题型技法点拨-快得分系列之(一)三法定乾坤-谈充要条件的判定
- 格式:pdf
- 大小:341.96 KB
- 文档页数:2
判断充分、必要条件问题是每年高考中的必考问题.此类问题常与函数、不等式、圆锥曲线等知识相结合,通常难度不大.解答此类问题,同学们需熟练掌握常用逻辑用语以及判断充分、必要条件的方法.下面主要谈一谈判断充分、必要条件的三种常用方法.一、定义法定义法是判断充分、必要条件的基本方法.对于命题“若p ,则q ”,如果p ⇒q ,那么p 就是q 的充分条件,q 是p 的必要条件.对于一些比较简单的问题,可直接运用定义法,根据充分、必要条件的定义来进行判断.例1.已知p :-2<m <0,0<n <1,q :关于x 的方程x 2+mx +n =0有两个小于1的正根,试分析p 是q 的什么条件.解:设x 1,x 2是方程x 2+mx +n =0的两个小于1的正根,即0<x 1<1,0<x 2<1,则0<x 1+x 2<2,0<x 1∙x 2<1,由韦达定理可得-2<m <0,0<n <1,从而可得q ⇒p .而当m =-1,n =12时,方程x 2-x +12=0无实根,所以p q .综上可知p 是q 的必要不充分条件.要解答本题,我们需根据条件q 中给出的信息,利用韦达定理求得m ,n 的取值范围,然后讨论条件p 、q 之间的关系,再采用定义法,根据充分、必要条件的定义来进行判断.二、集合法若使p 成立的对象构成的集合为A ,使q 成立的对象构成的集合为B ,则集合A 、B 与充分、必要条件的关系为:(1)若A ⊆B ,则p 是q 的充分条件;(2)若B ⊆A ,则p 是q 的必要条件;(3)若A =B ,则p 是q 的充要条件.运用集合法,可以将有关充分、必要条件的问题转化为集合间的关系问题,通过判断集合之间的包含、真包含、相等关系来判断命题的充要性、必要性.例2.已知p :||||||1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且¬p 是¬q 的必要不充分条件,求实数m 的取值范围.解:由||||||1-x -13≤2得-2≤x ≤10,所以¬p 对应的集合为{}x |x >10或x <-2,设A ={}x |x >10或x <-2.由x 2-2x +1-m 2≤0(m >0),可得1-m ≤x ≤1+m (m >0),所以¬q 对应的集合为{}x |x >m +1或x <1-m ,m >0,设B ={}x |x >m +1或x <1-m ,m >0.因为¬p 是¬q 的必要不充分条件,所以B ⊆A ,所以ìíîm >0,1-m ≤-2,1+m ≥10,解得m ≥9,所以实数m 的取值范围为[9,+∞).当命题中的条件与结论都能够用集合来表示的时候,我们就可以运用集合法来判断充分、必要条件.集合法多适用于解答命题中涉及解集的包含或者相等问题.三、等价转化法等价转化法是指运用一个命题与其逆否命题的等价性,把原命题转化为逆否命题,然后再进行判断.当难以按判断原命题的真假时,就可以采用等价转化法,转化思路,判断其逆否命题的真假.例3.设p :||||x -1-2<1,q :x -2x 2+x -2>0,试证明¬p 是¬q 的必要不充分条件.证明:设命题p ,q 对应的集合分别为P ,Q ,则P ={}x |-2<x <0,或2<x <4,Q ={}x |-2<x <1,或x >2,因为P ⊄Q ,所以q 是p 的必要不充分条件,所以¬p 是¬q 的必要不充分条件.由于原命题与其逆否命题等价,逆命题与其否命题等价,因此对于一些否定性的命题,可先将其转化为等价命题,再进行判断.该方法体现了等价转化的思想,运用该方法解题,有利于培养思维的灵活性.相比较而言,定义法较为简单,定义法和集合法比较常用,而等价转化法较为复杂,对同学们的逻辑思维能力的要求较高.因此在,判断充分、必要条件时,可先尝试运用定义法、集合法,若解题受阻,再考虑运用等价转化法.(作者单位:江苏省大丰高级中学)考点透视36。
1 / 1解析充要条件的三种常用判断方式1.利用集合间的相互关系进行判断.若一个命题的条件和结论所描述的对象形成一个集合,则可用集合间的相互关系来判定充分条件,必要条件.设P ,Q 分别为命题p,q 所描述的对象形成的集合. (1).若q p Q P 是则称,⊆的充分条件. (2).若P Q ⊆,则称p 是q 的必要条件. (3).若P Q ⊂,则称p 是q 的必要非充分条件. (4) .若Q P ⊂,则称p 是q 的充分非必要条件. (5).若Q P =,则称p 是q 的充要条件.(6).若φ=⋂Q P ,则称p 是q 成立的既不充分也不必要条件. (7).若A B ,⊆⊆且B A ,则称p 是q 成立的既不充分也不必要条件. 例1. 条件A :()()014B ,041≥-+≥+-x x x x :结论,则判断条件是结论的什么条件. 解:由于A 的解集是:M =(][)+∞⋃-∞-,14,,而B 的解集是:N=(]()+∞⋃-∞-,14,,显然N ⊂M ,于是A 是B 的必要非充分条件.2.