湖北省天门市2015届高三四月调考文科数学试卷(含答案)
- 格式:doc
- 大小:732.50 KB
- 文档页数:9
2015年高考湖北卷文数试题解析(精编版)(解析版)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.i为虚数单位,607i=()A.i-B.i C.1-D.1【答案】A.【考点定位】本题考查复数的概念及其运算,涉及分数指数幂的运算性质.【名师点睛】将复数的幂次运算和分数指数幂运算结合在一起,不仅考查了复数的概念,也考查了分数指数幂的运算性质,充分体现了学科内知识之间的联系性,能够较好的反应学生基础知识的识记能力和计算能力.2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石 B.169石 C.338石 D.1365石【答案】B.【考点定位】本题考查简单的随机抽样,涉及近似计算.【名师点睛】本题以数学史为背景,重点考查简单的随机抽样及其特点,通过样本频率估算总体频率,虽然简单,但仍能体现方程的数学思想在解题中的应用,能较好考查学生基础知识的识记能力和估算能力、实际应用能力. 3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =- 【答案】C .【考点定位】本题考查特称命题和全称命题的否定形式,,属识记基础题. 【名师点睛】本题主要考查特称命题的否定,其解题的关键是正确理解并识记其否定的形式特征.扎根基础知识,强调教材的重要性,充分体现了教材在高考中的地位和重要性,考查了基本概念、基本规律和基本操作的识记能力. 4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关. 下列结论中正确的是( )A .x 与y 负相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 正相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关 【答案】A .【考点定位】本题考查正相关、负相关,涉及线性回归方程的内容.【名师点睛】将正相关、负相关、线性回归方程等联系起来,充分体现了方程思想在线性回归方程中的应用,能较好的考查学生运用基础知识的能力.其易错点有二:其一,未能准确理解正相关与负相关的定义;其二,不能准确的将正相关与负相关问题进行转化为直线斜率大于和小于0的问题.5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( ) A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 【答案】A .【考点定位】本题考查充分条件与必要条件、异面直线,属基础题.【名师点睛】以命题与命题间的充分条件与必要条件为契机,重点考查空间中直线的位置关系,其解题的关键是弄清谁是谁的充分条件谁是谁的必要条件,正确理解异面直线的定义,注意考虑问题的全面性、准确性. 6.函数256()4||lg3x x f x x x -+=-+-的定义域为( ) A .(2,3) B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-【答案】C .【考点定位】本题考查函数的定义域,涉及根式、绝对值、对数和分式、交集等内容.【名师点睛】本题看似是求函数的定义域,实质上是将根式、绝对值、对数和分式、交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩则( ) A .|||sgn |x x x =B .||sgn ||x x x =C .||||sgn x x x =D .||sgn x x x =【答案】D.【考点定位】本题考查分段函数及其表示法,涉及新定义,属能力题. 【名师点睛】以新定义为背景,重点考查分段函数及其表示,其解题的关键是准确理解题意所给的新定义,并结合分段函数的表示准确表达所给的函数.不仅新颖别致,而且能综合考察学生信息获取能力以及知识运用能力.8.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则( )A .1212p p <<B .1212p p <<C .2112p p <<D .2112p p <<【答案】B .【考点定位】本题考查几何概型和微积分基本定理,涉及二元一次不等式所表示的区域和反比例函数所表示的区域.【名师点睛】以几何概型为依托,融合定积分的几何意义、二元一次不等式所表示的区域和反比例函数所表示的区域等内容,充分体现了转化的数学思想在实际问题中的应用,能较好的考查学生灵活运用基础知识解决实际问题的能力. 9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b<时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 【答案】D .【考点定位】本题考查双曲线的定义及其简单的几何性质,考察双曲线的离心率的基本计算,涉及不等式及不等关系.【名师点睛】将双曲线的离心率的计算与初中学习的溶液浓度问题联系在一起,突显了数学在实际问题中实用性和重要性,充分体现了分类讨论的数学思想方法在解题中的应用,能较好的考查学生思维的严密性和缜密性. 10.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30【答案】C .【考点定位】本题考查用不等式表示平面区域和新定义问题,属高档题.【名师点睛】用集合、不等式的形式表示平面区域,以新定义为背景,涉及分类计数原理,体现了分类讨论的思想方法的重要性以及准确计数的科学性,能较好的考查学生知识间的综合能力、知识迁移能力和科学计算能力.第Ⅱ卷(共110分)(非选择题共110分)二、填空题(每题7分,满分36分,将答案填在答题纸上)11.已知向量OA AB⊥,||3OA =,则OA OB⋅=_________.