2008年四川省绵阳市中考数学试题及答案(word版)
- 格式:doc
- 大小:1.17 MB
- 文档页数:9
2008年四川省绵阳市中学自主招生数学素质考查卷收藏试卷下载试卷试卷分析一、选择题(共12小题,每小题4分,满分48分)1、下列因式分解中,结果正确的是()A、x2y-y3=y(x2-y2)B、x4-4=(x2+2)(x- )(x+ )C、x2-x-1=x(x-1- )D、1-(a-2)2=(a-1)(a-3)☆☆☆☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮2、“已知二次函数y=ax2+bx+c的图象如图所示,试判断a+b+c与0的大小.”一同学是这样回答的:“由图象可知:当x=1时y<0,所以a+b+c<0.”他这种说明问题的方式体现的数学思想方法叫做()A、换元法B、配方法C、数形结合法D、分类讨论法显示解析在线训练收藏试题试题纠错下载试题试题篮3、已知实数x满足x2+ +x- =4,则x- 的值是()A、-2B、1C、-1或2D、-2或1显示解析在线训练收藏试题试题纠错下载试题试题篮4、若直线y=2x-1与反比例函数y= 的图象交于点P(2,a),则反比例函数y= 的图象还必过点()A、(-1,6)B、(1,-6)C、(-2,-3)D、(2,12)显示解析在线训练收藏试题试题纠错下载试题试题篮5、现规定一种新的运算“*”:m*n=(m+n)m-n,那么* =()A、B、5 C、3 D、9☆☆☆☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮6、一副三角板,如图所示叠放在一起,则∠AOB+∠COD=()A、180°B、150°C、160°D、170°显示解析在线训练收藏试题试题纠错下载试题试题篮7、某中学对2005年、2006年、2007年该校住校人数统计时发现,2006年比2005年增加20%,2007年比2006年减少20%,那么2007年比2005年()A、不增不减B、增加4%C、减少4%D、减少2%显示解析在线训练收藏试题试题纠错下载试题试题篮8、一半径为8的圆中,圆心角θ为锐角,且sinθ= ,则角θ所对的弦长等于()A、8B、10C、8D、16显示解析在线训练收藏试题试题纠错下载试题试题篮9、一支长为13cm的金属筷子(粗细忽略不计),放入一个长、宽、高分别是4cm、3cm、16cm的长方体水槽中,那么水槽至少要放进()深的水才能完全淹没筷子.A、13cmB、4 cmC、12cmD、cm显示解析在线训练收藏试题试题纠错下载试题试题篮10、如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A 、8 cm B 、8πcm C 、2 cm D 、4πcm 显示解析在线训练收藏试题试题纠错下载试题试题篮11、一辆汽车从甲地开往乙地,开始以正常速度匀速行驶,但行至途中汽车出了故障,只好停下修车,修好后,为了按时到达乙地,司机加快了行驶速度并匀速行驶.下面是汽车行驶路程S (千米)关于时间t (小时)的函数图象,那么能大致反映汽车行驶情况的图象是( )A 、B 、C 、D 、显示解析在线训练收藏试题试题纠错下载试题试题篮12、由绵阳出发到成都的某一次列车,运行途中须停靠的车站依次是:绵阳→罗江→黄许→德阳→广汉→清白江→新都→成都.那么要为这次列车制作的车票一共有( )A 、7种B 、8种C 、56种D 、28种显示解析在线训练收藏试题试题纠错下载试题试题篮二、填空题(共6小题,每小题4分,满分24分)13、根据图中的抛物线可以判断:当x<1时,y 随x 的增大而减小;当x=1时,y 有最小值.显示解析在线训练收藏试题试题纠错下载试题试题篮14、函数y= 中,自变量x 的取值范围是15上的两个动点.弦501根.,其中.20AC= .以22、已知直线y=x+a与y轴的负半轴交于点A,直线y=-2x+8与x轴交于点B,与y轴交于点C,AO:CO=7:8(O是坐标原点),两条直线交于点P.(1)求a的值及点P的坐标;(2)求四边形AOBP的面积S.显示解析在线训练收藏试题试题纠错下载试题试题篮23、如图:已知AB是圆O的直径,BC是圆O的弦,圆O的割线DEF垂直于AB于点G,交BC于点H,DC=DH.(1)求证:DC是圆O的切线;(2)请你再添加一个条件,可使结论BH2=BG•BO成立,说明理由;(3)在满足以上所有的条件下,AB=10,EF=8.求sin∠A的值.☆☆☆☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮24、如图,菱形ABCD的边长为12cm,∠A=60°,点P从点A出发沿线路AB⇒BD 做匀速运动,点Q从点D同时出发沿线路DC⇒CB⇒BA做匀速运动.(1)已知点P,Q运动的速度分别为2cm/秒和2.5cm/秒,经过12秒后,P、Q分别到达M、N两点,试判断△AMN的形状,并说明理由;(2)如果(1)中的点P、Q有分别从M、N同时沿原路返回,点P的速度不变,点Q的速度改为vcm/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与题(1)中的△AMN相似,试求v的值.☆☆☆☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮25、在△ABC中,∠C=90°,AC,BC的长分别是b,a,且cotB=AB•cosA.(1)求证:b2=a;(2)若b=2,抛物线y=m(x-b)2+a与直线y=x+4交于点M(x1,y1)和点N(x2,y2),且△MON的面积为6(O是坐标原点).求m的值;(3)若,抛物线y=n(x2+px+3q)与x轴的两个交点中,一个交点在原点的右侧,试判断抛物线与y轴的交点是在y轴的正半轴还是负半轴,说明理由.。
四川省绵阳市中考数学试卷一、选择题(共12小题,每题3分,满分36分)1.(3分)(•绵阳)2相反数是()C.D.2A.﹣2 B.﹣考点:相反数分析:运用相反数概念:只有符号不一样两个数叫做互为相反数,进而得出答案.解答:解:2相反数是﹣2.故选:A.点评:此题重要考察了相反数概念,对把握定义是解题关键.2.(3分)(•绵阳)下列四个图案中,属于中心对称图形是()A.B.C.D.考点:中心对称图形.分析:根据中心对称概念和各图形特点即可求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项对.故选D.点评:本题考察中心对称图形概念:在同一平面内,假如把一种图形绕某一点旋转180度,旋转后图形能和原图形完全重叠,那么这个图形就叫做中心对称图形.3.(3分)(•绵阳)下列计算对是()A.a2•a=a2B.a2÷a=a C.a2+a=a3D.a2﹣a=a考点:同底数幂除法;合并同类项;同底数幂乘法.分析:根据合并同类项法则,同底数幂乘法与除法知识求解即可求得答案.解答:解:A、a2a=a3,故A选项错误;B、a2÷a=a,故B选项对;C、a2+a=a3,不是同类项不能计算,故错误;D、a2﹣a=a,不是同类项不能计算,故错误;故选:B.点评:本题重要考察合并同类项法则,同底数幂乘法与除法知识,熟记法则是解题关键.4.(3分)(•绵阳)若代数式故意义,则x取值范围是()A.x <B.x ≤C.x >D.x ≥考点:二次根式故意义条件.分析:根据被开方数不小于等于0列式计算即可得解.解答:解:由题意得,3x﹣1≥0,解得x ≥.故选D.点评:本题考察知识点为:二次根式被开方数是非负数.5.(3分)(•绵阳)一小朋友行走在如图所示地板上,当他随意停下时,最终停在地板上阴影部分概率是()A.B.C.D.考点:几何概率.分析:根据几何概率求法:最终停留在黑色方砖上概率就是黑色区域面积与总面积比值.解答:解:观测这个图可知:黑色区域(3块)面积占总面积(9块),故其概率为.故选:A.点评:本题考察几何概率求法:首先根据题意将代数关系用面积表达出来,一般用阴影区域表达所求事件(A);然后计算阴影区域面积在总面积中占比例,这个比例即事件(A)发生概率.6.(3分)(•绵阳)如图所示正三棱柱,它主视图是()A.B.C.D.考点:简朴几何体三视图.分析:根据主视图是从物体正面看所得到图形求解.解答:解:从几何体正面看所得到形状是矩形.故选B.点评:本题考察了几何体三视图,掌握定义是关键.注意所有看到棱都应表目前三视图中.7.(3分)(•绵阳)线段EF是由线段PQ平移得到,点P(﹣1,4)对应点为E(4,7),则点Q(﹣3,1)对应点F坐标为()A.(﹣8,﹣2)B.(﹣2,﹣2)C.(2,4)D.(﹣6,﹣1)考点:坐标与图形变化-平移分析:首先根据P点对应点为E可得点坐标变化规律,则点Q坐标变化规律与P点坐标变化规律相似即可.解答:解:∵点P(﹣1,4)对应点为E(4,7),∴P点是横坐标+5,纵坐标+3得到,∴点Q(﹣3,1)对应点N坐标为(﹣3+5,1+3),即(2,4).故选:C.点评:此题重要考察了坐标与图形变化﹣平移,关键是掌握把一种图形平移后,个点变化规律都相似.8.(3分)(•绵阳)如图,一艘海轮位于灯塔P北偏东30°方向,距离灯塔80海里A处,它沿正南方向航行一段时间后,抵达位于灯塔P南偏东45°方向上B处,这时,海轮所在B 处与灯塔P距离为()A.40海里B.40海里C.80海里D.40海里考点:解直角三角形应用-方向角问题.分析:根据题意画出图形,进而得出PA,PC长,即可得出答案.解答:解:过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里,故CP=AP=40(海里),则PB==40(海里).故选:A.点评:此题重要考察了方向角问题以及锐角三角函数关系等知识,得出各角度数是解题关键.9.(3分)(•绵阳)下列命题中对是()A.对角线相等四边形是矩形B.对角线互相垂直四边形是菱形C.对角线互相垂直平分且相等四边形是正方形D.一组对边相等,另一组对边平行四边形是平行四边形考点:命题与定理.分析:根据根据矩形、菱形、正方形和平行四边形鉴定措施对各选项进行判断.解答:解:A、对角线相等平行四边形是矩形,因此A选项错误;B、对角线互相垂直平行四边形是菱形,因此B选项错误;C、对角线互相垂直平分且相等四边形是正方形,因此C选项对;D、一组对边相等且平行四边形是平行四边形,因此D选项错误.故选C.点评:本题考察了命题与定理:判断事物语句叫命题;对命题称为真命题,错误命题称为假命题;通过推理论证真命题称为定理.10.(3分)(•绵阳)某商品标价比成本价高m%,根据市场需要,该商品需降价n%发售,为了不赔本,n应满足()A.n≤m B.n≤C.n≤D.n≤考点:一元一次不等式应用分析:根据最大降价率即是保证售价不小于等于成本价相等,进而得出不等式即可.解答:解:设进价为a元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0,则(1+m%)(1﹣n%)﹣1≥0,整顿得:100n+mn≤100m,故n≤.故选:B.点评:此题重要考察了一元一次不等式应用,得出对不等关系是解题关键.11.(3分)(•绵阳)在边长为正整数△ABC中,AB=AC,且AB边上中线CD将△ABC周长分为1:2两部分,则△ABC面积最小值为()A.B.C.D.考点:勾股定理;三角形面积;三角形三边关系;等腰三角形性质.分析:设这个等腰三角形腰为x,底为y,分为两部分边长分别为n和2n,再根据题意列出有关x、n、y方程组,用n表达出x、y值,由三角形三边关系舍去不符合条件x、y 值,由n是正整数求出△ABC面积最小值即可.解答:解:设这个等腰三角形腰为x,底为y,分为两部分边长分别为n和2n,得或,解得或,∵2×<(此时不能构成三角形,舍去)∴取,其中n是3倍数∴三角形面积S△=××=n2,对于S△=n2=n2,当n≥0时,S△伴随n增大而增大,故当n=3时,S△=取最小.故选:C.点评:本题考察是三角形面积及三角形三边关系,根据题意列出有关x、n、y方程组是解答此题关键.12.(3分)(•绵阳)如图,AB是半圆O直径,C是半圆O上一点,OQ⊥BC于点Q,过点B作半圆O切线,交OQ延长线于点P,PA交半圆O于R,则下列等式中对是()A.=B.=C.=D.=考点:切线性质;平行线鉴定与性质;三角形中位线定理;垂径定理;相似三角形鉴定与性质专题:探究型.分析:(1)连接AQ,易证△OQB∽△OBP,得到,也就有,可得△OAQ∽OPA,从而有∠OAQ=∠APO.易证∠CAP=∠APO,从而有∠CAP=∠OAQ,则有∠CAQ=∠BAP,从而可证△ACQ∽△ABP,可得,因此A对.(2)由△OBP∽△OQB得,即,由AQ≠OP得,故C不对.(3)连接OR,易得=,=2,得到,故B不对.(4)由及AC=2OQ,AB=2OB,OB=OR可得,由AB≠AP得,故D不对.解答:解:(1)连接AQ,如图1,∵BP与半圆O于点B,AB是半圆O直径,∴∠ABP=∠ACB=90°.∵OQ⊥BC,∴∠OQB=90°.∴∠OQB=∠OBP=90°.又∵∠BOQ=∠POB,∴△OQB∽△OBP.∴.∵OA=OB,∴.又∵∠AOQ=∠POA,∴△OAQ∽△OPA.∴∠OAQ=∠APO.∵∠OQB=∠ACB=90°,∴AC∥OP.∴∠CAP=∠APO.∴∠CAP=∠OAQ.∴∠CAQ=∠BAP.∵∠ACQ=∠ABP=90°,∴△ACQ∽△ABP.∴.故A对.(2)如图1,∵△OBP∽△OQB,∴.∴.∵AQ≠OP,∴.故C不对.(3)连接OR,如图2所示.∵OQ⊥BC,∴BQ=CQ.∵AO=BO,∴OQ=AC.∵OR=AB.∴=,=2.∴≠.∴.故B不对.(4)如图2,∵,且AC=2OQ,AB=2OB,OB=OR,∴.∵AB≠AP,∴.故D不对.故选:A.点评:本题考察了切线性质,相似三角形鉴定与性质、平行线鉴定与性质、垂径定理、三角形中位线等知识,综合性较强,有一定难度.二、填空题(共6小题,每题4分,满分24分)13.(4分)(•绵阳)2﹣2=.考点:负整数指数幂分析:根据负整数指数幂运算法则直接进行计算即可.解答:解:2﹣2==.故答案为:.点评:本题重要考察负整数指数幂,幂负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正进行计算.14.(4分)(•绵阳)“五一”小长假,以生态休闲为特色绵阳近郊游倍受青睐.假期三天,本市重要景区景点人气火爆,据市旅游局记录,本次小长假共实现旅游收入5610万元,将这一数据用科学记数法表达为 5.61×107元.考点:科学记数法—表达较大数分析:科学记数法表达形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点移动了多少位,n绝对值与小数点移动位数相似.当原数绝对值>1时,n是正数;当原数绝对值<1时,n是负数.