利用互为逆否命题的等价性进行判断.由于互为逆否命题是相互等价的,当我们正面对命题进行判断较为困难时,可将其转化为逆否命题来判断.例3.,:,:B A x q B x A x p ⋂∉∉∉或的是说明q p 什么条件.解:原命题等价于判断B x A x p B A x q ∈∈⌝⋂∈⌝且是::的什么条件. 易见:B A x B x A x B x A x B A x ⋂∈⇒∈∈∈∈⇒⋂∈且及 且,,故p q p q ⌝⌝⌝⇔⌝是即的充要条件.所以p 是q 的充要条件. 例4.,5:,23:≠+≠≠y x q y x p 且的是说明q p 什么条件. 解:原命题等价于判断23:5:==⌝=+⌝y x p y x q 或是的什么条件. 显然.,q p p q ⌝⇒⌝⌝⇒⌝所以p 是q 的既不充分也不必要条件. 3.利用真值表进行判断.我们首先给出关于命题p 和q 的真值表.pqq p 或q p 且p ⌝真 假 真 假 假 假 真 真 假 真 假 假 假 假 真 真真真真真由于复合命题是由简单命题与逻辑联结词“或” ,“且”,“非”等构成的,因此利用真值表进行判断充要条件时,关键是能够将一个复合命题写成用逻辑联结词“或” ,“且”,“非”连接的与之等价的复合命题的形式.例5.判断命题0>x 是0≥x 的什么条件.解: ,000=>≥x x x 或即由真值表知:p 真q p 或⇒真,但q p 或真p ⇒真. 0>x 0≥⇒x ,但00>⇒≥x x .故0>x 是0≥x 的充分不必要条件. 例6.判断命题22b a ≠是b a b a -≠≠或的什么条件.解:.22b a b a b a -≠≠≠且即由真值表知:真或真,但或真真且q p q p p q p ⇒⇒b a b a b a q p -≠≠≠∴⇒或是真. 且22的充分不必要条件.以上二例紧扣真值表,在判断时要能够剖析命题中所蕴含的逻辑联结词,进而将复合命题分解.。
三法破解集合运算和充要条件判断的问题一、三法定乾坤——谈集合运算问题的三种方法集合的基本运算主要包括交集、并集、补集,集合是历年高考的必考内容,解决集合的基本运算问题,首先要明确集合中元素的性质,通过解不等式求出每个集合,然后弄清几个集合之间的关系,最后利用列举法、借助数轴或Venn 图等根据交集、并集、补集的定义进行基本运算,从而得出结果.1.列举法列举法就是通过枚举集合中所有的元素,然后根据集合基本运算的定义求解的方法.此类方法适用于数集的有关运算以及集合的新定义运算问题.其基本的解题步骤是:[例1] 设P ,Q 为两个非空实数集合,定义集合P *Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P *Q 中元素的个数是( )A .2B .3C .4D .5[解析] 当a =0时,无论b 取何值,z =a ÷b =0; 当a =-1,b =-2时,z =(-1)÷(-2)=12;当a =-1,b =2时,z =(-1)÷2=-12;当a =1,b =-2时,z =1÷(-2)=-12;当a =1,b =2时,z =1÷2=12.故P *Q =⎩⎨⎧⎭⎬⎫0,-12,12,该集合中共有3个元素.[答案] B[点评] 求解两个集合之间的运算应该注意三个问题:一是集合中元素的形式,元素是数还是有序数对,是函数的定义域还是函数的值域等;二是注意集合中对应不等式端点值的处理,尤其是求解集合补集的运算,一定要搞清端点值的取舍;三是求解集合的补集运算时,一定要先求出原来的集合,然后求其补集,不要直接转化条件而导致漏解出错,如集合A=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |log 12x ≥12的补集不是B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |log 12x <12,而是B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |log 12x <12,或x ≤0. 2.数形结合法数形结合法就是利用数轴或Venn 图表示出相关集合,然后根据图形求解集合的补集或者进行相关集合的交集、并集的基本运算.其求解的基本步骤是:[例2] (2013·嘉兴模拟)已知全集U =R ,集合A ={x |log 12(x -1)>0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪2x -3x <0,则B ∩(∁U A )=( )A .[0,1]B .[0,1)C .(0,1)D .(0,1][解析] 由log 12(x -1)>0,得0<x -1<1,即1<x <2,∴A =(1,2). 由2x -3x <0,得x (2x -3)<0,即0<x <32, ∴B =⎝⎛⎭⎫0,32. 如图所示,在数轴上表示出集合A ,B . 则∁U A =(-∞,1]∪[2,+∞), ∴B ∩(∁U A )=(0,1].