【答案】9.【考点定位】本题考查向量的数量积的基本运算,属基础题.【名师点睛】将向量的加法运算法则(平行四边形法则和三角形法则)和向量的数量积的定义运算联系在一起,体现数学学科知识间的内在联系,渗透方程思想在解题中的应用,能较好的考查学生基础知识的识记能力和灵活运用能力.12.若变量,x y满足约束条件4,2,30,x yx yx y+≤⎧⎪-≤⎨⎪-≥⎩则3x y+的最大值是_________.【答案】10.【考点定位】本题考查线性规划的最值问题,属基础题.【名师点睛】这是一道典型的线性规划问题,重点考查线性规划问题的基本解决方法,体现了数形结合的思想在数学解题中重要性和实用性,能较好的考查学生准确作图能力和灵活运用基础知识解决实际问题的能力. 13.函数2π()2sin sin()2f x x x x =+-的零点个数为_________.【答案】2.【考点定位】本题考查函数与方程,涉及常见函数图像绘画问题,属中档题. 【名师点睛】将函数的零点问题和方程根的问题、函数的交点问题联系在一起,凸显了数学学科内知识间的内在联系,充分体现了转化化归的数学思想在实际问题中的应用,能较好的考查学生准确绘制函数图像的能力和灵活运用基础知识解决实际问题的能力.14.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【考点定位】本题考查频率分布直方图,属基础题.【名师点睛】以实际问题为背景,重点考查频率分布直方图,灵活运用频率直方图的规律解决实际问题,能较好的考查学生基本知识的识记能力和灵活运用能力.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30的方向上,行驶600m后到达B处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD _________m.【答案】1006.【考点定位】本题考查解三角形的实际应用举例,属中档题.【名师点睛】以实际问题为背景,将抽象的数学知识回归生活实际,凸显了数学的实用性和重要性,体现了“数学源自生活,生活中处处有数学”的数学学科特点,能较好的考查学生识记和理解数学基本概念的能力和基础知识在实际问题中的运用能力.16.如图,已知圆C与x轴相切于点(1,0)T,与y轴正半轴交于两点A,B(B在A的上方),且2AB=.(Ⅰ)圆C的标准..方程为_________;(Ⅱ)圆C在点B处的切线在x轴上的截距为_________.【答案】(Ⅰ)22--.-+-=;(Ⅱ)12x y(1)(2)2【考点定位】本题考查圆的标准方程和圆的切线问题, 属中高档题.【名师点睛】将圆的标准方程、圆的切线方程与弦长问题联系起来,注重实际问题的特殊性,合理的挖掘问题的实质,充分体现了数学学科特点和知识间的内在联系,渗透着方程的数学思想,能较好的考查学生的综合知识运用能力.其解题突破口是观察出点C的横坐标.17.a为实数,函数2g a. 当a=_________=-在区间[0,1]上的最大值记为()()||f x x ax时,()g a的值最小.【答案】222-.【考点定位】本题考查分段函数的最值问题和函数在区间上的最值问题,属高档题.【名师点睛】将含绝对值的二次函数在区间上的最值问题和分段函数的最值问题融合在一起,运用分类讨论的思想将含绝对值问题转化为分段函数的问题,充分体现了分类讨论和化归转化的数学思想,能较好的考查知识综合能力.其解题的关键是运用分类讨论求出()g a 的表达式和分段函数在区间上的最值求法. 三、解答题 (本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.)18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+ 0 π2 π3π2 2πxπ35π6 sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解析式; (Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求()y g x =的图象离原点O 最近的对称中心.【答案】(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:x ωϕ+π2 π3π2 2πxπ12 π3 7π125π6 13π12 sin()A x ωϕ+55-且函数表达式为π()5sin(2)6f x x =-;(Ⅱ)离原点O 最近的对称中心为π(,0)12-.【考点定位】本题考查五点作图法和三角函数图像的平移与三角函数的图像及其性质,属基础题.【名师点睛】将五点作图法、三角函数图像的平移与三角函数的图像及其性质联系在一起,正确运用方程组的思想,合理的解三角函数值,准确使用三角函数图像的平移和三角函数的图像及其性质是解题的关键,能较好的考查学生基础知识的实际应用能力、准确计算能力和规范解答能力. 19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n na cb =,求数列{}nc 的前n 项和n T .【答案】(Ⅰ)121,2.n n na nb -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩;(Ⅱ)12362n n n T -+=-.【考点定位】本题综合考查等差数列、等比数列和错位相减法求和,属中档题. 【名师点睛】这是一道简单综合试题,其解题思路:第一问直接借助等差、等比数列的通项公式列出方程进行求解,第二问运用错位相减法直接对其进行求和.体现高考坚持以基础为主,以教材为蓝本,注重计算能力培养的基本方向. 20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接,,DE BD BE.