大影响。
7.确定润滑方式:根据轴的工作要求和润滑剂特性,选择合适的润滑方式。
润滑方式的选择对轴的摩擦磨损性能和寿命有很大影响。
以上是轴的设计计算的主要步骤,具体计算过程需要根据实际情况进行调整和完善。
机械设计轴的设计计算
机械设计轴的设计计算主要包括以下几个方面:
1. 轴的尺寸计算:根据所需的扭矩及转速计算轴的直径及轴长,选择合适的轴材料及表面加工方式。
2. 轴的强度计算:根据轴材料的抗拉强度、抗压强度、弹性模量等参数,计算轴的最大等效应力及安全系数。
3. 轴的转动稳定性计算:根据轴的几何形状、转动速度、转动方向等参数,计算轴的临界转速及转动稳定性。
4. 轴的支撑方式计算:根据轴的重量及受力情况,计算轴的支撑方式以及所需的轴承类型、尺寸及数量。
5. 轴的动态平衡设计:根据轴的转动速度、质量分布情况等参数,计算轴的动态不平衡力,并设计相应的平衡装置。
6. 轴的表面处理设计:根据轴的使用环境及要求,选择适当的表面处理方式,如镀铬、喷涂、硬化等,以提高轴的耐磨性及抗腐蚀性。
以上是机械设计轴的设计计算的主要内容,要根据具体情况进行细致的计算与设
计。
五 轴的设计计算1、高速轴的设计所用参数:轴的转速min /963r n =,传递功率kW p 84.3=,轴上齿轮参数:法面模数mm m 2=,分度圆螺旋角︒=16β,齿数27=z ,齿宽mm b 70=(1)选择轴的材料减速器功率不大,又无特殊要求,故选最常用的45钢并作正火处理。
由表10-1查得MPa B 600=σ。
(2)按转矩估算轴的最小直径由表10-3取A=107~118(因轴上受较大弯矩),于是得mm n P A d )71.18~98.16(159.0)118~107(96384.3)118~107(33=⨯=⨯=≥考虑键槽对轴强度的影响(轴径增大4%~7%)和联轴器标准,取d=20mm (3)轴的结构设计根据轴的结构设计要求,轴的结构草图设计如图(1)所示。
轴1、2之间应有定位轴肩;轴段2、3及3、4之间应设置台阶以利于装配;轴4、5及5、6之间应有定位轴肩。
各轴段得具体设计如下。
轴的结构设计图(1)轴段1:考虑轴的输出端有联轴器,取mm l mm d 86,2011==轴段2:取轴肩高2.5mm,坐定位作用,故mm d 252=,该尺寸还应满足密封件的直径系列要求。
该段长度可根据结构和安装要求最后确定。
轴段3:齿轮两端对称安装一轴承,选择6206(深沟球轴承),宽度为16mm,取mm d 303=。
左轴承用套筒定位,根据轴承对安装的要求,轴肩高度取2.5mm 。
该轴段的长度3l 的确定:齿轮两侧端面至箱体内壁的距离取10mm (箱体铸造精度的要求)。
根据润滑方式中和考虑取mm l 353=。
轴段2 的长度2l :根据箱体箱盖的加工和安装要求,取箱体轴承孔的长度为35mm ,轴端盖和箱体之间应有调整垫片,取其厚度为2mm ,轴承端盖厚度10mm ,端盖和联轴器之间应有一定的间隙,取10mm 。
中和考虑,取mm l 302=。
轴段4、5:考虑设置装配轴肩,取mm d 354=,该长度应小于齿轮轮毂宽度,取mm l 684=。
轴的设计计算轴的设计计算输入轴的设计计算1、按扭矩初算轴径选用45#调质,硬度217~255HBS根据课本P235(10-2)式,并查表10-2,取c=115d≥115 (2.304/458.2)1/3mm=19.7mm考虑有键槽,将直径增大5%,则d=19.7×(1+5%)mm=20.69∴选d=22mm2、轴的结构设计(1)轴上零件的定位,固定和装配单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定(2)确定轴各段直径和长度工段:d1=22mm 长度取L1=50mm∵h=2c c=1.5mmII段:d2=d1+2h=22+2×2×1.5=28mm∴d2=28mm初选用7206c型角接触球轴承,其内径为30mm,宽度为16mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。