[答案] D[点评] 数形结合法主要是利用图形的直观性来进行集合的基本运算,应注意利用数轴表示集合时,要根据端点值的取舍情况正确选用实心点或空心点标注对应集合,避免因区间端点值的取舍不当造成增解或漏解.3.属性分析法属性分析法就是根据元素与集合之间的确定关系来进行集合基本运算的方法,主要是解决点集问题中某个集合与已知集合之间的关系问题.解决此类问题的基本步骤是:[例3] 已知全集U ={1,2,3,4,5,6,7},M ={3,4,5},N ={1,3,6},则集合{2,7}=( ) A .M ∩N B .(∁U M )∩(∁U N ) C .(∁U M )∪(∁U N )D .M ∪N[解析] 显然2∈U,2∉M,2∉N ,所以2∈∁U M,2∈∁U N ,所以2∈(∁U M )∩(∁U N ); 而7∈U,7∉M,7∉N ,所以7∈∁U M,7∈∁U N ,所以7∈(∁U M )∩(∁U N ). 综上,易知{2,7}=(∁U M )∩(∁U N ). [答案] B[点评] 属性分析法的实质是利用集合中元素的确定性,即元素与集合之间的关系:属于与不属于.在推理过程中还要注意已知集合之间的关系,如a ∈U ,a ∉A 且A ⊆U ,则必有a ∈∁U A .二、三法破解充要条件的判断问题充要条件是历年高考的必考内容,主要包括两个方面:一是以函数、数列、不等式、立体几何中的线面关系等为背景考查充要条件的判断;二是根据充要条件求解参数的取值范围,这两类问题常以填空题的形式进行考查,试题难度不大.充要条件的判断问题要注意“p 是q 的充分不必要条件”与“p 的一个充分不必要条件是q ”这两种叙述方式的差异,先将问题转化为第一种基本的叙述方式,然后再判断.利用充要条件之间的关系求解参数的取值范围可将其转化为两个集合之间的关系,然后构造相应的不等式进行处理.1.定义法定义法就是将充要条件的判断转化为两个命题——“若p ,则q ”与“若q ,则p ”的判断,根据两个命题是否正确,来确定p 与q 之间的充要关系.其基本步骤是:[例1] 设0<x <π2,则“x sin 2x <1”是“x sin x <1”的________条件.[解析] 因为0<x <π2,所以0<sin x <1,不等式x sin x <1两边同乘sin x ,可得x sin 2x <sin x ,所以有x sin 2x <sin x <1.即x sin x <1⇒x sin 2x <1;不等式x sin 2x <1两边同除以sin x ,可得x sin x <1sin x ,而由0<sin x <1,知1sin x >1,故x sinx <1不一定成立,即x sin 2x <1⇒/ x sin x <1.综上,可知“x sin 2x <1”是“x sin x <1”的必要不充分条件. [答案] 必要不充分[点评] 判断p 、q 之间的关系,只需判断两个命题A :“若p ,则q ”和B :“若q ,则p ”的真假.两命题的真假与p 、q 之间的关系如下表所示:命题A 命题B p 、q 之间的关系 真 真 p 为q 的充分必要条件 真 假 p 为q 的充分不必要条件 假 真 p 为q 的必要不充分条件 假假p 为q 的既不充分又不必要条件2.等价转化法等价转化法就是在判断含有逻辑联结词“否”的有关条件之间的充要关系时,根据原命题与其逆否命题的等价性转化为形式较为简单的两个条件之间的关系进行判断.其基本步骤为:[例2] 已知条件p :4x -1≤-1,条件q :x 2-x <a 2-a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是________.[解析] 解4x -1≤-1,得-3≤x <1.由x 2-x <a 2-a ,即(x -a )[x +(a -1)]<0, 当a >1-a ,即a >12时,不等式的解为1-a <x <a ;当a =1-a ,即a =12时,不等式的解为∅;当a <1-a ,即a <12时,不等式的解为a <x <1-a .由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,即p 为q 的一个必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集.当a >12时,由{x |1-a <x <a }{x |-3≤x <1},得⎩⎪⎨⎪⎧-3≤1-a ,1≥a ,解得12<a ≤1;当a =12时,因为空集是任意一个非空集合的真子集,所以满足条件;当a <12时,由{x |a <x <1-a }{x |-3≤x <1},得⎩⎪⎨⎪⎧-3≤a ,1≥1-a ,解得0≤a <12.综上,a 的取值范围是[0,1]. [答案] [0,1][点评] 判断两个命题綈p 和綈q 之间的关系,一般是直接利用定义法,寻找两者之间的关系,或利用集合的方法寻找与之对应的两个集合之间的关系,当两种方法都较难判断时,可转化为p 、q 之间的关系,再利用互为逆否命题的等价性进行判断.