(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需 写出结论);若不是,请说明理由; (Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.【答案】(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PDCD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C =,所以DE ⊥平面PBC.四面体EBCD 是一个鳖臑;(Ⅱ)124.V V =【考点定位】本题考查直线与平面垂直的判定定理、直线与平面垂直的性质定理和简单几何体的体积,属中高档题.【名师点睛】以《九章算术》为背景,给予新定义,增添了试题的新颖性,但其实质仍然是考查线面垂直与简单几何体的体积计算,其解题思路:第一问通过线线、线面垂直相互之间的转化进行证明,第二问关键注意底面积和高之比,运用锥体的体积计算公式进行求解. 结合数学史料的给予新定义,不仅考查学生解题能力,也增强对数学的兴趣培养,为空间立体几何注入了新的活力. 21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 【答案】(Ⅰ)1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.证明:当0x >时,e 1x >,0e 1x -<<,故()0.f x >又由基本不等式,有1()(e e )e e 12x x x x g x --=+>=,即() 1.g x > (Ⅱ)由(Ⅰ)得2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=⑥当0x >时,()()(1)f x ag x a x >+-等价于()()(1)f x axg x a x >+- ⑦ ()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧于是设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x'<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立.综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-【考点定位】本题考查函数的奇偶性和导数在研究函数的单调性与极值中的应用,属高档题.【名师点睛】将函数的奇偶性和导数在研究函数的单调性与极值中的应用联系在一起,重点考查函数的综合性,体现了函数在高中数学的重要地位,其解题的关键是第一问需运用奇函数与偶函数的定义及性质建立方程组进行求解;第二问属于函数的恒成立问题,需借助导数求解函数最值来解决.22.(本小题满分14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且1MN=.当栓子D在DN ON==,3滑槽AB内作往复运动时,带动..N绕O转动,M处的笔尖画出的椭圆记为C.以O为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:OPQ ∆的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.【答案】(Ⅰ)221.164x y +=(Ⅱ)当直线l 与椭圆C在四个顶点处相切时,OPQ ∆的面积取得最小值8.【考点定位】本题考查椭圆的标准方程与直线与椭圆相交综合问题,属高档题. 【名师点睛】作为压轴大题,其第一问将椭圆的方程与课堂实际教学联系在一起,重点考查学生信息获取与运用能力和实际操作能力,同时为椭圆的实际教学提供教学素材;第二问考查直线与椭圆相交的综合问题,借助函数思想进行求解.其解题的关键是注重基本概念的深层次理解,灵活运用所学知识.。
湖北省天门市2015届高考数学模拟试卷(文科)(4月份)一、选择题(共10小题,每小题5分,满分50分)1.已知全集U=R,A={x|x<1},B={x|x≥2},则集合∁U(A∪B)=( )A.{x|1≤x<2} B.{x|1<x≤2}C.{x|x≥1}D.{x|x≤2}考点:交、并、补集的混合运算.专题:集合.分析:求出A与B的并集,根据全集U=R,求出并集的补集即可.解答:解:∵全集U=R,A={x|x<1},B={x|x≥2},∴A∪B={x|x<1或x≥2},则∁U(A∪B)={x|1≤x<2},故选:A.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.已知z为复数,(1﹣i)2z=(1+i)3(i为虚数单位),则=( )A.1+i B.﹣1+i C.1﹣i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:函数思想;数系的扩充和复数.分析:设z=a+bi,利用向量相等,列出方程组,求出a、b的值即可.解答:解:设z=a+bi,a、b∈R,∴(1﹣i)2(a+bi)=(1+i)3,即﹣2i(a+bi)=2i(1+i),∴﹣a﹣bi=1+i,即,解得a=﹣1,b=﹣1,∴z=﹣1﹣i,∴=﹣1+i.故选:B.点评:本题考查了复数的共轭复数以及复数相等的应用问题,也考查了复数的代数运算问题,是基础题目.3.一个几何体的三视图如图所示,正视图和侧视图都是等边三角形,该几何体的四个顶点在空间直角坐标系O﹣xyz中的坐标分别是(0,0,0),(2,0,0),(2,2,0),(0,2,0)则第五个顶点的坐标可能为( )A.(1,1,1)B.(1,1,)C.(1,1,)D.(2,2,)考点:简单空间图形的三视图.专题:空间向量及应用.分析:由三视图可知该几何体为正四棱锥,根据四个点的坐标关系确定第5个点的坐标即可.