解答:解:将5610万元用科学记数法表达为:5.61×107.故答案为:5.61×107.点评:此题考察了科学记数法表达措施.科学记数法表达形式为a×10n形式,其中1≤|a|<10,n为整数,表达时关键要对确定a值以及n值.15.(4分)(•绵阳)如图,l∥m,等边△ABC顶点A在直线m上,则∠α=20°.考点:平行线性质;等边三角形性质分析:延长CB交直线m于D,根据根据两直线平行,内错角相等解答即可,再根据三角形一种外角等于与它不相邻两个内角和列式求出∠α.解答:解:如图,延长CB交直线m于D,∵△ABC是等边三角形,∴∠ABC=60°,∵l∥m,∴∠1=40°.∴∠α=∠ABC﹣∠1=60°﹣40°=20°.故答案是:20.点评:本题考察了平行线性质,等边三角形性质,熟记性质并作辅助线是解题关键,也是本题难点.16.(4分)(•绵阳)如图,⊙O半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(成果保留π)考点:正多边形和圆分析:根据题意得出△COW≌△ABW,进而得出图中阴影部分面积为:S进而得出扇形OBC 答案.解答:解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC==.故答案为:.点评:此题重要考察了正多边形和圆以及扇形面积求法,得出阴影部分面积=S是解扇形OBC 题关键.17.(4分)(•绵阳)如图,在正方形ABCD中,E、F分别是边BC、CD上点,∠EAF=45°,△ECF周长为4,则正方形ABCD边长为2.考点:旋转性质;全等三角形鉴定与性质;勾股定理;正方形性质.分析:根据旋转性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.解答:解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,∴2BC=4,∴BC=2.故答案为:2.点评:此题重要考察了旋转性质以及全等三角形鉴定与性质等知识,得出△FAE≌△EAF′是解题关键.18.(4分)(•绵阳)将边长为1正方形纸片按图1所示措施进行对折,记第1次对折后得到图形面积为S1,第2次对折后得到图形面积为S2,…,第n次对折后得到图形面积为S n,请根据图2化简,S1+S2+S3+…+S=1﹣.考点:规律型:图形变化类分析:观测图形变化发现每次折叠后面积与正方形关系,从而写出面积和通项公式.解答:解:观测发现S1+S2+S3+…+S=+++…+=1﹣,故答案为:1﹣.点评:本题考察了图形变化类问题,解题关键是仔细观测图形变化,并找到图形变化规律.三、解答题(共7小题,满分90分)19.(16分)(•绵阳)(1)计算:(﹣)0+|3﹣|﹣;(2)化简:(1﹣)÷(﹣2)考点:二次根式混合运算;分式混合运算;零指数幂.专题:计算题.分析:(1)根据零指数幂和分母有理化得到原式=1+2﹣3﹣2,然后合并即可;(2)先把前面括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.解答:解:(1)原式=1+2﹣3﹣2=﹣2;(2)原式=÷=•=.点评:本题考察了二次根式混合运算:先把各二次根式化为最简二次根式,再进行二次根式乘除运算,然后合并同类二次根式.也考察了零指数幂和分式混合运算.20.(12分)(•绵阳)四川省“单独两孩”政策于3月20日正式开始实行,该政策实行也许给我们生活带来某些变化,绵阳市人口计生部门抽样调查了部分市民(每个参与调查市民必须且只能在如下6种变化中选择一项),并将调查成果绘制成记录图:种类 A B C D E F变化有助于延缓社会老龄化现象导致人口暴增提高家庭抗风险能力增大社会基本公共服务压力环节男女比例不平衡现象增进人口与社会、资源、环境协调可持续发展根据记录图,回答问题:(1)参与调查市民一共有人;(2)参与调查市民中选择C人数是400人;(3)∠α=54°;(4)请补全条形记录图.考点:条形记录图;登记表;扇形记录图.分析:(1)根据A类有700人,所占比例是35%,据此即可求得总人数;(2)运用总人数乘以对应比例即可求解;(3)运用360°乘以对应比例即可求解;(4)运用总人数乘以对应比例求得D类人数,然后根据(1)即可作出记录图.解答:解:(1)参与调查市民一共有:700÷35%=(人);(2)参与调查市民中选择C人数是:(1﹣35%﹣5%﹣10%﹣15%﹣15%)=400(人);(3)α=360°×15%=54°;(4)D人数:×10%=200(人).点评:本题考察是条形记录图综合运用.读懂记录图,从记录图中得到必要信息是处理问题关键.条形记录图能清晰地表达出每个项目数据.21.(12分)(•绵阳)绵州大剧院矩形专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生业余文化生活,影剧院制定了两种优惠方案,方案1:购置一张成人票赠送一张学生票;方案2:按总价90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x函数关系式;(2)请计算并确定出最节省费用购票方案.考点:一次函数应用.分析:(1)首先根据优惠方案①:付款总金额=购置成人票金额+除去4人后小朋友票金额;优惠方案②:付款总金额=(购置成人票金额+购置小朋友票金额)×打折率,列出y 有关x函数关系式,(2)根据(1)函数关系式求出当两种方案付款总金额相等时,购置票数.再就三种状况讨论.解答:解:(1)按优惠方案①可得y1=20×4+(x﹣4)×5=5x+60(x≥4),按优惠方案②可得y2=(5x+20×4)×90%=4.5x+72(x≥4);(2)由于y1﹣y2=0.5x﹣12(x≥4),①当y1﹣y2=0时,得0.5x﹣12=0,解得x=24,∴当购置24张票时,两种优惠方案付款同样多.②当y1﹣y2<0时,得0.5x﹣12<0,解得x<24,∴4≤x<24时,y1<y2,优惠方案①付款较少.③当y1﹣y2>0时,得0.5x﹣12>0,解得x>24,当x>24时,y1>y2,优惠方案②付款较少.点评:本题根据实际问题考察了一次函数运用.处理本题关键是根据题意对列出两种方案解析式,进而计算出临界点x取值,再深入讨论.22.(12分)(•绵阳)如图,已知反比例函数y=(k>0)图象通过点A(1,m),过点A 作AB⊥y轴于点B,且△AOB面积为1.(1)求m,k值;(2)若一次函数y=nx+2(n≠0)图象与反比例函数y=图象有两个不一样公共点,求实数n取值范围.考点:反比例函数与一次函数交点问题.分析:(1)根据三角形面积公式即可求得m值;(2)若一次函数y=nx+2(n≠0)图象与反比例函数y=图象有两个不一样公共点,则方程=nx+2有两个不一样解,运用根鉴别式即可求解.解答:解:(1)由已知得:S△AOB=×1×m=1,解得:m=2,把A(1,2)代入反比例函数解析式得:k=2;(2)由(1)知反比例函数解析式是y=,则=nx+2有两个不一样解,方程去分母,得:nx2+2x﹣2=0,则△=4+8n>0,解得:n>﹣且n≠0.点评:本题综合考察反比例函数与方程组有关知识点.先由点坐标求函数解析式,然后解由解析式构成方程组求出交点坐标,体现了数形结合思想.23.(12分)(•绵阳)如图,已知△ABC内接于⊙O,AB是⊙O直径,点F在⊙O上,且满足=,过点C作⊙O切线交AB延长线于D点,交AF延长线于E点.(1)求证:AE⊥DE;(2)若tan∠CBA=,AE=3,求AF长.考点:切线性质分析:(1)首先连接OC,由OC=OA,=,易证得OC∥AE,又由过点C作⊙O切线交AB延长线于D点,易证得AE⊥DE;(2)由AB是⊙O直径,可得△ABC是直角三角形,易得△AEC为直角三角形,AE=3,然后连接OF,可得△OAF为等边三角形,继而求得答案.解答:(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵=,∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE且⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O直径,∴△ABC是直角三角形,∵tan∠CBA=,∴∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF为等边三角形,∴AF=OA=AB,在Rt△ACB中,AC=2,tan∠CBA=,∴BC=2,∴AB=4,∴AF=2.点评:此题考察了切线性质、直角三角形性质、等边三角形鉴定与性质以及圆周角定理.此题难度适中,注意掌握辅助线作法,注意掌握数形结合思想应用.24.(12分)(•绵阳)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF值;(3)如图2,若P为线段EC上一动点,过点P作△AEC内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,当线段PE长为何值时,矩形PQMN面积最大?并求出其最大值.考点:四边形综合题.分析:(1)由矩形性质可知△ADC≌△CEA,得出AD=CE,DC=EA,∠ACD=∠CAE,从而求得△DEC≌△EDA;(2)根据勾股定理即可求得.(3))有矩形PQMN性质得PQ∥CA,因此,从而求得PQ,由PN∥EG,得出=,求得PN,然后根据矩形面积公式求得解析式,即可求得.解答:(1)证明:由矩形性质可知△ADC≌△CEA,∴AD=CE,DC=EA,∠ACD=∠CAE,在△ADE与△CED中∴△DEC≌△EDA(SSS);(2)解:如图1,∵∠ACD=∠CAE,∴AF=CF,设DF=x,则AF=CF=4﹣x,在RT△ADF中,AD2+DF2=AF2,即32+x2=(4﹣x)2,解得;x=,即DF=.(3)解:如图2,由矩形PQMN性质得PQ∥CA∴又∵CE=3,AC==5设PE=x(0<x<3),则,即PQ=过E作EG⊥AC 于G,则PN∥EG,∴=又∵在Rt△AEC中,EG•AC=AE•CE,解得EG=∴=,即PN=(3﹣x)设矩形PQMN面积为S则S=PQ•PN=﹣x2+4x=﹣+3(0<x<3)因此当x=,即PE=时,矩形PQMN面积最大,最大面积为3.点评:本题考察了全等三角形鉴定和性质,勾股定理应用,平行线分线段成比例定理.25.(14分)(•绵阳)如图,抛物线y=ax2+bx+c(a≠0)图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线解析式;(2)点P为抛物线对称轴上动点,当△PBC为等腰三角形时,求点P坐标;(3)在直线AC上与否存在一点Q,使△QBM周长最小?若存在,求出Q点坐标;若不存在,请阐明理由.考点:二次函数综合题.分析:(1)先由抛物线顶点坐标为N(﹣1,),可设其解析式为y=a(x+1)2+,再将M(﹣2,)代入,得=a(﹣2+1)2+,解方程求出a值即可得到抛物线解析式;(2)先求出抛物线y=﹣x2﹣x+与x轴交点A、B,与y轴交点C坐标,再根据勾股定理得到BC==2.设P(﹣1,m),显然PB≠PC,因此当△PBC为等腰三角形时分两种状况进行讨论:①CP=CB;②BP=BC;(3)先由勾股定理逆定理得出BC⊥AC,连结BC并延长至B′,使B′C=BC,连结B′M,交直线AC于点Q,由轴对称性质可知此时△QBM周长最小,由B(﹣3,0),C(0,),根据中点坐标公式求出B′(3,2),再运用待定系数法求出直线MB′解析式为y=x+,直线AC解析式为y=﹣x+,然后解方程组,即可求出Q点坐标.解答:解:(1)由抛物线顶点坐标为N(﹣1,),可设其解析式为y=a(x+1)2+,将M(﹣2,)代入,得=a(﹣2+1)2+,解得a=﹣,故所求抛物线解析式为y=﹣x2﹣x+;(2)∵y=﹣x2﹣x+,∴x=0时,y=,∴C(0,).y=0时,﹣x2﹣x+=0,解得x=1或x=﹣3,∴A(1,0),B(﹣3,0),∴BC==2.设P(﹣1,m),显然PB≠PC,因此当CP=CB时,有CP==2,解得m=±;当BP=BC时,有BP==2,解得m=±2.综上,当△PBC为等腰三角形时,点P坐标为(﹣1,+),(﹣1,﹣),(﹣1,2),(﹣1,﹣2);(3)由(2)知BC=2,AC=2,AB=4,因此BC2+AC2=AB2,即BC⊥AC.连结BC并延长至B′,使B′C=BC,连结B′M,交直线AC于点Q,∵B、B′有关直线AC对称,∴QB=QB′,∴QB+QM=QB′+QM=MB′,又BM=2,因此此时△QBM周长最小.由B(﹣3,0),C(0,),易得B′(3,2).设直线MB′解析式为y=kx+n,将M(﹣2,),B′(3,2)代入,得,解得,即直线MB′解析式为y=x+.同理可求得直线AC解析式为y=﹣x+.由,解得,即Q(﹣,).因此在直线AC上存在一点Q(﹣,),使△QBM周长最小.点评:本题是二次函数综合题型,其中波及到运用待定系数法求二次函数、一次函数解析式,等腰三角形性质,轴对称性质,中点坐标公式,两函数交点坐标求法等知识,运用数形结合、分类讨论及方程思想是解题关键.。