它们之间的对应关系如下表所示:p 、q 之间的关系 綈p 和綈q 之间的关系 p 是q 的充分不必要条件 綈p 是綈q 的必要不充分条件 p 是q 的必要不充分条件 綈p 是綈q 的充分不必要条件 p 是q 的充要条件綈p 是綈q 的充要条件p 是q 的既不充分也不必要条件 綈p 是綈q 的既不充分也不必要条件 3.集合法集合法就是利用满足两个条件的参数取值集合之间的关系来判断充要关系的方法.主要解决两个相似的条件难以进行区分或判断的问题.其解决的一般步骤是:[例3] 若A :log 2a <1,B :x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零,则A 是B 的________条件.[解析] 由log 2a <1,解得0<a <2,所以满足条件A 的参数a 的取值集合为M ={a |0<a <2};而方程x 2+(a +1)x +a -2=0的一根大于零,另一根小于零的充要条件是f (0)<0,即a -2<0,解得a <2,即满足条件B 的参数a 的取值集合为N ={a |a <2},显然M N ,所以A 是B 的充分不必要条件.[答案] 充分不必要[点评]设p、q对应的集合分别记为A、B.则p、q之间的关系可转化为与之相应的两个集合之间的关系.它们之间的关系如下表所示:A、B之间的关系p、q之间的关系A=B p为q的充分必要条件A B p为q的充分不必要条件A B p为q的必要不充分条件A⃘B且B⃘A p为q的既不充分又不必要条件。
判断充要条件的方法宝子们,今天咱们来唠唠判断充要条件这个事儿呀。
那啥是充要条件呢?简单来说呢,如果有条件A和结论B。
要是A能推出B,同时B也能推出A,那A就是B的充要条件啦。
就像两个人互相能依靠,少了谁都不行呢。
咱先说说怎么判断充分条件哈。
充分条件就是只要这个条件成立,结论就一定成立。
比如说“天下雨”(这就是条件啦),那“地面湿”(这是结论),天下雨的时候,地面通常就会湿,这时候“天下雨”就是“地面湿”的充分条件。
但是宝子们要注意哦,地面湿可不一定就是天下雨了,也许是有人泼水了呢。
所以充分条件是一种单向的推出关系。
再说说必要条件呢。
必要条件就是如果结论要成立,这个条件就必须得有。
还拿地面湿举例子,如果地面是干的,那肯定就没有天下雨,所以“地面湿”是“天下雨”的必要条件哦。
必要条件就像是一个基础,没有它,结论就站不住脚啦。
那怎么判断充要条件呢?就是看这个条件和结论能不能双向奔赴。
就像你和你的好朋友,你去找他,他也来找你。
如果从条件到结论能推导,从结论到条件也能推导,那就是充要条件啦。
比如说“一个三角形是等边三角形”和“这个三角形的三个内角都相等”,等边三角形肯定三个内角相等,三个内角相等的三角形也肯定是等边三角形,这就是充要条件啦。
还有一种简单的判断方法呢,就是看逻辑关系的完整性。
如果把条件和结论看成两个集合,充要条件就是这两个集合完全重合。
充分条件就是条件这个集合包含在结论集合里,必要条件就是结论集合包含在条件集合里。
宝子们,判断充要条件其实没那么难啦,只要把这些关系搞清楚,多做几道题练练手,很快就能掌握这个小技能啦。
加油哦,宝子们!。
充要条件与反证法●知识梳理1.充分条件:如果p ⇒q ,则p 叫q 的充分条件,原命题(或逆否命题)成立,命题中的条件是充分的,也可称q 是p 的必要条件.2.必要条件:如果q ⇒p ,则p 叫q 的必要条件,逆命题(或否命题)成立,命题中的条件为必要的,也可称q 是p 的充分条件.3.充要条件:如果既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 叫做q 的充分必要条件,简称充要条件,原命题和逆命题(或逆否命题和否命题)都成立,命题中的条件是充要的.4.反证法:当直接证明有困难时,常用反证法. ●点击双基1.ac 2>bc 2是a >b 成立的A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件解析:a >b ac 2>bc 2,如c =0. 答案:A2.(2004年湖北,理4)已知a 、b 、c 为非零的平面向量.甲:a ·b =a ·c ,乙:b =c ,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件 解析:命题甲:a ·b =a ·c ⇒a ·(b -c )=0⇒a =0或b =c . 命题乙:b =c ,因而乙⇒甲,但甲乙. 故甲是乙的必要条件但不是充分条件. 答案:B3.(2004年浙江,8)在△ABC 中,“A >30°”是“sin A >21”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件解析:在△ABC 中,A >30°⇒0<sin A <1sin A >21,sin A >21⇒30°<A <150°⇒A >30°.∴“A >30°”是“sin A >21”的必要不充分条件.答案:B4.若条件p :a >4,q :5<a <6,则p 是q 的______________.