解答:解:由三视图可知该几何体为正四棱锥,该几何体的四个顶点在空间直角坐标系O ﹣xyz中的坐标分别是(0,0,0),(2,0,0),(2,2,0),(0,2,0),设A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),则AB=2,BC=2,CD=2,DA=2,∴这四个点为正四棱锥的底面正方形的坐标,设顶点为P(a,b,c),则P点在xoy面的射影为底面正方形的中心O'(1,1,0),即a=1,b=1,由正视图是正三角形,∴四棱锥侧面的斜高为2,则四棱锥的高为,即c=,∴P点的坐标为(1,1,),故第五个顶点的坐标为(1,1,),故选:C.点评:本题主要考查三视图的识别和应用,利用三视图确定该几何体为正四棱锥是解决本题的关键,然后根据坐标关系即可确定第5个顶点的坐标,考查学生的空间想象能力.4.甲、乙两位歌手在“中国好声音”选拔赛中,5位评委评分情况如茎叶图所示,记甲、乙两人的平均得分分别为、,则下列判断正确的是( )A.<,甲比乙成绩稳定B.<,乙比甲成绩稳定C.>,甲比乙成绩稳定D.>,乙比甲成绩稳定考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:根据茎叶图的数据,利用平均值和数值分布情况进行判断即可.解答:解:由茎叶图知,甲的得分情况为17,16,28,30,34;乙的得分情况为15,28,26,28,33,因此可知甲的平均分为,乙的平均分为=86,故可知<,排除C、D,同时根据茎叶图数据的分布情况可知,乙的数据主要集中在86左右,甲的数据比较分散,乙比甲更为集中,故乙比甲成绩稳定,选B.故选B.点评:本题主要考查茎叶图的应用,以及平均数的求法要求熟练掌握相应的概念和公式,考查学生的计算能力.5.已知双曲线C:=1(a>0,b>0)的焦距为2,抛物线y=+1与双曲线C的渐近线相切,则双曲线C的方程为( )A.B.C.D.考点:双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:由已知条件,根据双曲线的焦距排除A,B,再由抛物线y=+1与双曲线C的渐近线相切排除C.解答:解:∵双曲线C:=1(a>0,b>0)的焦距为2,∴排除选A和B,∵的渐近线方程为y=±2x,把y=2x代入抛物线y=+1,得,,∴抛物线y=+1与y=2x不相切,由此排除C.故选:D.点评:本题考查双曲线标准方程的求法,在选择题中合理地运用排除法往往能化繁为简,节约答题时间.6.已知多项式f(x)=4x5+2x4+3.5x3﹣2.6x2+1.7x﹣0.8,用秦九韶算法算f(5)时的V1值为( )A.22 B.564.9 C.20 D.14130.2考点:秦九韶算法.专题:算法和程序框图.分析:利用秦九韶算法可得f(x)=((((4x+2)x+3.5)x﹣2.6)x+1.7)x﹣0.8,即可得出.解答:解:∵f(x)=((((4x+2)x+3.5)x﹣2.6)x+1.7)x﹣0.8,∴v0=4,v1=4×5+2=22.故选:A.点评:本题考查了秦九韶算法,属于基础题.7.数列{c n}为等比数列,其中c1=2,c8=4,f(x)=x(x﹣c1)(x﹣c2)…(x﹣c8),f′(x)为函数f(x)的导函数,则f′(0)=( )A.0 B.26C.29D.212考点:导数的运算.专题:导数的概念及应用;等差数列与等比数列.分析:由已知求出数列{c n}的通项公式,对函数f(x)求导,求出f′(x),令x=0求值.解答:解:因为数列{c n}为等比数列,其中c1=2,c8=4,所以公比q=,由f(x)=x(x﹣c1)(x﹣c2)…(x﹣c8),得f′(x)=(x﹣c1)(x﹣c2)…(x﹣c8)+x[(x ﹣c1)(x﹣c2)…(x﹣c8)]',所以f′(0)=(﹣c1)(﹣c2)…(﹣c8)=c1c2…c8==212;故选D.点评:本题考查了等比数列的通项求法以及导数的运算;解答本题求出等比数列的通项公式以及函数的导数是关键.8.“序数”指每个数字比其左边的数字大的自然数(如1246),在两位的“序数”中任取一个数比36大的概率是( )A.B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:列举可得总的“序数”个数,找出比36大的,由概率公式可得.解答:解:十位是1的两位的“序数”:8个;十位是2的:7个,依此类推:十位分别是3,4,5,6,7,8的各有6,5,4,3,2,1个,故两位的“序数”共有8+7+6+5+4+3+2+1=36个.比36大的有:十位是3的:3个;十位是4的:5个,依此类推:十位分别是5,6,7,8的各有4,3,2,1个∴比36大的两位的“序数”有3+5+4+3+2+1=18.∴所求概率P==故选:A.点评:本题考查古典概型及其概率公式,列举是解决问题的关键,属基础题.9.已知定义在R上的奇函数f(x),当x>0时,f(x)=则关于x的方程6[f(x)]2﹣f(x)﹣1=0的实数根个数为( )A.6 B.7 C.8 D.9考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:先设t=f(x),求出方程6[f(x)]2﹣f(x)﹣1=0的解,利用函数的奇偶性作出函数在x>0时的图象,利用数形结合即可得到结论.解答:解:设t=f(x),则关于x的方程6[f(x)]2﹣f(x)﹣1=0,等价6t2﹣t﹣1=0,解得t=或t=,当x=0时,f(0)=0,此时不满足方程.若2<x≤4,则0<x﹣2≤2,即f(x)==(2|x﹣3|﹣1),若4<x≤6,则2<x﹣2≤4,即f(x)==(2|x﹣5|﹣1),作出当x>0时,f(x)=的图象如图:当t=时,f(x)=对应3个交点.∵函数f(x)是奇函数,∴当x<0时,由f(x)=,可得当x>0时,f(x)=,此时函数图象对应4个交点,综上共有7个交点,即方程有7个根.故选:B点评:本题主要考查函数方程根的个数的判断,利用换元法,利用数形结合是解决本题的关键,综合性较强,难度较大.10.若函数f(x)=2sinωx(ω>0)的图象在(0,3π)上恰有一个极大值和一个极小值,则ω的取值范围是( )A.B.C.D.考点:y=Asin(ωx+φ)中参数的物理意义.专题:三角函数的图像与性质.