绵阳市2008年高级中等教育学校招生统一考试数学备用试题一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.32- 的倒数等于( ). A .32 B .32- C .23 D .23- 2.下列各式中,计算正确的是( ).A .5a 2-2a 2 = 3B .2a + 3b = 5abC .(2xy 2)2 = 4x 2y 4D .6mn ÷ 3n = 3m3.下列四个几何体的三视图是同一个图形的是( ).4.据报道,“5·12”汶川大地震使得李白纪念馆刹那间墙倾屋摧,满目疮痍.经过抢救,包括71件顶级国宝在内的4000余件馆藏文物(价值约2 010 000 000元)全部从危房中救出,并被安全转移.将数字2 010 000 000用科学记数法可表示为( ).A .2.01×107B .2.01×108C .2.01×109D .2×1095.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是( ).6.如图,△ABC 中,延长边AB 、CA 构成∠1、∠2,若∠C = 55°,则∠1 +∠2 =( ).A .125°B .235°C .250°D .305°7.如图,把一张矩形纸片ABCD 沿对角线BD 折叠,BC 交AD于O .给出下列结论:① BC 平分∠ABD ;② △ABO ≌△CDO ;③∠AOC = 120°;④ △BOD 是等腰三角形.其中正确的结论有( ).A .①③B .②④C .①②D .③④8.绵阳市(结果保留3个有效数字)( ).A .85.7°B .86°C .42.7°D .43°9.若实数m ,n 满足2m + 3n = 0 且 4m + n -10 = 0,则过点P (m ,n )的反比例函数的解析式为( ).A .x y 61=B .x y 61-=C .x y 6=D .xy 6-= 10.如图,△ABC 中 ,∠C = 90°,∠A = 30°,BD 是∠ABC 的平分线,设△ABD 、△BCD 的面积分别为S 1、S 2,则S 1 : S 2 =( ).A .2 : 1B .2: 1C .3 : 2D .2 :311.如图,正方形ABCD 中,DE = 2AE ,DF = CF ,则 sin ∠BEF =( ).A .410B .810C .10103D .31 12.抛物线bx x y 2322+=与x 轴的两个不同交点是O 和A ,顶点B 在直线y = kx 上,若△OAB 是等边三角形,则b =( ). A .±3 B .±3 C .33± D .31± 二、填空题:本大题共6个小题,每小题4分,共24分.将答案直接填写在题中横线上.13.︱-2︱= .14.若1)1(2-=-a a ,则实数a 的取值范围是 .15.如图,⊙O 的弦AB 、CD 互相平行,E 、F 分别是圆周上两点,则∠BEC +∠AFD = 度.16.抛掷两枚均匀的正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),骰子朝上的面的数字分别为a ,b ,则a + b =6的概率为 .17.“5·12”汶川大地震使不少建筑物受损.某地一水塔地震时发生了严重沉陷(未倾斜).如图,已知地震前,在距该水塔30米的A 处测得塔顶B 的仰角为60°;地震后,在A 处测得塔顶B 的仰角为45°,则该水塔沉陷了 米.(精确到0.01,3≈1.7321,2≈1.4142)18.连接抛物线y = ax 2(a ≠0)上任意四点所组成的四边形可能是 (填写所有正确选项的序号).① 菱形; ② 有三条边相等的四边形; ③ 梯形; ④ 平行四边形.三、解答题:本大题共7个小题,共90分.解答应写出文字说明、证明过程或演算步骤.19.(本题共2个小题,每小题8分,共16分) (1)计算:6)273482()31()21()3(120÷-+--÷--π. (2)化简:)111()1111(22aa a a a ---÷++-.20.(本题满分12分)已知反比例函数xm y 5-=的图象有一支在第一象限. (1)求常数m 的取值范围;(2)若它的图象与函数y = x 的图象一个交点的纵坐标为2,求当-2<x <-1时,反比例函数值y 的取值范围.21.(本题满分12分)某图书馆为了了解读者的需求情况,某天对读者借阅的所有图书(1(2)若用一个统计图描述当天借阅的各类图书所占比例的情况,你认为最好选用什么统计图?作出你所选用的统计图;(3)试根据调查结果,给该图书馆的采购部提一条合理化建议.22.(本题满分12分)华联商场预测某品牌衬衫能畅销市场,先用了8万元购入这种衬衫,面市后果然供不应求,于是商场又用了17.6万元购入第二批这种衬衫,所购数量是第一批购入量的2倍,但单价贵了4元.商场销售这种衬衫时每件定价都是58元,最后剩下的150件按定价的八折销售,很快售完.试求:(1)第一次购买这种衬衫的单价是多少?(2)在这两笔生意中,华联商场共赢利多少元?23.(本题满分12分)如图,P A、PB是⊙O的切线,A、B为切点,连结AO并延长交⊙O于C,交PB的延长线于D.(1)找出图中所有的相似三角形,并证明你的结论(不再添加辅助线);(2)若P A = 2 +2,∠P = 45,求图中阴影部分的面积.24.(本题满分12分)如图,在□ABDO中,已知A、D两点的坐标分别为A(3,3),D(23,0).将□ABDO向左平移3个单位,得到四边形A′B′D′O′.抛物线C经过点A′、B′、D′.(1)在图中作出四边形A′B′D′O′,并写出它的四个顶点坐标;(2)在抛物线C上是否存在点P,使△ABP的面积恰好为四边形A′B′D′O′的面积的一半?若存在,求出点P的坐标;若不存在,说明理由.25.(本题满分14分)(1)已知△ABC是等腰直角三角形,现分别以它的直角边BC、斜边AB为边向外作正方形BCEF、ABMN,如图甲,连接MF,延长CB交MF于D.试观测DF与DM的长度关系,你会发现.(2)如果将(1)中的△ABC改为非等腰的直角三角形,其余作法不变,如图乙,这时D点还具有(1)的结论吗?请证明你的判断.(3)如果将(1)中的△ABC改为锐角三角形,仍以其中的两边分别向外作正方形,如图丙,则应在图中过B点作△ABC的线,它与MF的交点D恰好也具有(1)的结论.请证明在你的作法下结论的正确性.一、填空题1~6.DCDCBB 7~12.BADACA二、填空题13.2 14.a ≥1 15.180 16.61 17.21.96 18.②③ 三、解答题19.(1)原式=6)3938(3411÷-+-÷=6334÷--=221-. (2)原式=)1()1(11122-+-÷--++a a a a a a a =)1(11222--÷-a a a a =-2a 2. 20.(1)∵ 反比例函数的图象有一支在第一象限,∴ m -5>0,即 m >5.因此 m 的取值范围为m >5.(2)由题意可知,反比例函数xm y 5-=的图象经过点(2,2), ∴ 2×2 = m -5,得 m = 9,∴xy 4=. 当x =-2时,y =-2;当x =-1时,y =-4.故根据反比例函数图象知,当-2<x <-1时,y 的取值范围是-4<x <-2.21.(1(2(3)建议:可多采购些文艺类书籍.22.(1有 x 80000×2 =4+x .解得 x = 40,此即为第一批购入衬衫的单价. (2)由(1)知,第一批购入了 80000 ÷ 40 = 2000件.在这两笔生意中,华联商场共赢利为2000×(58-40)+(2000×2-150)×(58-44)+ 150×(58×0.8-44)= 90260元.答:第一批购入这种衬衫的单价为40元,两笔生意中华联商场共赢利90260元.23.(1)△OBD ∽△P AD .证明 ∵ P A 、PB 是⊙O 的切线,∴ OA ⊥P A ,OB ⊥PB ,∴ ∠OAP =∠OBD = 90°. 又∠D =∠D ,∴ △OBD ∽△P AD .(2) ∵ ∠P = 45°, ∴ ∠DOB = 45°,∴ △OBD 、△P AD 均是等腰直角三角形, 从而 PD =2P A ,BD = OB .又 ∵ P A = 2 +2,P A = PB ,∴ BD = OB = PD -PB =2P A -P A =(2-1)P A =(2-1)(2+2)=2.故 S 阴影 = S △OBD -S 扇形 =23604521BD BD OB ⋅-⋅⋅π=2812221⨯-⨯⋅π=41π-. 24.(1)作出平移后的四边形A ′B ′D ′O ′如右.顶点坐标分别为A ′(0,3)、B ′(23,3)、D ′(3,0)、O ′(-3,0).(2)由题意可设抛物线C 的解析式为 y = ax 2 + bx +3,则 ⎪⎩⎪⎨⎧+⋅+⋅=+⋅+⋅=,33)3(0,332)32(322b a b a 解得 a =33,b =-2. ∴ 抛物线C 的解析式为 y =33x 2-2x +3. ∵ 四边形A ′B ′D ′O ′是平行四边形,∴ 它的面积为O ′D ′×OA ′ = 23×3= 6.假设存在点P ,则△ABP 的面积为3.设△ABP 的高为h ,则 21×AB ×h =21×23×h = 3,得 h =3. 即点P 到AB 的距离为3,∴ P 点的纵坐标为0或23.∴ 当P 的纵坐标为0时,即有 0 =33x 2-2x +3,解得 x 1 = x 2 =3. 当P 的纵坐标为23时,即有 23=33x 2-2x +3,解得631-=x ,632+=x . 因此存在满足条件的点P ,坐标为(3,0),(63-,23),(63+,23).25.(1)DF = DM .(2)仍具有(1)的结论,即DF = DM .证明:延长CD ,过M 作MP ⊥CD ,交于P ,P 为垂足.∵ ∠MBP +∠ABC = 90°,∠BAC +∠ABC = 90°,∴ ∠MBP =∠BAC .又 ∠ACB =∠MPB = 90°,AB = BM ,∴ △ABC ≌△BMP ,从而 BC = MP .∵ BC = BF , ∴ BF = MP .又 ∠PDM =∠BDF ,∠DPM =∠DBF ,∴ △DBF ≌△DPM , ∴ DF = DM .(3)高.证明:如图,延长GD,过M、F作GD的垂线垂足为P、Q.∵∠MBP +∠BMP = 90°,∠ABG +∠MBP = 90°,∴∠BMP =∠ABG.又∠MPB =∠AGB = 90°,AB = BM,∴△ABG≌△BMP,∴MP = BG.同理△FQB≌△BGC,∴FQ = BG,∴MP = FQ.∵∠FDQ =∠MDP,∠FQD =∠MPD = 90°,∴△FDQ≌△MDP,进而DF = DM.说明过F作FH∥BM交BD的延长线于H.通过证明△ABC≌△HFB得HF = AB = BM,进而证明△BDM≌△HFD,得出D是FM的中点.。
2008年四川省绵阳市中考数学试卷(副卷)收藏试卷下载试卷试卷分析一、选择题(共12小题,每小题4分,满分48分)1、- 的倒数等于()A、B、- C、D、-★☆☆☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮2、下列各式中,计算正确的是()A、5a2-2a2=3B、2a+3b=5abC、(2xy2)2=4x2y4D、6mn÷3n=3m显示解析在线训练收藏试题试题纠错下载试题试题篮3、下列四个几何体的三视图是同一个图形的是()A、B、C、D、显示解析在线训练收藏试题试题纠错下载试题试题篮4、据报道,“5•12”汶川大地震使得李白纪念馆刹那间墙倾屋摧,满目疮痍.经过抢救,包括71件顶级国宝在内的4000余件馆藏文物(价值约2 010 000 000元)全部从危房中救出,并被安全转移.将数字2 010 000 000用科学记数法可表示为()A、2.01×107B、2.01×108C、2.01×109D、2×109显示解析在线训练收藏试题试题纠错下载试题试题篮5、在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A、B、C、D、☆☆☆☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮6、如图,△ABC中,延长边AB、CA构成∠1,∠2,若∠C=55°,则∠1+∠2=()A、125°B、235°C、250°D、305°显示解析在线训练收藏试题试题纠错下载试题试题篮7、如图,把一张矩形纸片ABCD沿对角线BD折叠,BC交AD 于O.给出下列结论:①BC平分∠ABD;②△ABO≌△CDO;③∠AOC=120°;④△BOD是等腰三角形.其中正确的结论有()A、①③B、②④C、①②D、③④显示解析在线训练收藏试题试题纠错下载试题试题篮8、绵阳市2008年高级中等教育学校招生统一考试文化笔试科目的满分值为:若把表中各笔试科目满分值按比例绘成扇形统计图,则表示数学学科的扇形的圆心角为(结果保留3个有效数字)( )A 、85.7°B 、86°C 、42.7°D 、43° 显示解析在线训练收藏试题试题纠错下载试题试题篮9、若实数m ,n 满足2m+3n=0且4m+n-10=0,则过点P (m ,n )的反比例函数的解析式为( )A 、y=B 、y=C 、y=D 、y=- 显示解析在线训练收藏试题试题纠错下载试题试题篮10、如图,△ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,设△ABD 、△BCD 的面积分别为S 1、S 2,则S 1:S 2=( )A 、2:1B 、 :1C 、3:2D 、2: 显示解析在线训练收藏试题试题纠错下载试题试题篮11、如图,正方形ABCD 中,DE=2AE ,DF=CF ,则sin ∠BEF=( )A 、B 、C 、D 、显示解析在线训练收藏试题试题纠错下载试题试题篮12、抛物线y= x 2+2bx 与x 轴的两个不同交点是O 和A ,顶点B 在直线y=kx 上,若△OAB 是等边三角形,则b=( )A 、±B 、±3C 、±D 、±显示解析在线训练收藏试题试题纠错下载试题试题篮二、填空题(共6小题,每小题5分,满分30分)13、计算:|-2|=2★★★★★显示解析在线训练收藏试题试题纠错下载试题试题篮14、若,则实数a的取值范围是a≥1显示解析在线训练收藏试题试题纠错下载试题试题篮15、如图,⊙O的弦AB、CD互相平行,E、F分别是圆周上两点,则∠BEC+∠AFD=180度.显示解析在线训练收藏试题试题纠错下载试题试题篮16、抛掷两枚均匀的正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),骰子朝上的面的数字分别为a,b,则a+b=6的概率为显示解析在线训练收藏试题试题纠错下载试题试题篮17、“5•12”汶川大地震使不少建筑物受损.某地一水塔地震时发生了严重沉陷(未倾斜).如图,已知地震前,在距该水塔30米的A处测得塔顶B的仰角为60°;地震后,在A处测得塔顶B的仰角为45°,则该水塔沉陷了21.96米.(精确到0.01,≈1.7321,≈1.4142).显示解析在线训练收藏试题试题纠错下载试题试题篮18、连接抛物线y=ax2(a≠0)上任意四点所组成的四边形可能是(填写所有正确选项的序号).①菱形;②有三条边相等的四边形;③梯形;④平行四边形.☆☆☆☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮三、解答题(共7小题,满分0分)19、(1)计算:;(2)化简:.显示解析在线训练收藏试题试题纠错下载试题试题篮20、已知反比例函数的图象有一支在第一象限.(1)求常数m的取值范围;(2)若它的图象与函数y=x的图象一个交点的纵坐标为2,求当-2<x<-1时,反比例函数值y的取值范围.显示解析在线训练收藏试题试题纠错下载试题试题篮21、某图书馆为了了解读者的需求情况,某天对读者借阅的所有图书进行了分类统计,结果如下:(1)补全上表,并求当天共借阅了多少本图书?(2)若用一个统计图描述当天借阅的各类图书所占比例的情况,你认为最好选用什么统计图?作出你所选用的统计图;(3)试根据调查结果,给该图书馆的采购部提一条合理化建议.显示解析在线训练收藏试题试题纠错下载试题试题篮22、华联商场预测某品牌衬衫能畅销市场,先用了8万元购入这种衬衫,面市后果然供不应求,于是商场又用了17.6万元购入第二批这种衬衫,所购数量是第一批购入量的2倍,但单价贵了4元.商场销售这种衬衫时每件定价都是58元,最后剩下的150件按定价的八折销售,很快售完.试求:(1)第一次购买这种衬衫的单价是多少?(2)在这两笔生意中,华联商场共赢利多少元?显示解析在线训练收藏试题试题纠错下载试题试题篮23、如图,PA、PB是⊙O的切线,A、B为切点,连接AO并延长交⊙O于C,交PB的延长线于D.(1)找出图中所有的相似三角形,并证明你的结论(不再添加辅助线);(2)若PA=2+ ,∠P=45°,求图中阴影部分的面积.显示解析在线训练收藏试题试题纠错下载试题试题篮24、如图,在▱ABDO中,已知A、D两点的坐标分别为A(,),D(2 ,0).将▱ABDO向左平移个单位,得到四边形A′B′D′O′.抛物线C经过点A′、B′、D′.(1)在图中作出四边形A′B′D′O′,并写出它的四个顶点坐标;(2)在抛物线C上是否存在点P,使△ABP的面积恰好为四边形A′B′D′O′的面积的一半?若存在,求出点P的坐标;若不存在,说明理由.显示解析在线训练收藏试题试题纠错下载试题试题篮25、(1)已知△ABC是等腰直角三角形,现分别以它的直角边BC、斜边AB为边向外作正方形BCEF、ABMN,如图甲,连接MF,延长CB交MF于D.试观测DF与DM的长度关系,你会发现DF=DM.(2)如果将(1)中的△ABC改为非等腰的直角三角形,其余作法不变,如图乙,这时D点还具有(1)的结论吗?请证明你的判断.(3)如果将(1)中的△ABC改为锐角三角形,仍以其中的两边分别向外作正方形,如图丙,则应在图中过B点作△ABC的高线,它与MF的交点D恰好也具有(1)的结论.请证明在你的作法下结论的正确性.希望以上资料对你有所帮助,附励志名3条:1、积金遗于子孙,子孙未必能守;积书于子孙,子孙未必能读。