解析:a >45<a <6,如a =7虽然满足a >4,但显然a 不满足5<a <6. 答案:必要不充分条件5.(2005年春季上海,16)若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若a >0且b 2-4ac <0,则对任意x ∈R ,有ax 2+bx +c >0,反之,则不一定成立.如a =0,b =0且c >0时,也有对任意x ∈R ,有ax 2+bx +c >0.因此应选A.答案:A ●典例剖析【例1】 使不等式2x 2-5x -3≥0成立的一个充分而不必要条件是 A.x <0 B.x ≥0C.x ∈{-1,3,5}D.x ≤-21或x ≥3 剖析:∵2x 2-5x -3≥0成立的充要条件是x ≤-21或x ≥3,∴对于A 当x =-31时2x 2-5x -3≥0.同理其他也可用特殊值验证.答案:C【例2】 求证:关于x 的方程ax 2+bx +c =0有一根为1的充分必要条件是a +b +c =0.证明:(1)必要性,即“若x =1是方程ax 2+bx +c =0的根,则a +b +c =0”.∵x =1是方程的根,将x =1代入方程,得a ·12+b ·1+c =0,即a +b +c =0.(2)充分性,即“若a +b +c =0,则x =1是方程ax 2+bx +c =0的根”.把x =1代入方程的左边,得a ·12+b ·1+c =a +b +c .∵a +b +c =0,∴x =1是方程的根. 综合(1)(2)知命题成立. 深化拓展求ax 2+2x +1=0(a ≠0)至少有一负根的充要条件. 证明:必要性:(1)方程有一正根和一负根,等价于⇒⎪⎩⎪⎨⎧<=>-=0104421a x x a Δa <0. (2)方程有两负根,等价于⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧><-≥-=0102044aa a Δ0<a ≤1.综上可知,原方程至少有一负根的必要条件是a <0或0<a ≤1.充分性:由以上推理的可逆性,知当a <0时方程有异号两根;当0<a ≤1时,方程有两负根.故a <0或0<a ≤1是方程ax 2+2x +1=0至少有一负根的充分条件.答案:a <0或0<a ≤1.【例3】 下列说法对不对?如果不对,分析错误的原因. (1)x 2=x +2是x 2+x =x 2的充分条件; (2)x 2=x +2是x 2+x =x 2的必要条件.解:(1)x 2=x +2是x 2+x =x 2的充分条件是指x 2=x +2⇒x 2+x =x 2.但这里“⇒”不成立,因为x =-1时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是应用了错误的推理:x 2=x +2⇒x =2+x ⇒x 2=x 2+x .这里推理的第一步是错误的(请同学补充说明具体错在哪里).(2)x 2=x +2是x 2+x =x 2的必要条件是指x 2+x =x 2⇒x 2=x +2.但这里“⇒”不成立,因为x =0时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是用了错误的推理:x 2+x =x 2⇒2+x =x ⇒x +2=x 2.这里推理的第一步是错误的(请同学补充说明具体错在哪里). 评述:此题的解答比较注重逻辑推理.事实上,也可以从真值集合方面来分析:x 2=x +2的真值集合是{-1,2},x 2+x =x 2的真值集合是{0,2},{-1,2}{0,2},而{0,2} {-1,2},所以(1)(2)两个结论都不对. ●闯关训练 夯实基础1.(2004年重庆,7)已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:依题意有p ⇒r ,r ⇒s ,s ⇒q ,∴p ⇒r ⇒s ⇒q .但由于r p ,∴q p . 答案:A2.(2003年北京高考题)“cos2α=-23”是“α=k π+12π5,k ∈Z ”的 A.必要不充分条件 B.充分不必要条件 C.充分必要条件D.既不充分又不必要条件解析:cos2α=-23⇔2α=2k π±6π5⇔α=k π±12π5. 答案:A3.(2005年海淀区第一学期期末练习)在△ABC 中,“A >B ”是“cos A <cos B ”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:在△ABC 中,A >B ⇔cos A <cos B (余弦函数单调性). 答案:C4.命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.答案:充分不必要5.(2004年北京,5)函数f (x )=x 2-2ax -3在区间[1,2]上存在反函数的充分必要条件是A.a ∈(-∞,1]B.a ∈[2,+∞)C.