分析:求出函数的周期,利用已知条件列出方程,即可得到ω的取值范围.解答:解:由题意可知函数的周期为:,函数f(x)=2sinωx(ω>0)的图象在(0,3π)上恰有一个极大值和一个极小值,可得:,即,解得ω∈.故选:B.点评:本题考查三角函数的化简求值,三角函数的周期的应用,考查计算能力.二、填空题(共7小题,每小题5分,满分35分)11.执行如图的程序框图,若输入x=12,则输出y=.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x,y的值,当x=4,y=时由于||<1,此时满足条件|y﹣x|<1,退出循环,输出y的值为.解答:解:模拟执行程序框图,可得x=12,y=6,不满足条件|y﹣x|<1,x=6,y=4不满足条件|y﹣x|<1,x=4,y=由于||<1,故此时满足条件|y﹣x|<1,退出循环,输出y的值为.故答案为:.点评:本题主要考查了循环结构的程序框图,正确判断退出循环时y的值是解题的关键,属于基础题.12.在等比数列{a n}中,对于任意n∈N*都有a n+1a2n=3n,则a1a2…a6=729.考点:数列递推式.专题:等差数列与等比数列.分析:通过等比数列的定义及a n+1a2n=3n可得公比及a2,利用等比中项的性质计算即可.解答:解:∵a n+1a2n=3n,∴a n+2a2(n+1)=3n+1,∴q3===3,即q=,∵a2a2=31,∴a2=,∴a5==3,∴a2•a5==9,∴a1a2…a6=(a1•a6)(a2•a5)(a3•a4)=93=729,故答案为:729.点评:本题考查求数列前几项的乘积,注意解题方法的积累,属于中档题.13.点P(x,y)在线性约束条件表示的区域内运动,则|OP|的最小值为.考点:简单线性规划.专题:数形结合.分析:由约束条件作出可行域,由点到直线的距离公式求得答案.解答:解:由约束条件作出可行域如图,由图可知,|OP|的最小值为原点O到直线x+y﹣1=0的距离,即为.故答案为:.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.若向量,的夹角为45°,且||=l,|2﹣|=,则||=3.考点:平面向量数量积的运算.专题:平面向量及应用.分析:将|2﹣|=平方,然后将夹角与||=l代入,得到||的方程,解方程可得.解答:解:因为向量,的夹角为45°,且||=l,|2﹣|=,所以42﹣4+2=10,即||2﹣4•1•||•cos45°+4﹣10=0,即为||2﹣2•||﹣6=0,解得||=3或||=﹣(舍),故答案为:.点评:本题解题的关键是将模转化为数量积,从而得到所求向量模的方程,利用到了方程的思想.15.已知a、b为实数,则“a>b>1”是“<”的充分不必要条件(填“充分不必要”、“必要不充分”及“充要”等).考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据不等式的性质,结合充分条件和必要条件的定义进行判断.解答:解:若a>b>1,则a﹣1>b﹣1>0,∴0<<成立.若当a=0,b=2时,满足<,但a>b>1不成立.故““a>b>1”是“<”的充分不必要条件.故答案为:充分不必要.点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键,比较基础.16.设F1、F2是双曲线(a>0, b>0)的左、右焦点,P是双曲线右支上一点,满足()=0(O为坐标原点),且3||=4||,则双曲线的离心率为5.考点:双曲线的简单性质.专题:平面向量及应用;圆锥曲线的定义、性质与方程.分析:运用双曲线的定义,结合条件可得|PF1|=8a,|PF2|=6a,再由()=0,可得|OP|=|OF2|,得到∠F1PF2=90°,由勾股定理及离心率公式,计算即可得到.解答:解:由于点P在双曲线的右支上,则由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=|PF2|,解得|PF1|=8a,|PF2|=6a,由()=0,即为()•(﹣)=0,即有2=2,则△PF1F2中,|OP|=|OF2|=|OF1|,则∠F1PF2=90°,由勾股定理得|PF1|2+|PF2|2=|F1F2|2,即有64a2+36a2=4c2,即有c=5a,即e==5.故答案为:5点评:本题考查双曲线的定义、方程和性质,考查双曲线的离心率的求法,同时考查向量垂直的条件和勾股定理的运用,考查运算能力,属于中档题.17.已知函数f(x)=mlnx+nx(m、,n∈R),曲线y=f(x)在点(1,f(1))处的切线方程为x﹣2y﹣2=0.(1)m+n=;(2)若x>1时,f(x)+<0恒成立,则实数k的取值范围是.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出原函数的导函数,由f′(1)=得到m+n的值;利用函数在点(1,f(1))处的切线方程为x﹣2y﹣2=0求得m,n的值,得到函数f(x)的解析式,代入f(x)+<0并整理,构造函数g(x)=(x>1),利用导数求得g(x)>得答案.解答:解:由f(x)=mlnx+nx(m、,n∈R),得,∴f′(1)=m+n,∵曲线y=f(x)在点(1,f(1))处的切线方程为x﹣2y﹣2=0,∴m+n=;由f′(1)=,f(1)=n,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣n=(x﹣1),即x﹣2y+2n﹣1=0.∴2n﹣1=﹣2,解得n=﹣.∴m=1.则f(x)=lnx﹣,f(x)+<0等价于lnx﹣+,即,令g(x)=(x>1),g′(x)=x﹣lnx﹣1,再令h(x)=x﹣lnx﹣1,,当x>1时h′(x)>0,h(x)为增函数,又h(1)=0,∴当x>1时,g′(x)>0,即g(x)在(1,+∞)上为增函数,∴g(x)>g(1)=.则k.故答案为:;(﹣∞,].