2008年四川省成都市中考数学试卷(含成都市初三毕业会考)全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ为其它类型的题。
A卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题。
各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分)1. 2cos45°的值等于(A(B(C(D)2.化简(- 3x2)·2x3的结果是(A)- 6x5(B)- 3x5 (C)2x5 (D)6x53.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1370000千米,这个路程用科学计数法表示为(A)13.7×104千米(B)13.7×105千米(C)1.37×105千米(D)1.37×106千米4.用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是(A)4 (B)5 (C)6 (D)75.下列事件是必然事件的是(A)打开电视机,任选一个频道,屏幕上正在播放天气预报(B)到电影院任意买一张电影票,座位号是奇数(C)在地球上,抛出去的篮球会下落(D)掷一枚均匀的骰子,骰子停止转动后偶数点朝上6.在函数y=中,自变量x的取值范围是(A)x≥- 3 (B)x≤- 3 (C)x≥3 (D )x≤ 37.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF8. 一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00 ~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为(A )15,15 (B )10,15 (C )15,20 (D )10,209. 如图,小红同学要用纸板制作一个高4cm ,底面周长是6πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A )12πcm 2 (B )15πcm 2 (C )18πcm 2 (D )24πcm 210. 有下列函数:①y = - 3x ;②y = x – 1:③y = -x1(x < 0);④y = x 2 + 2x + 1.其中当x 在各自的自变量取值范围内取值时,y 随着x 的增大而增大的函数有(A )①② (B )①④ (C )②③ (D )③④第Ⅱ卷(非选择题,共70分)注意事项:1. A 卷的第Ⅱ卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
成都市二00八年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学总体评析2008年四川成都中考数学试题功能性明确,生活气息很浓,注重双基,注重思想方法的体现以及和综合能力的检测,题量与07年持平,现简单分析如下:1. 诊断性和选拔性强•试题分A卷和B卷,A卷着重于学生基本知识和基本技能的考查,尤以基本知识为重点,题目相对于B 卷要简单得多,面向于全部考生,让学生考出学到的数学,考出学生的自信.B卷题目稍难,着重于基本技能和综合知识的考查,这部分面对大部分同学,学生需要有较强的分析问题,解决问题的能力•这部分考出了学生的水平,拉开学生之间的距离,所以说它的选拔性较强•2. 试题生活气息很浓全卷的试题让学生读来并不陌生,感到很自然,大部分试题来源于生活,如第5,8,9,11,17,19,22,26 题等,让学生感觉到数学就在我的身边,生活中离不开数学•从而激发学生学有用的数学的热情,也激发学生继续探究数学的兴趣•3. 试题有较强的计算功能选拔性的试题难度并不大,就在于需要我们认真的计算,计算能力也是学习数学不可缺少的一种必备的能力,实际教学中,好多学生都缺少耐心,需要有三步以上的计算,往往放弃.如最后一题其实并不难,第2问除了需要清淅的分类思想外,就得靠计算,每一种情况都必须求二次一次函数的解析式,然后解方程组,还得打辅助线利用勾股定理计算两底不等才能得出所求点的坐标.最后一问,是含参数计算,有a和k两个参数,即使学生对二次函数的一般式,顶点式熟透于心,如果没有很强的整式运算能力,不可能算出最后的答案的.难度信息选择题参考答案、解析可以通过定义来求或是表格来记忆 30 o 45o 60 o 的正弦、较难题 24、25、27(3)、28、选择题:(每小题 3分,共30分)1.2cos45°的值等于 2(A ) 2 (B )2(C )4(D )2,2【参考答案】B余弦和正切值。
2•化简(-3x 2) • 2x 3的结果是 (A ) - 6x 5 ( B ) - 3x 5 【参考答案】A (C ) 2x 5 (D) 6x 5 【解析】本题考查单项式的乘法以及幕的运算,先把它的系数相乘得 -6,再把同底数的幕相乘得 x 5,结果 为-6 x 5,本题注意同底数的幕相乘时,指数相加,不是相乘,异号两数相乘,得负。
知识点:整式的运算一.选择题1.(2008年四川省宜宾市)下列各式中,计算错误的是()A. 2a+3a=5aB. –x2·x= -x3C. 2x-3x= -1D.(-x3)2= x6 答案:C2.(08山东日照)下列计算结果正确的是()A.B.=C.D.答案:C3.(2008浙江金华)化简a+b+(a-b)的最后结果是()A、2a+2bB、2bC、2aD、0答案:C4.(2008浙江宁波) .下列运算正确的是()A.B.C.D.答案:B5.(2008山东威海)下列计算正确的是( )A.B.C.D.答案:D6.(2008湖南益阳)下列计算中,正确的是( )A. B. C. D.答案:D7.(2008年山东省滨州市)下列计算结果正确的是()A、B、C、28D、答案:C8.(2008年山东省临沂市)下列各式计算正确的是()A.B.C.D.答案:D13.(2008年山东省潍坊市)下列运算正确的是()A.x5-x3=x2B.x4(x3)2=x10C.(-x12)÷(-x3)=x9D.(-2x)2x-3=8答案:B14. (2008年成都市)化简(- 3x2)·2x3的结果是( )(A)- 6x5(B)- 3x5 (C)2x5 (D)6x5答案:A15.(2008年乐山市)下列计算正确的是DA、B、C、D、答案:D18.(2008年大庆市)等于()A.B.C.D.答案:B19.(2008年山东省菏泽市)下列计算结果正确的是A.B.=C.D.答案:C20.(2008年江苏省连云港市)化简的结果是()A.B.C.D.答案:B21. (2008湖北咸宁)化简的结果为【】A.B.C.D.答案:C22. (2008湖北鄂州)下列计算正确的是()A.B.C.D.答案:D23.(2008年云南省双柏县)下列运算正确的是()A.B.C.D.答案:B24.(2008年山东省枣庄市)下列运算中,正确的是( )A.B.C.D.答案:D29.(2008年浙江省嘉兴市)下列运算正确的是()A.B.C.D.答案:A30. (2008湖南郴州)下列计算错误的是()A.-(-2)=2 B.C.2+3=5D.答案:D31.(2008青海西宁)计算:的结果有()A. B. C. D.答案:D32.(2008江苏南京)计算(ab2)3的结果是()A.ab5B.ab6C.a2b3D.a3b6答案:D33.(2008山东济南)下列计算正确的是()A.a3+a4=a7B. a3·a4=a7C. (a3)4=a7D. a6÷a3=a2答案:B34.(2008江苏宿迁) 下列计算正确的是A.B.C.D.答案:B35.(2008 湖南怀化)下列运算中,结果正确的是( )(A)(B)(C)(D)答案:B36.(2008 重庆)计算的结果是()A、B、C、D、答案:B37.(2008 河北)计算的结果是()A.B.C.D.答案:B38.(2008 湖南长沙)下面计算正确的是()A、B、C、()2=D、答案:D39. (2008福建省泉州市)·=( )A. B. C. D.答案:A40.(2008年湖南省邵阳市)计算的结果是()A.B.C.D.答案:A41.(2008山东德州)下列计算结果正确的是( )A.B.=C.D.答案:C42.(2008新疆乌鲁木齐市)若且,,则的值为()A.B.1 C.D.答案:C43.(2008江苏淮安)下列计算正确的是( )A.a2+a2=a4 B.a5·a2=a7 C. D.2a2-a2=2答案:B44.(2008年山东省)下列计算结果正确的是 CA.B.=C.D.答案:C45.(2008佛山)化简的结果是()A. B. C. D.答案:C46.(2008广东肇庆市)若,则的值是()A.3 B.C.0 D.6 答案:A47.(2008山东东营)下列计算结果正确的是()A. B.=C. D.答案:C48.(2008年上海市)计算的结果是()A.B.C.D.答案:D49.(2008年上海市)计算的结果是()A.B.C.D.答案:B50.(2008泰安)下列运算正确的是()A. B. C.D.答案:D51.(08绵阳市)若关于x的多项式x2-px-6含有因式x-3,则实数p的值为().A.-5 B.5 C.-1 D.1答案:A52.(08福建莆田市)下列运算正确的是()A.B.C.D.答案:D53.(08乌兰察布市)中央电视台2套“开心辞典”栏目,有一题的题目如图所示,两个天平都平衡,则三个球体的重量等于多少个正方体的重量()A.2个B.3个C.4个D.5个答案:D54.(2008黑龙江哈尔滨).下列运算中,正确的是().(A)x2+x2=x4 (B)x2÷x=x2(C)x3-x2=x (D)x·x2=x3答案:D55.(2007湖南邵阳)等于()A.B.C.D.答案:D56.(2008广东)下列式子中是完全平方式的是()A.B.C.D.答案:D57.(2008广东深圳)下列运算正确的是()A.B.C.D.÷答案:B58.(2008湖北襄樊)下列运算正确的是()A.x3·x4=x12B.(-6x6)÷(-2x2)=3x3C.2a-3a=-aD.(x-2)2=x2-4 答案:C59.(2008湖北孝感)下列运算中正确的是()A. B. C. D.答案:D60.(2008江苏盐城)下列运算正确的是()A.B.C.D.答案:B61.(2008泰州市)下列运算结果正确的是()A.B.C.D.答案:C62.(2008资阳市).下列运算正确的是()A.(ab)5=ab5 B.a8÷a2=a6C.(a2)3=a5D.(a-b)2=a2-b2答案:B63.(2008浙江湖州)计算(-x)2·x3所得的结果是()A、x5B、-x5C、x6D、-x6答案:A64.(2008湘潭市)下列式子,正确的是()A. B.C. D.答案:B65.(2008四川凉山州)下列计算正确的是()A.B. C.D.答案:B66、(2008江苏镇江)用代数式表示“的3倍与的差的平方”,正确的是()A. B.C. D.67.(08大连)下列各式运算正确的是()A.B.C.D.答案:C68.(08福建南平)计算:()A. B. C. D.答案:A69. (2008黑龙江)下列各运算中,错误的个数是()①②③④A.1 B.2 C.3 D.4答案:A70.(2008安徽芜湖)下列运算正确的是()A. B. C. D.答案:B71.(2008徐州)下列运算中,正确的是()A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x x2=x-1答案:D二、填空题1.(2008浙江宁波) .计算.答案:2.2008年成都市)已知y = x – 1,那么x2– 2xy + 3y2– 2的值是.答案:13.(2008年陕西省)计算:.答案:4.(2008年江苏省南通市)计算:=________.答案:8a35.(2008年江苏省连云港市)当时,代数式的值为.答案:6.(2008湖北鄂州)在“”方框中,任意填上“”或“”.能够构成完全平方式的概率是.答案:7.(2008山东济南).当x=3,y=1时,代数式(x+y)(x-y)+y2的值是__________. 答案:38.(2008 湖北恩施)计算(-a)= .答案:a9.(2008 四川广安)计算:.答案:-3x210.(2008 湖北荆门)= ___________.答案:-8x611.计算:.答案:12.(2008湖南株洲)化简: .答案:13.(2008山西省高中)计算:。