α∈[1,2]D.a ∈(-∞,1]∪[2,+∞)解析:∵f (x )=x 2-2ax -3的对称轴为x =a ,∴y =f (x )在[1,2]上存在反函数的充要条件为[1,2]⊆(-∞,a ]或[1,2]⊆[a ,+∞),即a ≥2或a ≤1.答案:D6.已知数列{a n }的前n 项和S n =p n+q (p ≠0且p ≠1),求数列{a n }成等比数列的充要条件. 分析:先根据前n 项和公式,导出使{a n }为等比数列的必要条件,再证明其充分条件. 解:当n =1时,a 1=S 1=p +q ;当n ≥2时,a n =S n -S n -1=(p -1)·p n -1. 由于p ≠0,p ≠1,∴当n ≥2时,{a n }是等比数列.要使{a n }(n ∈N *)是等比数列,则12a a =p ,即(p -1)·p =p (p +q ),∴q =-1,即{a n }是等比数列的必要条件是p ≠0且p ≠1且q =-1.再证充分性:当p ≠0且p ≠1且q =-1时,S n =p n-1,a n =(p -1)·p n -1,1-n na a =p (n ≥2), ∴{a n }是等比数列. 培养能力7.(2004年湖南,9)设集合U ={(x ,y )|x ∈R ,y ∈R },A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},那么点P (2,3)∈A ∩(UB )的充要条件是A.m >-1,n <5B.m <-1,n <5C.m >-1,n >5D.m <-1,n >5解析:∵UB ={(x ,y )|n <x +y },将P (2,3)分别代入集合A 、B 取交集即可.∴选A.答案:A8.已知关于x 的一元二次方程mx 2-4x +4=0,①x 2-4mx +4m 2-4m -5=0.②求使方程①②都有实根的充要条件.解:方程①有实数根的充要条件是Δ1=(-4)2-16m ≥0,即m ≤1; 方程②有实数根的充要条件是Δ2=(4m )2-4(4m 2-4m -5)≥0,即m ≥-45. ∴方程①②都有实数根的充要条件是-45≤m ≤1. 9.已知a 、b 、c 是互不相等的非零实数.求证:三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根.证明:反证法:假设三个方程中都没有两个相异实根,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0.相加有a 2-2ab +b 2+b 2-2bc +c 2+c 2-2ac +a 2≤0,(a -b )2+(b -c )2+(c -a )2≤0. ①由题意a 、b 、c 互不相等,∴①式不能成立.∴假设不成立,即三个方程中至少有一个方程有两个相异实根. 探究创新10.若x 、y 、z 均为实数,且a =x 2-2y +2π,b =y 2-2z +3π,c =z 2-2x +6π,则a 、b 、c 中是否至少有一个大于零?请说明理由.解:假设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0.而a +b +c =x 2-2y +2π+y 2-2z +3π+z 2-2x +6π=(x -1)2+(y -1)2+(z -1)2+π-3, ∵π-3>0,且无论x 、y 、z 为何实数,(x -1)2+(y -1)2+(z -1)2≥0,∴a +b +c >0.这与a +b +c ≤0矛盾.因此,a 、b 、c 中至少有一个大于0. ●思悟小结1.要注意一些常用的“结论否定形式”,如“至少有一个”“至多有一个”“都是”的否定形式是“一个也没有”“至少有两个”“不都是”.2.证明充要性要从充分性、必要性两个方面来证明. ●教师下载中心 教学点睛1.掌握常用反证法证题的题型,如含有“至少有一个”“至多有一个”等字眼多用反证法.2.强调反证法的第一步,要与否命题分清.3.要证明充要性应从充分性、必要性两个方面来证. 拓展题例【例题】 指出下列命题中,p 是q 的什么条件. (1)p :0<x <3,q :|x -1|<2; (2)p :(x -2)(x -3)=0,q :x =2;(3)p :c =0,q :抛物线y =ax 2+bx +c 过原点. 解:(1)p :0<x <3,q :-1<x <3. p 是q 的充分但不必要条件.(2)p q ,q ⇒p .p 是q 的必要但不充分条件. (3)p 是q 的充要条件.评述:依集合的观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 是B 的充要条件.。
充分条件、必要条件判断的三种方法聂海峰对于充要条件的判断,许多同学感觉困难,下面结合典型例题说明充要条件判断的三种常用方法,供大家参考。
1. 利用定义判断如果已知,则p是q的充分条件,q是p的必要条件。
根据定义可进行判断。
例1. 已知p、q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么s是q的_________条件;r是q的_______________条件;p是q的____________条件。