点评:本题考查利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,考查数学转化思想方法,是中高档题.三、解答题(共5小题,满分65分)18.设λ∈R,f(x)=,其中,已知f(x)满足(1)求函数f(x)的单调递增区间;(2)求不等式的解集.考点:两角和与差的正弦函数;平面向量数量积的运算;正弦函数的对称性;余弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(1)利用向量的数量积以及两角和的正弦函数,化简函数的解析式,利用正弦函数的单调性求解即可.(2)直接利用余弦函数的图象与性质,写出不等式的解集即可.解答:解:(1)f(x)=,其中,=λsinxcosx﹣cos2x+sin2x=…∵,∴…∴令,得,∴f(x)的单调递增区间是…(2)∵,∴∴∴不等式的解集是…点评:本题考查向量的数量积以及两角和与差的三角函数,三角函数的单调性的应用,考查计算能力.19.已知等差数列{a n}满足a1=1,且a2、a7﹣3、a8成等比数列,数列{b n}的前n项和T n=a n ﹣1(其中a为正常数).(1)求{a n}的前项和S n;(2)已知a2∈N*,I n=a1b1+a2b2+…+a n b n,求I n.考点:数列的求和;等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(1)通过a2、a7﹣3、a8成等比数列,计算可得d=1或,进而可得结论;(2)通过a2∈N*及a1=1可得a n=n,进而可得b n=a n﹣1(a﹣1)(n∈N*),分a=1、a≠1两种情况讨论即可.解答:解:(1)设{a n}的公差是d,∵a2、a7﹣3、a8成等比数列,∴a2•a8=,∴(1+d)(1+7d)=(1+6d﹣3)2,∴d=1或,当d=1时,;当时,;(2)∵a2∈N*,a1=1,∴{a n}的公差是d=1,即a n=n,当n=1时,b1=a﹣1,当n≥2时,,∵b1=a﹣1=a1﹣1(a﹣1)满足上式,∴b n=a n﹣1(a﹣1)(n∈N*),当a=1时,b n=0,∴I n=0;当a≠1时,,∴aI n=a(a﹣1)+2a2(a﹣1)+…+(n﹣1)a n﹣1(a﹣1)+na n(a﹣1),∴=a n﹣1﹣na n(a﹣1),∴I n=na n﹣,∴I n=.点评:本题考查求数列的通项及前n项和,考查分类讨论的思想,考查运算求解能力,注意解题方法的积累,属于中档题.20.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是梯形,其中AD∥BC,BA⊥AD,AC与BD交于点O,M是AB边上的点,且AM=2BM,已知PA=AD=4,AB=3,BC=2.(1)求平面PMC与平面PAD所成锐二面角的正切;(2)已知N是PM上一点,且ON∥平面PCD,求的值.考点:二面角的平面角及求法;直线与平面平行的判定.专题:空间位置关系与距离;空间角.分析:解法1:(1)连接CM并延长交DA的延长线于E,说明∠MFA是平面PMC与平面PAD所成锐二面角的平面角然后求解tan∠MFA==,得到结果.(2)连接MO并延长交CD于G,连接PG,在△BAD中,通过,说明MO∥AD,然后求解的值.解法2 (1)以A为坐标原点,AB、AD、AP为x.y,z轴建立如图所示直角坐标系,求出平面PMC的法向量,平面PAD的法向量,通过向量的数量积求解平面PMC与平面PAD所成锐二面角的正切.(2)求出平面PCD的法向量,设=λ,然后求解即可.解答:解法1:(1)连接CM并延长交DA的延长线于E,则PE是平面PMC与平面PAD所成二面角的棱,过A作AF垂直PE于F,连接MF.∵PA⊥平面ABCD,∴PA⊥MA,又MA⊥AD,∴MA⊥平面PAD,∵AF⊥PE,∴MF⊥PE,∴∠MFA是平面PMC与平面PAD所成锐二面角的平面角…∵BC=2,AD=4,BC∥AD,AM=2MB∴AE=4,又PA=4,∴AF=∴tan∠MFA==,所以平面PMC与平面PAD所成锐二面角的正切为…(2)连接MO并延长交CD于G,连接PG∵ON∥平面PCD,∴ON∥PG在△BAD中∵,又∴∴MO∥AD …又在直角梯形ABCD中,MO=OG=,∵ON∥PG∴PN=MN,∴…解法2 (1)以A为坐标原点,AB、AD、AP为x.y,z轴建立如图所示直角坐标系,则A(0,0,0)、B(3,0,0)、C(3,2,0)、D(0,4,0)、M(2,0,0)、P(0,0,4)、O(2,4/3,0)设平面PMC的法向量是=(x,y,z),则∵=(1,2,0),=(﹣2,0,4)∴令y=﹣1,则x=2,z=1∴=(2,﹣1,1)又AB⊥平面PAD,∴=(1,0,0)是平面PAD的法向量∴∴所以平面PMC与平面PAD所成锐二面角的正切为…(2)设平面PCD的法向量=(x’,y’,z’)∵=(3,2,﹣4),=(0,4,﹣4)∴令y'=3,则x'=2,z'=3∴设=λ,则∵=(2,0,﹣4)∴=(2λ,0,﹣4λ)==(2λ﹣2,﹣4/3,4﹣4λ)∵⊥∴4λ﹣4﹣4+12﹣12λ=0∴,∴…点评:本题考查二面角的平面角的求法,几何法与向量法的应用,考查空间想象能力以及计算能力.21.若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=在I上是减函数,则称y=f(x)是I上的“非完美增函数”,已知f(x)=lnx,g(x)=2x++alnx(a∈R)(1)判断f(x)在(0,1]上是否是“非完美增函数”;(2)若g(x)是[1,+∞)上的“非完美增函数”,求实数a的取值范围.考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:(1)依据“非完美增函数”的定义判断即可;(2)由题意可得g(x)在[1,+∞)上为增函数,G(x)==2++在[1,+∞)上是减函数,利用导数研究函数的单调性,即可求得结论.