绵阳市2008年高级中等教育学校招生统一考试数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-2的绝对值等于( ).A .2B .-2C .±2D .212.下列轴对称图形中,对称轴条数最多的是( ).3.以下所给的数值中,为不等式-2x + 3<0的解的是( ).A .-2B .-1C .23D .2 4.某校初三·一班6名女生的体重(单位:kg )为:35 36 38 40 42 42则这组数据的中位数等于( ).A .38B .39C .40D .42 5.2008年8月8日,五环会旗将在“鸟巢”高高飘扬,会旗上的五环(如图)间的位置关系有( ). A .相交或相切 B .相交或内含 C .相交或相离 D .相切或相离6.“5·12”汶川大地震使绵阳也遭受了重大损失,社会各界踊跃捐助.据新华社讯,截止到6月22日12时,我国收到社会各界捐款、捐物共计467.4亿元.把467.4亿元用科学记数法表示为( ).A .4.674×1011 元B .4.674×1010 元C .4.674×109 元D .4.674×108 元7.已知,如图,∠1 =∠2 =∠3 = 55°,则∠4的度数等于( ).A .115°B .120°C .125°D .135°8.若关于x 的多项式x 2-px -6含有因式x -3,则实数p 的值为( ).A .-5B .5C .-1D .1 9.某几何体的三视图如下所示,则该几何体可以是( ).10.均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),则这个容器的形状为( ).11.二次函数y = ax 2 + bx + c 的部分对应值如下表:利用二次函数的图象可知,当函数值y <0时,x 的取值范围是( ). A .x <0或x >2 B .0<x <2 C .x <-1或x >3 D .-1<x <312.如图,O 是边长为1的正△ABC 的中心,将△ABC 绕点O 逆时针方向旋转180°,得△A 1B 1C 1,则△A 1B 1C 1与△ABC 重叠部分(图中阴影部分)的面积为( ). A .33 B .43 C .63 D .83二、填空题:本大题共6个小题,每小题4分,共24分.将答案直接填写在题中横线上. 13.3×(-31)= . 14.函数xx y 2+=中,自变量x 的取值范围是 . 15.如图是由若干个边长为1的小正方形组成的网格,在图 中作出将五角星ABCDE 向其东北方向平移23个单位的图形. 16.质地均匀的正四面体骰子的四个面上分别写有数字2, 3,4,5,投掷这个正四面体两次,则第一次底面上的数字能够 整除第二次底面上的数字的概率是 . 17.如图,AB 是圆O 的直径,弦AC 、BD 相交于点E ,若 ∠BEC = 60°,C 是BD⌒的中点,则tan ∠ACD = . 18.△ABC 中,∠C = 90°,AB = 1,tan A =43,过AB 边上一点P 作PE ⊥AC 于E ,PF ⊥BC 于 F ,E 、F 是垂足,则EF 的 最小值等于 .三、解答题:本大题共7个小题,共90分.解答应写出文字说明、证明过程或演算步骤. 19.(本题共2个小题,每小题8分,共16分)(1)计算:(-2-2+31)×86-20080÷sin 45°.(2)计算:)1111()12(22122+---+⋅-+m m m m m m m .20.(本题满分12分)某面粉批发商通过统计前48个星期的面粉销售量(单位:吨),对数据适当分组后,列出了如下频数分布表:(1)在图1、图2中分别画出频数分布直方图和频数折线图;(2)试说明这位面粉批发商每星期进面粉多少吨比较合适(精确到0.1吨)?21.(本题满分12分)已知如图,点A (m ,3)与点B (n ,2)关于直线y = x 对称,且都在反比例函数xky的图象上,点D 的坐标为(0,-2). (1)求反比例函数的解析式;(2)若过B 、D 的直线与x 轴交于点C ,求sin ∠DCO 的值.22.(本题满分12分)A 、B 两地相距176 km ,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A 、B 两地同时出发赶往滑坡点疏通公路.10时,甲队赶到立即开始作业,半小时后乙队赶到,并迅速投入“战斗”与甲队共同作业,此时甲队已完成了工程量的241. (1)若滑坡受损公路长1 km ,甲队行进的速度是乙队的23倍多5 km ,求甲、乙两队赶路的速度;(2)假设下午4点时两队就完成公路疏通任务,胜利会师.那么若只由乙工程队疏通这段公路时,需要多少时间能完成任务?23.(本题满分12分)青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天·间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?24.(本题满分12分)如图,⊙O的直径AB为10 cm,弦AC为6 cm,∠ACB的平分线交AB于E,交⊙O于D.求弦AD、CD的长.25.(本题满分14分)如图,矩形ABCD 中,AB = 8,BC = 10,点P 在矩形的边DC 上由D 向C 运动.沿直线AP 翻折△ADP ,形成如下四种情形.设DP = x ,△ADP 和矩形重叠部分(阴影)的面积为y .(1)如图丁,当点P 运动到与C 重合时,求重叠部分的面积y ;(2)如图乙,当点P 运动到何处时,翻折△ADP 后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?(3)阅读材料:已知锐角α≠45°,tan 2α 是角2α 的正切值,它可以用角α 的正切值tan α 来表示,即 2)(tan 1tan 22tan ααα-=(α≠45°). 根据上述阅读材料,求出用x 表示y 的解析式,并指出x 的取值范围.(提示:在图丙中可设∠DAP = α )参考答案一、填空题1~6.AADBCB 7~12.CDABDC二、填空题13.-1 14.x ≥-2且x ≠0 15.图形如右 16.165 17.33 18.2512 三、解答题 19.(1)原式=221212)3141(÷-⨯+-=21212121⨯-⨯= 0. (2)原式=)1)(1()1(1)1(4)1(2122+---+-+⋅-+m m m m m m m m m =)1)(1(2)1)(1(2+--+-m m m m m =)1(2)1)(1()1(2+=+--m m m m .20.(1)(2)由频数折线图,得(19×6 + 20×7 + 21×9 + 22×12 + 23×8 + 24×6)÷ 48 = 1035 ÷ 48 = 21.5625, 所以这位面粉批发商每星期进面粉21.6吨比较合适.21.(1)∵ A (m ,3)与B (n ,2)关于直线y = x 对称, ∴ m = 2,n = 3, 即 A (2,3),B (3,2).于是由 3 = k ∕2,得 k = 6. 因此反比例函数的解析式为xy 6=. (2)设过B 、D 的直线的解析式为y = kx + b . ∴ 2 = 3k + b ,且 -2 = 0 · k + b . 解得k =34,b =-2. 故直线BD 的解析式为 y =34x -2. ∴ 当y = 0时,解得 x = 1.5.即 C (1.5,0),于是 OC = 1.5,DO = 2. 在Rt △OCD 中,DC =5.225.122=+. ∴ sin ∠DCO =545.22==DC DO . 说明:过点B 作BE ⊥y 轴于E ,则 BE = 3,DE = 4,从而 BD = 5,sin ∠DCO = sin ∠DBE =54.22.(1)甲队行进了2小时,乙队行进了2.5小时. 设乙队的速度为x ,则甲队为1.5x + 5.由题意得方程 2.5x +(1.5x + 5)×2 + 1 = 176. 整理得 5.5x = 165, 解得 x = 30. ∴ 1.5x + 5 = 1.5×30 + 5 = 50.即甲队赶路的速度为50 km ∕h ,乙队赶路的速度为30 km ∕h . (2)设若由乙队单独施工,需x 小时才能完成. 则由题意有 6×(21241÷)+ 5.5×x1= 1. 解得 x = 11.即乙队单独做,需要11小时才能完成任务.23.设每天的房价为60 + 5x 元,则有x 个房间空闲,已住宿了30-x 个房间. 于是度假村的利润 y =(30-x )(60 + 5x )-20(30-x ),其中0≤x ≤30. ∴ y =(30-x )· 5 ·(8 + x )= 5(240 + 22x -x 2)=-5(x -11)2 + 1805.因此,当x = 11时,y 取得最大值1805元,即每天房价定为115元∕间时,度假村的利润最大.法二 设每天的房价为x 元,利润y 元满足)56030)(20(---=x x y =84046512-+-x x (60≤x ≤210,是5的倍数). 法三 设房价定为每间增加x 元,利润y 元满足)530)(2060(x x y --+==120022512++-x x (0≤x ≤150,是5的倍数).24.∵ AB 是直径,∴ ∠ACB = 90°. 在Rt △ABC 中,BC =2222610-=-AC AB = 8(cm ). ∵ CD 平分∠ACB , ∴ AD ⌒=BD ⌒,进而AD = BD . 于是在Rt △ABD 中,得 AD = BD =22AB = 52(cm ). 过E 作EF ⊥AC 于F ,EG ⊥BC 于G ,F 、G 是垂足,则四边形CFEG 是正方形.设EF = EG = x ,由三角形面积公式,得 21AC · x +21BC · x =21AC · BC ,即 21×6 · x + 12×8×x = 12×6×8,解得 x =724.∴ CE = 2x =7224. 由 △ADE ∽△CBE ,得 DE : BE = AE : CE = AD : BC , 即 DE : BE = AE :7224= 52: 8, 解得 AE =730,BE = AB -AE = 10-730=740, ∴ DE =7225. G因此 CD = CE + DE =7224+7225= 72(cm ). 答:AD 、CD 的长依次为52cm ,72cm .说明:另法一 求CD 时还可以作CG ⊥AE ,垂足为G ,连接OD .另法二 过A 作AF ⊥CD 于F ,则△ACF 是等腰直角三角形.25.(1)由题意可得 ∠DAC =∠D ′AC =∠ACE ,∴ AE = CE .设 AE = CE = m ,则 BE = 10-m .在Rt △ABE 中,得 m 2 = 82 +(10-m )2,m = 8.2.∴ 重叠部分的面积 y =21· CE · AB =21×8.2×8 = 32.8(平方单位). 另法 过E 作EO ⊥AC 于O ,由Rt △ABC ∽Rt △EOC 可求得EO .(2)由题意可得 △DAP ≌△D ′AP ,∴ AD ′ = AD = 10,PD ′ = DP = x .在Rt △ABD ′ 中,∵ AB = 8,∴ BD ′ =22810-= 6,于是 CD ′ = 4.在Rt △PCD ′ 中,由 x 2 = 42 +(8-x )2,得 x = 5.此时 y =21· AD · DP =21×10×5 = 25(平方单位). 表明当DP = 5时,点D 恰好落在BC 边上,这时y = 25.另法 由Rt △ABD ′∽Rt △PCD ′ 可求得DP .(3)由(2)知,DP = 5是甲、丙两种情形的分界点.当0≤x ≤5时,由图甲知 y = S △AD ′P = S △ADP =21· AD · DP = 5x . 当5<x <8时,如图丙,设∠DAP = α,则 ∠AEB = 2α,∠FPC = 2α.在Rt △ADP 中,得 tan α =10x AD DP =.根据阅读材料,得 tan2α =2210020)10(1102x x x x-=-⋅. 在Rt △ABE 中,有 BE = AB ∕tan2α =21008x -=xx 5)100(22-. 同理,在Rt △PCF 中,有 CF =(8-x )tan2α =2100)8(20x x x --. ∴ △ABE 的面积 S △ABE =21· AB · BE =21×8×x x 5)100(22-=xx 5)100(82-. △PCF 的面积S △PCF =21· PC · CF =21(8-x )×2100)8(20x x x --=22100)8(10xx x --. 而直角梯形ABCP 的面积为S 梯形ABCP =21(PC + AB )×BC =21(8-x + 8)×10 = 80-5x . 故重叠部分的面积 y = S 梯形ABCP -S △ABE -S △PCF = 80-5x -x x 5)100(82--22100)8(10x x x --. 经验证,当x = 8时,y = 32.8适合上式.综上所述,当0≤x ≤5时,y = 5x ;当5<x ≤8时,y = 80-5x -x x 5)100(82--22100)8(10x x x --.。
四川省绵阳市中考数学二诊试卷一、选择题(本大题共12个小题,每小题3分,共36分,每个小题给出的四个选项中只有一项是符合要求的)1.计算|﹣1|﹣3,结果正确的是()A.﹣4B.﹣3C.﹣2D.﹣12.太阳半径约696000000米,其中数据696000000科学记数法表示为()A.0.696×109B.6.96×109C.6.96×108D.696×1063.下列计算正确的是()A.2x+3y=5xy B.x10÷x5=x5C.(xy2)3=xy6D.(x﹣y)2=x2+y24.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多455.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°6.随着全球能源危机的逐渐加重,太阳能发电行业发展迅速.全球太阳能光伏应用市场持续稳步增长,2019年全球装机总量约600GW,预计到2021年全球装机总量达到864GW.设全球新增装机量的年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%7.不等式组的解集是x>4,那么m的取值范围是()A.m=3B.m≥3C.m<3D.m≤38.在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,则∠CBD的度数为()A.12°B.13°C.14°D.15°9.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为20,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为14,现从1,2,3,4,5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作CD⊥AB,垂足为D,点E为BC的中点,AE与CD交于点F,若DF的长为,则AE的长为()A.B.C.D.11.如图,抛物线y=ax2+bx+c经过(﹣1,0)和(0,﹣1)两点,则抛物线y=cx2+bx+a的图象大致为()A.B.C.D.12.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B′,C′上.