解:根据题意可表示为:由传递性可得图1图1所以s是q的充要条件;r是q的充要条件;p是q的必要条件。
2. 利用等价命题判断原命题与其逆否命题是“同真同假”的等价命题,当我们直接判断原命题的真假有困难时,可以转化为判断其逆否命题的真假。
这一点在充要条件的判断时经常用到。
由,容易理解p是q的充分条件,而q是p的必要条件却有点抽象。
与是等价的,可以解释为若q不成立,则p不成立,条件q是必要的。
例2. 已知真命题“若则”和“若则”,则“”是“”的____________条件。
解:“若则”的逆否命题为“若则”。
又“若”所以“若”为真命题。
故“”是“”的充分条件。
3. 把充要条件“直观化”如果,我们可以形象地认为p是q的“子集”;如果,我们认为p不是q的“子集”,根据集合的包含关系,可借助韦恩图说明,现归纳如下。
图2反映了p是q的充分不必要条件时的情形。
图3反映了p是q的必要不充分条件时的情形。
图4反映了p是q的充要条件时的情形。
图5、图6反映了p是q的既不充分也不必要条件时的情形。
例3. 若,则p是q的什么条件?解:由题设可知参照图3,可得p是q的必要不充分条件。
充分、必要条件的判断原创赢鼎教育赢鼎提分 2016-10-12你是个有逻辑性的人吗?先不要这么着急、这么自信的回答小编,来问你个问题:“如果天下雨,地就会湿”。
天要是不下雨,地湿还是不湿?哈哈,有意思吧,这就是逻辑哦,而且和高中数学息息相关。
充分条件与必要条件1. 定义:对于"若p 则q"形式的命题:①若pq,则p 是q 的充分条件,q 是p 的必要条件; ②若p q,但q p,则p 是q 的充分不必要条件,q 是p 的必要不充分条件; ③若且≠>,则是成立的必要不充分条件;④若既有p q,又有q p,记作p q,则p 是q 的充分必要条件〔充要条件〕. ⑤若≠>且≠>,则是成立的既不充分也不必要条件.从集合的观点上关于充分不必要条件、必要不充分条件、充分必要条件、既不充分也不必要条件的判定在于判断、相应的集合关系.建立与、相应的集合,即成立,成立. 若,则是的充分条件,若,则是成立的充分不必要条件; 若,则是的必要条件,若,则是成立的必要不充分条件;若,则是成立的充要条件;若A B 且B A,则是成立的既不充分也不必要条件. 例1已知p :x 1,x 2是方程x 2+5x -6=0的两根,q :x 1+x 2=-5,则p 是q 的[ ]A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件解∵x 1,x 2是方程x 2+5x -6=0的两根∴x 1,x 2的值分别为1,-6,∴x 1+x 2=1-6=-5.因此选A .变式1设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例2 p 是q 的充要条件的是[ ]A .p :3x +2>5,q :-2x -3>-5B .p :a >2,b <2,q :a >bC .p :四边形的两条对角线互相垂直平分,q :四边形是正方形D .p :a ≠0,q :关于x 的方程ax =1有惟一解解对A .p :x >1,q :x <1,所以,p 是q 的既不充分也不必要条件;对B .p q 但q p,p 是q 的充分非必要条件;q p ⇒p q p q p q q p p q p q p q (){:p A x p x =}(){:q B x q x =}A B ⊆p q AB p q B A ⊆p q BA p q AB =p q ⊆/⊇/p q对C .p q 且q p,p 是q 的必要非充分条件;说明:当a =0时,ax =0有无数个解例3〔年〕""是""的〔 〕 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件分解:当时,,即.反之,当时,有, 或,即≠>. 综上所述,""是""的充分不必要条件,故选A . 变式3 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0例4〔2008##>设集合,,那么""是""的〔 〕A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件分析:本题条件与结论的形式都是集合形式,只要理清集合之间的关系,按照充要条件与集合的对应关系即可作出判断.解:∵,∴.故选A . 例5.已知p :40x m +<,q :220x x -->,若p 是q 的一个充分不必要条件,求m 的取值范围解:由p :40x m +<得4m x <-;由q :220x x -->得1x <-或2x > ∵p 是q 的一个充分不必要条件,∴只有p ⇒q 成立,∴14m -≤-,∴4m ≥ 变式5已知命题:,命题:,若¬是¬的充分不必要条件,##数的取值范围.