取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:L2=(2+20+16+55)=93mmIII段直径d3=35mmL3=L1-L=50-2=48mmⅣ段直径d4=45mm由手册得:c=1.5 h=2c=2×1.5=3mmd4=d3+2h=35+2×3=41mm长度与右面的套筒相同,即L4=20mm但此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:(30+3×2)=36mm因此将Ⅳ段设计成阶梯形,左段直径为36mmⅤ段直径d5=30mm. 长度L5=19mm由上述轴各段长度可算得轴支承跨距L=100mm(3)按弯矩复合强度计算①求分度圆直径:已知d1=50mm②求转矩:已知T2=50021.8N·mm③求圆周力:Ft根据课本P127(6-34)式得Ft=2T2/d2=50021.8/50=1000.436N④求径向力Fr根据课本P127(6-35)式得Fr=Ft·tanα=1000.436×tan200=364.1N ⑤因为该轴两轴承对称,所以:L A=L B=50mm(1)绘制轴受力简图(如图a)(2)绘制垂直面弯矩图(如图b)轴承支反力:F AY=F BY=Fr/2=182.05NF AZ=F BZ=Ft/2=500.2N由两边对称,知截面C的弯矩也对称。
第四章:轴的设计计算 第一节:输入轴的设计:输入轴的设计::选取轴的材料和热处理方法:选取轴的材料为45钢,经过调质处理,硬度240=HB 。
:初步估算轴的直径:30min nP A d ≥ 根据选用材料为45钢,0A 的范围为103~126,选取0A 值为120,高速轴功率kW P 81.7=,min /500r n =, 代入数据:mm d .85.4150081.71203min =⨯≥ 考虑到轴的外伸端上开有键槽,将计算轴颈增大3%~7%后,取标准直径为45mm 。
输入轴的结构设计:输入轴系的主要零部件包括一对深沟球轴承,考虑到轴的最小直径为45mm ,而差速器的输入齿轮分度圆为70mm ,设计输入轴为齿轮轴,且外为了便于轴上零件的装卸,采用阶梯轴结构。
(1)外伸段:输入轴的外伸段与带轮的从动齿轮键连接,开有键槽,选取直径为mm 45,长为mm 78。
(2)密封段:密封段与油封毡圈5019974406/-ZQ JB 配合,选取密封段长度为mm 60,直径为mm 50。
(3)齿轮段:此段加工出轴上齿轮,根据主动轮mm B 70=,选取此段的长度为mm 100,齿轮两端的轴颈为mm 5.12,轴颈直径为mm 63。
(4)左右两端轴颈段:左右两端轴颈跟深沟球轴承6309配合,采用过度配合k6,实现径向定位,根据轴承,25mm B =端轴颈直径为mm 60,长度左端为mm 30和右端为mm 28。
(5)退刀槽:为保证加工到位,和保证装配时相邻零件的端面靠紧,在齿轮段两端轴颈处加工退刀槽,选取槽宽为mm 5,槽深为mm 2。
(7)倒角:根据推介值(mm ):50~30>d ,6.15.1或取C 。
80~50>d ,2取C 。
输入轴的基本尺寸如下表:输入轴的结构图::输入轴的受力分析::画出受力简图::计算支座反力:(1)作用于齿轮上的圆周力:N d T F I t 85.4589065.017.149222=⨯==(2)作用于齿轮上的径向力:N F F o t r 33.149120tan 85.458920tan ===(3)计算在水平面上的反力:N .F F F r NV NV 67.7452331491221====(4)计算在垂直面上的反力:N F F F t NH NH 93.2294285.4389221====:计算弯矩:(1)计算水平面上的弯矩:m N .L F M NV V ⋅=⨯=⨯=33.50356767.745111 m N .L F M NV V ⋅=⨯=⨯=33.50356767.74522221V V V M M M ==(2)计算垂直面上的弯矩:m N L F M NH H ⋅=⨯=⨯=08.15495.6793.2294111 m N .L F M NH H ⋅=⨯=⨯=08.154956703.229422221H H H M M M ==(3)计算合成弯矩:m N M M M H V ⋅=+=+=80.162808.154933.5032221211 m N M M M H V ⋅=+=+=80.162808.154933.503222222221M M M ==(4)计算转矩:m N n P T I I ⋅=⨯==17.14950081.795509550(5)计算截面当量弯矩:()()m N ..αT MM ⋅=⨯+=+=89.163217.149608016282222取应力校正系数6.0=α。
(6)绘制输入轴的载荷分析图::判断危险截面和校核: :判断危险截面:如上计算所得:危险截面位于安装齿轮的位置。
按弯扭合成强度校核:根据轴是单向旋转,扭转切应力为脉动循环变应力,取6.0=α,轴的计算应力为: WT M ca22)(ασ+=MPa40.59651.0)1491706.0(1628800322=⨯⨯+= 式中 :M ——轴所受的弯矩,mm N ⋅; T ——轴所受的扭矩,mm N ⋅;W ——抗弯截面系数,2mm ,根据截面形状,取31.0d W =; ][1-σ——对称循环变应力时轴的许用弯曲应力,MPa 。