在点M从点A运动到点B 的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为()cm.A.﹣B.C.D.二、填空题(共6个小题,每小题4分,共24分,将答案填写在答题卡相应的横线上)13.把多项式mx2﹣4mxy+4my2分解因式的结果是.14.将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a﹣4b﹣11的值是.15.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.16.关于x的方程的解是正数.则a的取值范围是.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=5,点E、F分别在CA,CB上,且CE=CF=1,点M、N分别为AF、BE的中点,则MN的长为.18.如图,在矩形ABCD中,AB=1,BC=2,P为线段BC上的一动点,且和B、C不重合,连接PA,过点P作PE⊥PA交CD于E,将△PEC沿PE翻折到平面内,使点C恰好落在AD边上的点F,则BP长为.三、解答题(本大题共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算:2﹣1+|﹣3|+2sin45°﹣(﹣2)2021×()2021.(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.20.新冠肺炎疫情期间,我市对学生进行了“停课不停学”的线上教学活动.某中学为了解这期间九年级学生数学学习的情况,开学后进行了两次诊断性练习.综合成绩由两次练习成绩组成,其中第一次练习成绩占40%,第二次练习成绩占60%.当综合成绩不低于135分时,该生数学学科综合评价为优秀.(1)小明同学的两次练习成绩之和为260分,综合成绩为132分,则他这两次练习成绩各得多少分?(2)如果小张同学第一次练习成绩为120分,综合成绩要达到优秀,他的第二次练习成绩至少要得多少分?21.某市有A,B,C,D,E五个景区很受游客喜爱.对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了两幅不完整的统计图.(1)该小区居民在这次随机调查中被调查的人数是人,m=;(2)补全条形统图,若该小区有居民1500人,试估计去C景区旅游的居民约有多少人?(3)甲、乙两人暑假打算游玩,甲从B,C两个景点中任意选择一个游玩,乙从B,C,E三个景点中任意选择一个游玩,用列表法或树状图法求甲、乙恰好游玩同一景点的概率.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD.过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当=,CE=3时,求AG的长.24.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你直接写出AE与DF的关系.(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,AC,当△ACE为等腰三角形时,求CE:CD的值.(3)如图3,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动.若AD=2,求线段CP的最小值.25.如图1,已知抛物线y=﹣(x+3)(x﹣4)与x轴交于A、B两点,与y轴交于点C.(1)写出A、B、C三点的坐标.(2)若点P为△OBC内一点,求OP+BP+CP的最小值.(3)如图2,点Q为对称轴左侧抛物线上一动点,点D(4,0),直线DQ分别与y轴、直线AC交于E、F两点,当△CEF为等腰三角形时,请直接写出CE的长.参考答案一、选择题(本大题共12个小题,每小题3分,共36分,每个小题给出的四个选项中只有一项是符合要求的)1.计算|﹣1|﹣3,结果正确的是()A.﹣4B.﹣3C.﹣2D.﹣1【分析】首先应根据负数的绝对值是它的相反数,求得|﹣1|=1,再根据有理数的减法法则进行计算.解:原式=1﹣3=﹣2.故选:C.2.太阳半径约696000000米,其中数据696000000科学记数法表示为()A.0.696×109B.6.96×109C.6.96×108D.696×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于696000000有9位,所以可以确定n=9﹣1=8.解:696000000=6.96×108.故选:C.3.下列计算正确的是()A.2x+3y=5xy B.x10÷x5=x5C.(xy2)3=xy6D.(x﹣y)2=x2+y2【分析】直接利用同类项定义,同底数幂的除法,积的乘方运算法则以及完全平方公式分别分析得出答案.解:A、2x与3y不是同类项,不能合并,故此选项错误;B、x10÷x5=x5,故此选项正确;C、(xy2)3=x3y6,故此选项错误;D、(x﹣y)2=x2﹣2xy+y2,故此选项错误;故选:B.4.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多45【分析】从折线图中获取信息,通过折线图和中位数、众数的定义及极差等知识求解.解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.5.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°【分析】根据平行线的性质解答即可.解:∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.6.随着全球能源危机的逐渐加重,太阳能发电行业发展迅速.全球太阳能光伏应用市场持续稳步增长,2019年全球装机总量约600GW,预计到2021年全球装机总量达到864GW.设全球新增装机量的年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%【分析】根据增长后的装机总量=增长前的装机总量×(1+增长率)列出方程并解答.解:根据题意,得600(1+x)2=864.解得x1=0.2=20%,x2=﹣2.2(舍去),故选:A.7.不等式组的解集是x>4,那么m的取值范围是()A.m=3B.m≥3C.m<3D.m≤3【分析】不等式组中两不等式整理后,根据已知解集确定出m的范围即可.解:不等式组整理得:,∵不等式组的解集为x>4,∴m+1≤4,解得:m≤3.故选:D.8.在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,则∠CBD的度数为()A.12°B.13°C.14°D.15°【分析】可过C作CE⊥AD于E,过D作DE⊥BC于F,依据题意可得∠FCD=∠ECD,由角平分线到角两边的距离相等可得DF=DE,进而的△CED≌△CFD,由对应边又可得Rt △CDF≌Rt△BDF,进而可得出结论.解:如图,过C作CE⊥AD于E,过D作DF⊥BC于F.∵∠CAD=30°,∴∠ACE=60°,且CE=AC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠FCD=90°﹣∠ACD=15°,∠ECD=∠ACD﹣∠ACE=15°,在△CED和△CFD中,,∴△CED≌△CFD(AAS),∴CF=CE=AC=BC,∴CF=BF.∴BD=CD,∴∠DCB=∠CBD=15°,故选:D.9.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为20,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为14,现从1,2,3,4,5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A.B.C.D.【分析】画树状图,共有20个等可能的结果,恰好使该图形为“和谐图形”的结果有4个,再由概率公式求解即可.解:画树状图如图:共有20个等可能的结果,恰好使该图形为“和谐图形”的结果有4个,∴恰好使该图形为“和谐图形”的概率为=,故选:B.10.如图,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作CD⊥AB,垂足为D,点E为BC的中点,AE与CD交于点F,若DF的长为,则AE的长为()A.B.C.D.【分析】连接DE,首先推知ED为△ABC的中位线,然后由中位线的性质得到△DEF∽△CAF,从而求得CD的长度;继而推知AC=BC=4;最后由勾股定理求得AE的长度.解:连接DE,如图所示:在Rt△ABC中,∠ACB=90°,AC=BC,∵CD⊥AB,∴AD=BD,即点D为AB的中点.∵E为BC的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=AC,∴△DEF∽△CAF,∴==,∴DF=CD=,∴CD=.∴AB=2.∵AC=BC,∴AC2+BC2=2AC2=AB2=8.∴AC=BC=2.∴CE=1.在直角△ACE中,由勾股定理知:AE===.故选:C.11.如图,抛物线y=ax2+bx+c经过(﹣1,0)和(0,﹣1)两点,则抛物线y=cx2+bx+a的图象大致为()A.B.C.D.【分析】根据题意得到a﹣b+c=0,a>0,b<0,c=﹣1,即可得到抛物线y=cx2+bx+a的开口向下,对称轴直线x=﹣<0,交y轴正半轴,经过点(﹣1,0),据此即可判断.解:∵抛物线y=ax2+bx+c经过(﹣1,0)和(0,﹣1)两点,∴开口向上,对称轴在y轴的右侧,∴a﹣b+c=0,a>0,b<0,c=﹣1,∴抛物线y=cx2+bx+a的开口向下,对称轴直线x=﹣<0,交y轴正半轴,当x=﹣1时,y=c﹣b+a=0,∴抛物线y=cx2+bx+a经过点(﹣1,0),故选:B.12.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B′,C′上.在点M从点A运动到点B 的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为()cm.A.﹣B.C.D.【分析】探究点E的运动轨迹,寻找特殊位置解决问题即可.解:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′===(cm),∴BM=NB′=(cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=22+(4﹣x)2,解得x=,∴DE=4﹣=(cm),如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5﹣1﹣2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5﹣1﹣=(4﹣)(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2﹣+2﹣(4﹣)=(﹣)(cm).故选:A.二、填空题(共6个小题,每小题4分,共24分,将答案填写在答题卡相应的横线上)13.把多项式mx2﹣4mxy+4my2分解因式的结果是m(x﹣2y)2.【分析】直接提取公因式m,再利用完全平方公式分解因式即可.解:原式=m(x2﹣4xy+4y2)=m(x﹣2y)2.故答案为:m(x﹣2y)2.14.将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a﹣4b﹣11的值是﹣5.【分析】根据二次函数的平移得出平移后的表达式,再将点(﹣2,5)代入,得到4a﹣2b=3,最后将8a﹣4b﹣11变形求值即可.解:将抛物线y=ax2+bx﹣1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(﹣2,5),代入得:4a﹣2b=3,则8a﹣4b﹣11=2(4a﹣2b)﹣11=2×3﹣11=﹣5,故答案为:﹣5.15.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20﹣15=5(cm).故答案为:5.16.关于x的方程的解是正数.则a的取值范围是a<﹣2且a≠﹣6.【分析】将a看成一个常数,然后按照分式方程的解法求出x即可求出a的范围.解:3x+a=x﹣2∴x=把x=代入x﹣2≠0,∴a≠﹣6∵x>0,∴>0,∴a<﹣2∴a<﹣2且a≠﹣6故答案为:a<﹣2且a≠﹣617.如图,在Rt△ABC中,∠ACB=90°,AC=BC=5,点E、F分别在CA,CB上,且CE=CF=1,点M、N分别为AF、BE的中点,则MN的长为2.【分析】取AB的中点D,连接MD、ND,如图,先判断DM为△ABF的中位线,DN为△ABE 的中位线得到DM=BF=2,DM∥BF,DN=AE=2,再证明AE⊥BF,则DM⊥DN,然后根据△DMN为等腰直角三角形确定MN的长.解:取AB的中点D,连接MD、ND,如图,AE=BF=5﹣1=4,∵点M、N分别为AF、BE的中点,∴DM为△ABF的中位线,DN为△ABE的中位线,∴DM=BF=2,DM∥BF,DN=AE=2,DN∥AE,∵AE⊥BF,∴DM⊥DN,∴△DMN为等腰直角三角形,∴MN=DM=2.故答案为2.18.如图,在矩形ABCD中,AB=1,BC=2,P为线段BC上的一动点,且和B、C不重合,连接PA,过点P作PE⊥PA交CD于E,将△PEC沿PE翻折到平面内,使点C恰好落在AD边上的点F,则BP长为或1.【分析】作PH⊥AD于H,如图,设BP=x,则CP=2﹣x,利用等角的余角相等得到∠1=∠3,则根据相似三角形的判定得到Rt△ABP∽Rt△PCE,利用相似比、折叠的性质得表示相应的线段,然后证明Rt△PHF∽Rt△FDE,利用相似比得到FD,在Rt△DFE中,根据勾股定理即可求解.解:作PH⊥AD于H,如图,设BP=x,则CP=2﹣x.∵PE⊥PA,∴∠2+∠3=90°,∵∠1+∠2=90°,∴∠1=∠3,∴Rt△ABP∽Rt△PCE,∴.即.∴CE=x(2﹣x).∵△PEC沿PE翻折到△PEF位置,使点F落到AD上,∴EF=CE=x(2﹣x),PF=PC=2﹣x,∠PGE=∠C=90°,∴DE=DC﹣CE=1﹣x(2﹣x).∴∠5+∠6=90°.∵∠4+∠6=90°,∴∠5=∠4.∴Rt△PHF∽Rt△FDE,∴,即.∴FD=x,在Rt△DFE中,∵DE2+DF2=FE2,∴[1﹣x(2﹣x)]2+x2=[x(2﹣x)]2,解得x1=,x2=1,∴BP的长为或1.解法二:过点A作AM⊥BF于M.