解答:解:(1)由于f(x)=lnx,在(0,1]上是增函数,且F(x)==,∵F′(x)=,∴当x∈(0,1]时,F′(x)>0,F(x)为增函数,∴f(x)在(0,1]上不是“非完美增函数”;(2)∵g(x)=2x++alnx,∴g′(x)=2﹣+=,∵g(x)是[1,+∞)上的“非完美增函数”,∴g′(x)≥0在[1,+∞)上恒成立,∴g′(1)≥0,∴a≥0,又G(x)==2++在[1,+∞)上是减函数,∴G′(x)≤0在[1,+∞)恒成立,即﹣+≤0在[1,+∞)恒成立,即ax﹣axlnx﹣4≤0在[1,+∞)恒成立,令p(x)=ax﹣axlnx﹣4则p′(x)=﹣alnx,∴解得0≤a≤4,综上所述0≤a≤4.点评:本题以新定义的形式考查函数的单调性,考查运用所学知识分析解决新问题的能力.22.已知椭圆C:的离心率为,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2(1)求椭圆C的方程;(2)设圆T:(x﹣t)2+y2=,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在x轴上移动且t∈(1,3)时,求EF的斜率的取值范围.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)由椭圆离心率得到a,c的关系,再由△PF1F2的周长是得a,c的另一关系,联立求得a,c的值,代入隐含条件求得b,则椭圆方程可求;(2)椭圆的上顶点为M(0,1),设过点M与圆T相切的直线方程为y=kx+1,由圆心到切线距离等于半径得到关于切线斜率的方程,由根与系数关系得到,再联立一切线方程和椭圆方程,求得E的坐标,同理求得F坐标,另一两点求斜率公式得到k EF=.然后由函数单调性求得EF的斜率的范围.解答:解:(1)由,即,可知a=4b,,∵△PF1F2的周长是,∴,∴a=4,b=1,所求椭圆方程为;(2)椭圆的上顶点为M(0,1),设过点M与圆T相切的直线方程为y=kx+1,由直线y=kx+1与T相切可知,即(9t2﹣4)k2+18tk+5=0,∴,由,得.∴,同理,则=.当1<t<3时,为增函数,故EF的斜率的范围为.点评:本题考查了椭圆方程的求法,考查了直线与圆,直线与椭圆的位置关系,考查了直线与圆相切的条件,训练了利用函数单调性求函数的最值,是中档题.。
天门市2015年高三年级四月调研考试数 学(理工类)注意事项:1. 答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2. 选择题的作答,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3. 填空题和解答题的作答:用签字笔直接写在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将答题卡上交。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知z 为复数,(i 为虚数单位),则=( ) A.B.C.D.2、已知全集U =R ,,,则集合∁U (A ∪B )=( ) A. B. C.D.3、一个几何体的三视图如图所示,正视图和侧视图都是等边三角形。
若该几何体的四个顶点在空间直角坐标系中的坐标分别是(0,0,0),(2,0,0),(2,2,0),(0,2,0),则第五个顶点的坐标可能为( )A.(1,1,1)B.(1,1C.(1,1D.(2,2)4、已知随机变量的分布列是()()2311i z i -=+z 1i +1i -+1i -1i --{}|1A x x =<{}|2B x x =≥{}|12x x ≤<{}|12x x <≤{}|1x x ≥{}|2x x ≤O xyz -ξ其中,则( )A. B. C.0 D.15、已知的二项展开式的奇数项二项式系数和为64,若,则等于( )A.-14B.448C.-1024D.-166、若函数的图象在上恰有一个极大值和一个极小值,则的取值范围是( ) A. B. C. D.7、已知有序数对,则方程有实根的概率为( )A.B.C.D.8、已知实数满足,且,则的最大值为() A.6B.5C.4D.-39、如图,直线平面,垂足为O ,已知边长为2的等边三角形ABC 在空间做符合以下条件的自由运动:①,②,则B ,O 两点间的最大距离为( )A. B. C.D.0,2πα⎛⎫∈ ⎪⎝⎭E ξ=12cos sin 4αα-1cos sin 2αα+()1nx -()()0111nx a a x -=+++()221a x ++⋅⋅⋅()1nn a x ++1a ()()2sin 0f x x ωω=>()0,3πω2,13⎛⎤⎥⎝⎦15,26⎛⎤ ⎥⎝⎦24,33⎛⎤ ⎥⎝⎦35,44⎛⎤ ⎥⎝⎦(,){(,)|[0,4],[0,4]}a b a b a b ∈∈∈220x ax b -+=13122356,x y 2122x y x y ++≤++11y -≤≤2z x y =+l ⊥αA l ∈C α∈12+1210、已知函数,若关于的方程恰好有4个不相等的实数根,则实数的取值范围为( ) A. B. C. D. 二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分。