前已选定轴的材料为45钢,调质处理,查表得MPa 60][1=-σ。
因此][1-<σσca ,故安全。
第二节:输出轴的设计:输出轴的设计::选取轴的材料和热处理方法:选取轴的材料为45钢,经过调质处理,硬度240=HB 。
:计初步估算轴的直径:30min nPA d ≥ 根据选用材料为45钢,0A 的范围为103~126,选取0A 值为110,低速轴功率kW P 74.7=,min /100r n =, 代入数据:mm d 88.4610074.71103min =⨯≥ 考虑到轴的外伸端上开有键槽,将计算轴颈加大3%~7%后,取标准直径为50mm 。
输出轴的结构设计:输出轴系的主要零部件包括一对深沟球轴承,直齿圆柱齿轮和联轴器等,为了便于轴上零件的装卸,采用阶梯轴结构。
(1)外伸段:设计外伸段与LT9型弹性柱销连轴器配合,以过盈配合作径向定位,且外联轴器的一侧采用轴肩作轴向定位,选取外伸段长为mm 68,直径为mm 50φ。
(2)密封段:设计密封段与油封毡圈5519974406/-ZQ JB 配合,选取密封段直径长度为mm 48,直径为mm 55φ。
(3)轴肩段:轴肩与轴承和从动齿轮作轴向定位,选取轴肩段长为mm 30,直径为mm 72φ。
(4)左右两端轴颈段:左右两端轴颈与6412深沟球轴承配合,轴承内圈与轴承采用过度配合k6,实现径向定位,根据轴承,35mm B =端轴颈直径为mm 60,长度左端为mm 35和右段为mm 75。
(5)齿轮配合段:此段开有键槽,采用圆头普通平键与减速器的从动配合,根据设计的直齿齿轮的齿宽为mm 70,为使装配紧实,设计配合段长度为mm 64, 直径为mm 68。
(6)退刀槽:为保证加工到位,和保证装配时相邻零件的端面靠紧,在轴肩和右端轴颈处加工退刀槽,选取槽宽为mm 3,槽深为mm 2。
(8)倒角:根据推介值(mm ):50~30>d ,6.15.1或取C 。
80~50>d ,2取C 。
输出轴的基本尺寸如下表:输入轴的结构图::输出轴的受力分析::画出受力简图::计算支座反力:(1)作用于齿轮上的圆周力:N d T F II t 91.2309064.017.739222=⨯== (2)作用于齿轮上的径向力:N F F o t r 74.84020tan 9.230920tan ===(3)计算在水平面上的反力:N ...L L F F r NV 854471535817484021=⨯== N ...L L F F r NV 893921535717484012=⨯== (4)计算在垂直面上的反力:N ...L L F F t NH 44123015358191230921=⨯== N ...L L F F t NH 47107915357191230912=⨯== :计算弯矩: (1)计算水平面上的弯矩:m N ...L F M NV V ⋅=⨯=⨯=2132057185447111m N ...L F M NV V ⋅=⨯=⨯=213205818939222221V V V M M M ==(2)计算垂直面上的弯矩:m N ...L F M NH H ⋅=⨯=⨯=76879571441230111m N ...L F M NH H ⋅=⨯=⨯=7787958147107922221H H H M M M ==(3)计算合成弯矩:m N ...M M M H V ⋅=+=+=2293677879213202221211 m N ...M M M H V ⋅=+=+=239367787921320222222221M M M ==(4)计算转矩:m N n P T II II ⋅=⨯==17.73910074.795509550 (6)计算截面当量弯矩: ()()m N ....αT M M ⋅=⨯+=+=9510351773960229362222取应力校正系数6.0=α。
(7)绘制输出轴的载荷分析图::判断危险截面和校核::判断危险截面:如上计算所得:危险截面位于安装齿轮的位置。
:按弯扭合成强度校核:根据轴是单向旋转,扭转切应力为脉动循环变应力,取6.0=α,轴的计算应力为: WT M ca 22)(ασ+= MPa71.35641.0)7391706.0(936220322=⨯⨯+= 式中 :M ——轴所受的弯矩,mm N ⋅;T ——轴所受的扭矩,mm N ⋅;W ——抗弯截面系数,2mm ,根据截面形状,近似计算可忽略键槽,取31.0d W =;][1-σ——对称循环变应力时轴的许用弯曲应力,MPa 。
前已选定轴的材料为45钢,调质处理,查表得MPa 60][1=-σ。
因此][1-<σσca ,故安全。