∵△PEF由△PEC翻折得到,∴△PEF≌△PEC,∴PF=PC,∠FPE=∠EPC,又∵∠BPA+∠EPC=90°,∠APM+∠EPF=90°,∴∠APB=∠APM,又∵∠B=∠AMP=90°,AP=AP,∴△ABP≌△AMP(AAS),∴AB=AM=1,BP=PM,令BP=x,则PC=PF=2﹣x,BP=PM=x,∴MF=2﹣x﹣x=2﹣2x,∵AD∥BC,∴∠APB=∠PAD,又∵∠APB=∠APF,∴△APF为等腰三角形,∴AF=PF=2﹣x,在△AMF中,AF2=AM2+MF2,∴(2﹣x)2=12+(2﹣2x)2,∴x=1或.故答案为:或1.三、解答题(本大题共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算:2﹣1+|﹣3|+2sin45°﹣(﹣2)2021×()2021.(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.【分析】(1)根据负整数指数幂、绝对值的性质、特殊角的三角函数值、积的乘方法则计算;(2)根据分式的混合运算法则把原式化简,整体代入即可.解:(1)原式=+3﹣+2×﹣(﹣2×)2021=+3﹣++1=;(2)原式=[+]•=(+)•=•=,∵a2+2a﹣15=0,∴a2+2a=15,∴原式=.20.新冠肺炎疫情期间,我市对学生进行了“停课不停学”的线上教学活动.某中学为了解这期间九年级学生数学学习的情况,开学后进行了两次诊断性练习.综合成绩由两次练习成绩组成,其中第一次练习成绩占40%,第二次练习成绩占60%.当综合成绩不低于135分时,该生数学学科综合评价为优秀.(1)小明同学的两次练习成绩之和为260分,综合成绩为132分,则他这两次练习成绩各得多少分?(2)如果小张同学第一次练习成绩为120分,综合成绩要达到优秀,他的第二次练习成绩至少要得多少分?【分析】(1)设第一次练习成绩为x分,第二次练习成绩为y分,根据“小明同学的两次练习成绩之和为260分,综合成绩为132分”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设小张同学第二次练习成绩为m分,根据他的综合成绩不低于135分,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.解:(1)设第一次练习成绩为x分,第二次练习成绩为y分,依题意,得:,解得:.答:第一次练习成绩为120分,第二次练习成绩为140分.(2)设小张同学第二次练习成绩为m分,依题意,得:120×40%+60%m≥135,解得:m≥145.答:小张同学第二次练习成绩至少要得145分.21.某市有A,B,C,D,E五个景区很受游客喜爱.对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了两幅不完整的统计图.(1)该小区居民在这次随机调查中被调查的人数是200人,m=35;(2)补全条形统图,若该小区有居民1500人,试估计去C景区旅游的居民约有多少人?(3)甲、乙两人暑假打算游玩,甲从B,C两个景点中任意选择一个游玩,乙从B,C,E三个景点中任意选择一个游玩,用列表法或树状图法求甲、乙恰好游玩同一景点的概率.【分析】(1)用去D景区旅游的人数除以它所占的百分比得到调查的总人数,然后用去到B景区旅游的居民数除以总人数可得到m的值;(2)先计算出去到C景区旅游的居民数,则可补全条形统计图;然后用去C景区旅游的居民数的百分比乘以1500即可;(3)画树状图展示所有6种等可能的结果,找出甲、乙恰好游玩同一景点的结果数,然后根据概率公式求解.解:(1)该小区居民在这次随机调查中被调查到的人数为20÷10%=200(人);m%=×100%=35%,即m=35;故答案为200;35;(2)去C景区旅游的居民人数为200﹣20﹣70﹣20﹣50=40(人),补全统计图如下:1500×=300(人),所以估计去C景区旅游的居民约有300人;(3)画树状图为:共有6种等可能的结果,其中甲、乙恰好游玩同一景点的结果数为2,所以甲、乙恰好游玩同一景点的概率==.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和双曲线的交点坐标即可.解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x﹣,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).23.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD.过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当=,CE=3时,求AG的长.【分析】(1)想办法证明∠B+∠BAE=90°即可解决问题.(2)①连接OA,想办法证明OA⊥AG即可解决问题.②过点C作CH⊥AG于H.设CG=x,GH=y.利用相似三角形的性质构建方程组解决问题即可.【解答】证明:(1)∵EF⊥AB,∴∠AFE=90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴∠AEB=90°,∴AD⊥BC;(2)①连接OA,AC,∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线;②过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF∥AC,∴==,∵CE=3,∴BE=,∵BC⊥AD,∴,∴∠CAE=∠ABC,∵∠AEC=∠AEB=90°,∴△AEB∽△CEA,∴,∴AE2=3×=,∵AE>0,∴AE=,∴AH=AE=,∵∠G=∠G,∠CHG=∠AEG=90°,∴△GHC∽△GEA,∴,∴=,解得x=7,y=2,∴AG=2+=.24.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你直接写出AE与DF的关系.(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,AC,当△ACE为等腰三角形时,求CE:CD的值.(3)如图3,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动.若AD=2,求线段CP的最小值.【分析】(1)根据正方形的性质得出AD=DC,∠ADE=∠DCF=90°,求出DE=CF,根据SAS推出△ADE≌△DCF,根据全等三角形的性质得出AE=DF,∠DAE=∠FDC即可;(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE =a即可;②当AE=AC时,设正方形ABCD的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质∠ADC=90°,根据等腰三角形的性质得出DE=CD=a即可;(3)由于点P在运动中保持∠APD=90°,所以点P的路径以AD中点为圆心,AD的一半为半径的弧DG,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.解:(1)AE=DF,AE⊥DF;理由是:∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;(2)(1)中的结论还成立,CE:CD=2:1或:1.理由:有两种情况:①如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE=a,则CE:CD=a:a=:1;②如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE=a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2:1;综上所述,CE:CD=:1或2:1;故答案为::1或2:1;(3)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD中点为圆心,AD的一半为半径的弧DG,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC===,∴CP=QC﹣QP=﹣1.25.如图1,已知抛物线y=﹣(x+3)(x﹣4)与x轴交于A、B两点,与y轴交于点C.(1)写出A、B、C三点的坐标.(2)若点P为△OBC内一点,求OP+BP+CP的最小值.(3)如图2,点Q为对称轴左侧抛物线上一动点,点D(4,0),直线DQ分别与y轴、直线AC交于E、F两点,当△CEF为等腰三角形时,请直接写出CE的长.【分析】(1)令y=0,可求出点A,点B的坐标,令x=0,可得出点C的坐标;(2)将△BPC绕点B顺时针旋转60°得到△BP'C',连接PP',CC',当O,P,P',C′四点共线,OP+BP+CP的值最小,再在直角三角形中,求出此时的最小值;(3)需要分类讨论,当CE=CF,CE=EF,CF=EF时,分别求解.解:(1)∵y=﹣(x+3)(x﹣4)与x轴交于A、B两点,与y轴交于点C,∴A(﹣3,0),B(4,0),C(0,4).(2)将△BPC绕点B顺时针旋转60°得到△BP'C',连接PP',CC',∴BP=BP',BC=BC,∠PBP'=60°,∠CBC′=60°,PC=P'C′,∴△BPP'和△BCC′为等边三角形,∴BC′=BC,PP′=BP,当O,P,P',C′四点共线,OP+BP+CP的值最小,∴tan∠OBC===,∴∠OBC=30°,∴BC=2OC=8,∴BC′=BC=8,∵∠OBC′=∠OBC+∠CBC′=30°+60°=90°,∴OC′==,∴OP+BP+CP=OP+PP'+C'P'=OC′=4.(3)需要分类讨论:①如图,当CE=CF,且点F在点C左侧时,过点F作FG⊥CE于点G,则△CFG∽△CAO,∵OA=3,OC=4,∴AC=5,∴FG:GC:FC=OA:OC:AC=3:4:5,设FG=3m,则CG=4m,FC=5m,∴CE=FC=5m,∴GE=m,OE=4﹣5m,∵△FGE∽△DOE,∴,∴,∴m=,∴CE=5m=;当点F在点C右侧时,如图所示,过点F作FG⊥y轴于点G,则△FCG∽△ACO,∴FG:GC:FC=OA:OC:AC=3:4:5,设FG=3m,则CG=4m,FC=5m,∴CE=FC=5m,∴GE=9m,OE=5m﹣4,∵△FGE∽△DOE,∴,∴,解得m=,∴CE=5m=16;②如图,当CE=EF时,过点A作AG∥EF交y轴于点G,由EF=CE,可得,AG=CG,设OG=m,则AG=CG=4﹣m,∵OA2+OG2=AG2,∴32+m2=(4﹣m)2,解得,m=.由A(﹣3,0)和G(0,),可得直线AG的解析式为:y=x+,设直线DF为:y=x+b,将D(4,0)代入得:b=﹣,∴E(0,﹣),∴CE=4+=.③如图,当CF=EF时,过点C作CG∥DE交x轴于点G,则∠GCO=∠ACO,∴OG=OA=3,∴G(3,0),由G(3,0),C(0,4)可得直线CG的解析式为:y=﹣x+4,设直线DE为:y=﹣x+n,将D(4,0)代入得:n=,∴E(0,),∴CE=﹣4=.故CE的长为:或或或16.。
常州市二00六年初中毕业、升学统一考试数 学注意事项:1、全卷共8页,满分120分,考试时间120分钟。
2、答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上。
3、用蓝色或黑色钢笔、圆珠笔将答案直接填写在试卷上。
4、考生在答题过程中,可以使用CZ1206、HY82型函数计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π)。
一、填空题(本大题每个空格1分,共18分,把答案填写在题中横线上) 1.3的相反数是 ,5-的绝对值是 ,9的平方根是 。
2.在函数1-=xy 中,自变量x 的取值范围是 ;若分式12--x x 的值为零,则=x 。
3.若α∠的补角是120°,则α∠= °,=αcos 。
4.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是 环,中位数 环,方差是 环2。
5.已知扇形的圆心角为120°,半径为2cm ,则扇形的弧长是 cm ,扇形的面积是 2cm 。
6.已知反比例函数()0≠=k xky 的图像经过点(1,2-),则这个函数的表达式是 。
当0 x 时,y 的值随自变量x 值的增大而 (填“增大”或“减小”)7、如图,在△ABC 中,D 、E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,DF 平分CE 于点G ,1=CF ,则 =BC ,△ADE 与△ABC 的周长之比为 ,△CFG 与△BFD 的面积之比为 。
8.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米。
二、选择题(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 9.下列计算正确的是 【 】 A .123=-x x B .2x x x =∙ C .2222x x x =+ D .()423a a -=-第7题B第8题10.如图,已知⊙O 的半径为5mm ,弦mm AB 8=,则圆心O 到AB 的距离是 【 】A .1 mmB .2 mmC .3 mmD .4 mm 11.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为x 张,2元的贺卡为y 张,那么x 、y 所适合的一个方程组是 【 】A .⎪⎩⎪⎨⎧=+=+8102y x y xB .⎪⎩⎪⎨⎧=+=+1028102y x y x C .⎩⎨⎧=+=+8210y x y x D .⎩⎨⎧=+=+1028y x y x 12.刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的【 】 A .众数 B .方差 C .平均数 D .频数 13、图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在【 】A .P 区域B .Q 区域C .M 区域D .N 区域14、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 【 】224113第14题ABCD15.锐角三角形的三个内角是∠A 、∠B 、∠C ,如果B A ∠+∠=∠α,C B ∠+∠=∠β,A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中 【 】A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角 16、如果0,0,0 b a b a +,那么下列关系式中正确的是 【 】 A .a b b a -- B .b b a a -- C .a b a b -- D .a b b a --17.已知:如图1,点G 是BC 的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:H F E D C G →→→→→,相应的△ABP 的面积)(2cm y 关于运动时间)(s t 的函数图像如图2,若cm AB 6=,则下列四个结论中正确的个数有第10题第13题图2图1【 】图1F C①图1中的BC 长是8cm ②图2中的M 点表示第4秒时y 的值为242cm ③图1中的CD 长是4cm ④图2中的N 点表示第12秒时y 的值为182cm A .1个 B .2个 C .3个 D .4个三、解答题(本大题共2小题,共20分,解答应写出演算步骤) 18.(本小题满分10分)计算或化简:(1)03260tan 33⎪⎭⎫⎝⎛-+︒+ (2)2422---m m m19.(本小题满分10分)解方程或解不等式组: (1)x x 211=- (2)⎩⎨⎧-≥+≤-1)1(212x x x四、解答题(本大题共2小题,共12分,解答应写出证明过程) 20.(本小题满分5分)已知:如图,在四边形ABCD 中,AC 与BD 相交与点O ,AB ∥CD ,CO AO =, 求证:四边形ABCD 是平行四边形。