例6已知命题:有两个不等的负根,命题:1020092()6k k Z παπ=+∈1cos 22α=2()6k k Z παπ=+∈1cos 2cos 4cos 332k ππαπ⎛⎫=+== ⎪⎝⎭p q ⇒1cos 22α=()2236k k k Z ππαπαπ=+⇒=+∈()2236k k k Z ππαπαπ=-⇒=-∈q p 2()6k k Z παπ=+∈1cos 22α=01x A x x ⎧⎫=<⎨⎬-⎩⎭{}03B x x =<<m A ∈m B ∈{}01A x x =<<A B p 1123x --≤q ()222100x x m m -+-≤>p q m p 210x mx ++=q ()2442x m x +-+无实数根.若命题与命题有且只有一个为真,##数的取值范围.分析:对命题和命题的条件进行化简可得的范围,再对、的真假进行讨论,得到参数成立的条件,利用交集求出的取值范围.解:∵方程有两个不等的负根,∴,解得. ∵方程无实数根, ∴,解得. 若命题为真,命题为假,则,得. 若命题为假,命题为真,则,得.综上所述,实数的取值范围为或.变式6命题p :关于x 的不等式2240x ax ++>对一切x R ∈恒成立;命题q :函数()a f x lag x =在(0,)+∞上递增若p q ∨为真,而p q ∧为假,##数a 的取值范围.[解释]变式1解解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5∴甲是乙的充分不必要条件,选A .变式3解:用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =当a ≠0时综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.变式5解:记, ∵¬是¬的充分不必要条件, ∴是的充分不必要条件,即. ∴,解得.所以实数的取值范围是p q m p q m p q m 210x mx ++=2400m m ⎧->⎨-<⎩2m >()2442x m x +-+10=()2162160m --<13m <<p q 213m m m >⎧⎨≤≥⎩或3m ≥p q 213m m ≤⎧⎨<<⎩12m <≤m 12m <≤3m ≥{}1122103x A x x x ⎧-⎫=-≤=-≤≤⎨⎬⎩⎭p q q p BA 012110m m m >⎧⎪->-⎨⎪+<⎩03m <<m 03m <<变式6.解:命题p :关于x 的不等式2240x ax ++>对一切x R ∈恒成立;pT ⇒()22240a ∆=-<,即22a -<<命题q :函数()a f x lag x =在(0,)+∞上递增;qT ⇒1a >∵p q ∨为真,而p q ∧为假,∴pq 一真一假p 真q 假时,pT ⇒22a -<<;qF ⇒1a ≤;∴21a -<≤p 假q 真时,pF ⇒22a a ≤-≥或;qF ⇒1a >;∴2a ≥。
[典例](2012·山东高考)设a>0且a≠1,则
“函数f(x)=a x在R上是减函数”是“函数g(x)=
(2-a)x3在R上是增函数”的()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
[常规解法]“函数f(x)=a x在R上是减函数”的充要条件是p:0<a<1.
因为g′(x)=3(2-a)x2,而x2≥0,所以“函数g(x)=(2-a)x3在R上是增函数”的充要条件是2-a>0,即a<2.
又因为a>0且a≠1,所以“函数g(x)=(2-a)x3在R上是增函数”的充要条件是q:0<a<2且a≠1.
显然p⇒q,但q⇒/ p,所以p是q的充分不必要条件,即“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的充分不必要条件.
[答案] A
——————[高手支招]———————————————————————————
1.充分、必要条件的判定方法有定义法、集合法和等价转化法.
2.三种不同的方法各适用于不同的类型,定义法适用于定义、定理判断性问题,而集合法多适用于命题中涉及字母的范围的推断问题,等价转化法适用于条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.
[巧思妙解]p:“函数f(x)=a x在R上是减函数”等价于0<a<1.q:“函数g(x)=(2-a)x3在R上是增函数”等价于2-a>0,即a<2.而{a|0<a<1}是{a|a<2}的真子集,故答案为
A.
针对训练
命题p:|x+2|>2;命题q:
1
3-x
>1,则綈q是綈p的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
解析:选B解|x+2|>2,即x+2<-2或x+2>2,得x<-4或x>0,所以p:x<-4或
x>0,故綈p:-4≤x≤0;解1
3-x
>1,得2<x<3,所以q:2<x<3,綈q:x≤2或x≥3.显然{x|-4≤x≤0}{x|x≤2,或x≥3},所以綈q是綈p的必要不充分条件.。