中考数学测试题一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2的绝对值等于( ).A .2B .-2C .±2D .212.下列轴对称图形中,对称轴条数最多的是( ).3.以下所给的数值中,为不等式-2x + 3<0的解的是( ).A .-2B .-1C .23D .2 4.某校初三²一班6名女生的体重(单位:kg )为:35 36 38 40 42 42则这组数据的中位数等于( ).A .38B .39C .40D .42 5.2008年8月8日,五环会旗将在“鸟巢”高高飘扬, 会旗上的五环(如图)间的位置关系有( ).A .相交或相切B .相交或内含C .相交或相离D .相切或相离6.“5²12”汶川大地震使绵阳也遭受了重大损失,社会各界踊跃捐助.据新华社讯,截止到6月22日12时,我国收到社会各界捐款、捐物共计467.4亿元.把467.4亿元用科学记数法表示为( ). A .4.674³1011元 B .4.674³1010元 C .4.674³109元 D .4.674³108元7.已知,如图,∠1 =∠2 =∠3 = 55°,则∠4的度数等于( ).A .115°B .120°C .125°D .135° 8.若关于x 的多项式x 2-px -6含有因式x -3,则实数p 的值为( ).A .-5B .5C .-1D .1 9.某几何体的三视图如下所示,则该几何体可以是( ).10.均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),则这个容器的形状为( ).11.二次函数y = ax 2+ bx + c 的部分对应值如下表:利用二次函数的图象可知,当函数值y <0时,x 的取值范围是( ).A .x <0或x >2B .0<x <2C .x <-1或x >3D .-1<x <312.如图,O 是边长为1的正△ABC 的中心,将△ABC 绕点O 逆时针方向旋转180°,得△A 1B 1C 1,则△A 1B 1C 1与△ABC 重叠部分(图中阴影部分)的面积为( ).A .33 B .43 C .63 D .83二、填空题:本大题共6个小题,每小题4分,共24分.将答案直接填写在题中横线上. 13.3³(-31)= . 14.函数xx y 2+=中,自变量x 的取值范围是 . 15.如图是由若干个边长为1的小正方形组成的网格,在图 中作出将五角星ABCDE 向其东北方向平移23个单位的图形.16.质地均匀的正四面体骰子的四个面上分别写有数字2,3,4,5,投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是 .17.如图,AB 是圆O 的直径,弦AC 、BD 相交于点E ,若∠BEC = 60°,C 是BD ⌒的中点,则tan ∠ACD = . 18.△ABC 中,∠C = 90°,AB = 1,tan A =43,过AB 边上一点P 作PE ⊥AC 于E ,PF ⊥BC 于 F ,E 、F 是垂足,则EF 的最小值等于 . x-3 -2 -1 0 1 2 345 y125-3-4-351260︒E OA BDC19.(本题共2个小题,每小题8分,共16分) (1)计算:(-2-2+31)³86-20080÷sin 45°. (2)计算:)1111()12(22122+---+⋅-+m m m m m m m .20.(本题满分12分)某面粉批发商通过统计前48个星期的面粉销售量(单位:吨),对数据适当分组后,列出了如下频数分布表:销售量18.5≤x <19.519.5≤x <20.520.5≤x <21.521.5≤x <22.522.5≤x <23.523.5≤x <24.5合计划记频数6 7 9 12 8 6 48(1)在图1、图2中分别画出频数分布直方图和频数折线图;(2)试说明这位面粉批发商每星期进面粉多少吨比较合适(精确到0.1吨)?21.(本题满分12分)已知如图,点A (m ,3)与点B (n ,2)关于直线y = x 对称,且都在反比例函数xky的图象上,点D 的坐标为(0,-2).(1)求反比例函数的解析式;(2)若过B 、D 的直线与x 轴交于点C ,求sin ∠DCO 的值.22.(本题满分12分)A 、B 两地相距176 km ,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A 、B 两地同时出发赶往滑坡点疏通公路.10时,甲队赶到立即开始作业,半小时后乙队赶到,并迅速投入“战斗”与甲队共同作业,此时甲队已完成了工程量的241. (1)若滑坡受损公路长1 km ,甲队行进的速度是乙队的23倍多5 km ,求甲、乙两队赶路的速度; (2)假设下午4点时两队就完成公路疏通任务,胜利会师.那么若只由乙工程队疏通这段公路时,需要多少时间能完成任务?23.(本题满分12分)青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天²间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?24.(本题满分12分)如图,⊙O 的直径AB 为10 cm ,弦AC 为6 cm ,∠ACB 的平分线交AB 于E ,交⊙O 于D .求弦AD 、CD 的长.25.(本题满分14分)如图,矩形ABCD 中,AB = 8,BC = 10,点P 在矩形的边DC 上由D 向C 运动.沿直线AP 翻折△ADP ,形成如下四种情形.设DP = x ,△ADP 和矩形重叠部分(阴影)的面积为y .(1)如图丁,当点P 运动到与C 重合时,求重叠部分的面积y ;(2)如图乙,当点P 运动到何处时,翻折△ADP 后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?(3)阅读材料:已知锐角α≠45°,tan2α 是角2α 的正切值,它可以用角α 的正切值tan α 来表示,即 2)(tan 1tan 22tan ααα-=(α≠45°). 根据上述阅读材料,求出用x 表示y 的解析式,并指出x 的取值范围.(提示:在图丙中可设∠DAP = α )参考答案一、填空题1~6.AADBCB 7~12.CDABDC二、填空题13.-1 14.x ≥-2且x ≠0 15.图形如右 16.165 17.33 18.2512三、解答题 19.(1)原式=221212)3141(÷-⨯+-=21212121⨯-⨯= 0. (2)原式=)1)(1()1(1)1(4)1(2122+---+-+⋅-+m m m m m m m m m =)1)(1(2)1)(1(2+--+-m m m m m =)1(2)1)(1()1(2+=+--m m m m .20.(1)(2)由频数折线图,得(19³6 + 20³7 + 21³9 + 22³12 + 23³8 + 24³6)÷ 48 = 1035 ÷ 48 = 21.5625, 所以这位面粉批发商每星期进面粉21.6吨比较合适.21.(1)∵ A (m ,3)与B (n ,2)关于直线y = x 对称, ∴ m = 2,n = 3, 即 A (2,3),B (3,2).于是由 3 = k ∕2,得 k = 6. 因此反比例函数的解析式为xy 6=.∴ 2 = 3k + b ,且 -2 = 0 ² k + b . 解得k =34,b =-2. 故直线BD 的解析式为 y =34x -2. ∴ 当y = 0时,解得 x = 1.5.即 C (1.5,0),于是 OC = 1.5,DO = 2. 在Rt △OCD 中,DC =5.225.122=+. ∴ sin ∠DCO =545.22==DC DO . 说明:过点B 作BE ⊥y 轴于E ,则 BE = 3,DE = 4,从而 BD = 5,sin ∠DCO = sin ∠DBE =54.22.(1)甲队行进了2小时,乙队行进了2.5小时. 设乙队的速度为x ,则甲队为1.5x + 5.由题意得方程 2.5x +(1.5x + 5)³2 + 1 = 176. 整理得 5.5x = 165, 解得 x = 30. ∴ 1.5x + 5 = 1.5³30 + 5 = 50.即甲队赶路的速度为50 km ∕h ,乙队赶路的速度为30 km ∕h . (2)设若由乙队单独施工,需x 小时才能完成. 则由题意有 6³(21241÷)+ 5.5³x1= 1. 解得 x = 11.即乙队单独做,需要11小时才能完成任务.23.设每天的房价为60 + 5x 元,则有x 个房间空闲,已住宿了30-x 个房间. 于是度假村的利润 y =(30-x )(60 + 5x )-20(30-x ),其中0≤x ≤30. ∴ y =(30-x )² 5 ²(8 + x )= 5(240 + 22x -x 2)=-5(x -11)2+ 1805.因此,当x = 11时,y 取得最大值1805元,即每天房价定为115元∕间时,度假村的利润最大. 法二 设每天的房价为x 元,利润y 元满足)56030)(20(---=x x y =84046512-+-x x (60≤x ≤210,是5的倍数).法三 设房价定为每间增加x 元,利润y 元满足)530)(2060(xx y --+==120022512++-x x (0≤x ≤150,是5的倍数).24.∵ AB 是直径,∴ ∠ACB = 90°.∵ CD 平分∠ACB , ∴ AD ⌒=BD ⌒,进而AD = BD .于是在Rt △ABD 中,得 AD = BD =22AB = 52(cm ). 过E 作EF ⊥AC 于F ,EG ⊥BC 于G ,F 、G 是垂足,则四边形CFEG 是正方形.设EF = EG = x ,由三角形面积公式,得 21AC ² x +21BC ² x =21AC ² BC , 即 21³6 ² x + 12³8³x = 12³6³8,解得 x =724.∴ CE = 2x =7224. 由 △ADE ∽△CBE ,得 DE : BE = AE : CE = AD : BC , 即 DE : BE = AE :7224= 52: 8, 解得 AE =730,BE = AB -AE = 10-730=740, ∴ DE =7225. 因此 CD = CE + DE =7224+7225= 72(cm ). 答:AD 、CD 的长依次为52cm ,72cm .说明:另法一 求CD 时还可以作CG ⊥AE ,垂足为G ,连接OD . 另法二 过A 作AF ⊥CD 于F ,则△ACF 是等腰直角三角形.25.(1)由题意可得 ∠DAC =∠D ′AC =∠ACE ,∴ AE = CE .设 AE = CE = m ,则 BE = 10-m .在Rt △ABE 中,得 m 2= 82+(10-m )2,m = 8.2. ∴ 重叠部分的面积 y =21² CE ² AB =21³8.2³8 = 32.8(平方单位). 另法 过E 作EO ⊥AC 于O ,由Rt △ABC ∽Rt △EOC 可求得EO . (2)由题意可得 △DAP ≌△D ′AP , ∴ AD ′ = AD = 10,PD ′ = DP = x .在Rt △ABD ′ 中,∵ AB = 8,∴ BD ′ =22810 = 6,于是 CD ′ = 4. 在Rt △PCD ′ 中,由 x 2= 42+(8-x )2,得 x = 5. 11G表明当DP = 5时,点D 恰好落在BC 边上,这时y = 25. 另法 由Rt △ABD ′∽Rt △PCD ′ 可求得DP . (3)由(2)知,DP = 5是甲、丙两种情形的分界点. 当0≤x ≤5时,由图甲知 y = S △AD ′P = S △ADP =21² AD ² DP = 5x . 当5<x <8时,如图丙,设∠DAP = α,则 ∠AEB = 2α,∠FPC = 2α.在Rt △ADP 中,得 tan α =10xAD DP =. 根据阅读材料,得 tan2α =2210020)10(1102x x x x -=-⋅. 在Rt △ABE 中,有 BE = AB ∕tan2α =2100208xx -=xx 5)100(22-.同理,在Rt △PCF 中,有 CF =(8-x )tan2α =2100)8(20xx x --. ∴ △ABE 的面积S △ABE =21² AB ² BE =21³8³x x 5)100(22-=xx 5)100(82-.△PCF 的面积S △PCF =21² PC ² CF =21(8-x )³2100)8(20x x x --=22100)8(10xx x --. 而直角梯形ABCP 的面积为 S 梯形ABCP =21(PC + AB )³BC =21(8-x + 8)³10 = 80-5x . 故重叠部分的面积 y = S 梯形ABCP -S △ABE -S △PCF = 80-5x -x x 5)100(82--22100)8(10xx x --. 经验证,当x = 8时,y = 32.8适合上式.综上所述,当0≤x ≤5时,y = 5x ;当5<x ≤8时,y = 80-5x -x x 5)100(82--22100)8(10x x x --.。