2015年湖北省七市(州)高三四月联考数学试题(文史类)全卷满分150分,考试时间120分钟.★ 祝考试顺利 ★一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z 满足(1)2z i -=(i 是虚数单位),则z =A .1i +B .1i -+C .1i --D .1i - 2.若命题p 为真命题,命题q 为假命题,则以下为真命题的是A .p q ∧B .()p q ∧⌝C .()p q ⌝∨D .()()p q ⌝∧⌝ 3.集合{|sin R}{|28}x M x x N x ,,θθ==∈=≤≤,则M N ⋂=A .1[2]2,B .[13],-C .1[1]2,-D .1[1]2, 4.分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为A .42π- B .22π- C .44π- D .24π- 5.已知变量x y ,满足条件032060x y x y x y -≤⎧⎪--≥⎨+-≥⎪⎩,则目标函数2z x y =+A .有最小值3,最大值9B .有最小值9,无最大值C .有最小值8,无最大值D .有最小值3,最大值86.如图是张大爷晨练时所走的离家距离()y 与行走时间()x 之间的函数关系图,若用M 点表示张大爷家的位置,则张大爷散步行走的路线可能是MM MMA .B .C .D .7.已知点(10)(10)A B ,,,-,过定点(02)M ,的直线l 上存在点P ,使得0PA PB <⋅,则直线l 的倾斜角α的取值范围是A .2()33,ππB .2[]33,ππC .2[0][)33,,πππ⋃ D .2[0)()33,,πππ⋃ 8.为调查某校学生喜欢数学课的人数比例,采用如下调查方法:(1)在该校中随机抽取100名学生,并编号为1,2,3, (100)(2)在箱内放置两个白球和三个红球,让抽取的100名学生分别从箱中随机摸出一球,记住其颜色并放回;请下列两类学生举手:(ⅰ)摸到白球且编号数为偶数的学生;(ⅱ)摸到红球且不喜欢数学课的学生.如果总共有26名学生举手,那么用概率与统计的知识估计,该校学生中喜欢数学课的人数比例大约是 A .88% B .90% C .92% D .94%9. 已知点()(0)F c c ,0->是双曲线22221x y a b-=的左焦点,离心率为e ,过F且平行于双曲线渐近线的直观图俯视图侧视图正视图直线与圆222x y c +=交于点P ,且P 在抛物线24y cx =上,则2e = AD10.函数()f x 是定义在R 上的奇函数,且(1)f x -为偶函数,当[01]x ,∈时12()f x x =.若方程()=0f x x b --有三个实数解,则实数b 的取值集合是(以下Z k ∈)A .11(22)44k k ,-+ B .15(22)22k k ,++ C .11(44)44k k ,-+ D .19(44)22k k ,++ 二.填空题:本大题共7小题,每小题5分,共35分.将答案填在答题卡相应位置上.11.对具有线性相关关系的变量x y ,,测得一组数据如下表,若y 与x 的回归直线方程为3ˆ32yx =-,则m =_____.12. 执行如下程序框图,输出的i =______.13.用a ,b ,c 表示空间三条不同的直线,a ,b ,γ表示空间三个不同的平面,给出下列命题: ① 若a α⊥,b α⊥,则a ∥b ; ②若αγ⊥,βγ⊥, 则α∥β;③ 若b Ìα, b ^β, 则α^β; ④若c 是b 在a 内的射影,a Ìα且a c ⊥,则a b ⊥. 其中真命题的序号是_______. 14.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加_______尺.(不作近似计算) 15.在三棱锥P ABC -中,侧棱PA PB PC ,,两两垂直,侧面积为2,该三棱锥外接球表面积的最小值为_______.16.某几何体是由直三棱柱与圆锥的组合体,其直观图和三视图如图所示.已知正视图为正方形,则俯.视图..中椭圆的离心率为_______.56已知向量(sin()1)(3cos(m x n x ,,,πωω=+-=与对称轴之间的最小距离为4. (2)ABC ∆中,角A B C ,,的对边分别为a b c ,,,3()1cos 5f A C ,==,a =b .19.(本小题满分12分)设数列{}n a 前n 项和为n S ,且满足1a r =,1132n n S a +=-.(N )n *Î (1)试确定r 的值,使{}n a 为等比数列,并求数列{}n a 的通项公式;。
一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,{}|1A x x =<,{}|2B x x =≥,则集合=)(B A CU( )A 、{}|12x x ≤<B 、{}|12x x <≤C 、{}|1x x ≥D 、{}|2x x ≤ 【答案】A 【解析】试题分析:由题意,得{}21|≥<=x x x B A 或 ,则{}21|)(<≤=x x B A C U。
考点:集合的运算. 2.已知z 为复数,()()2311i z i -=+(i 为虚数单位),则z =A 、1i +B 、1i -+C 、1i -D 、1i --【答案】B 【解析】试题分析:由题意,得i ii i i i z --=-+=-+=12)1(2)1()1(23,则i z +-=1。
考点:1.复数的运算;2。
共轭复数.3.一个几何体的三视图如图所示,正视图和侧视图都是等边三角形.若该几何体的四个顶点在空间直角坐标系O xyz -中的 坐标分别是(0,0,0),(2,0,0),(2,2,),(0,2,0), 则第五个顶点的坐标可能为A 、(1,1,1)B 、(1,12C 、(1,13D 、(3 【答案】C 【解析】正视图 侧视图 俯视图6 7 7 58 8 8 6 84 0 9 3甲 乙试题分析:由三视图,可得:该几何体是一个正四棱锥,所给四个点都在xOy 面,则第五个点应是四棱锥的顶点,设顶点为),,(z y x P ,则1221=⨯=x ,1221=⨯=y ,3232=⨯=z ,所以第五个顶点的坐标为()3,1,1. 考点:三视图.4.甲、乙两名同学,在班级的演讲比赛中,得分情况如图所示,记甲、 乙两人的平均得分分别为x 甲、x 乙,则下列判断正确的是A 、x x <甲乙,甲比乙成绩稳定 B 、x x <甲乙,乙比甲成绩稳定C 、xx >甲乙,甲比乙成绩稳定 D 、xx >甲乙,乙比甲成绩稳定【答案】B 【解析】试题分析:由茎叶图,得()85949088767751=++++⨯=甲x ,()86938886887551=++++⨯=乙x ,且相比较乙的平均得分比较集中,较稳定;故选B 。
数学试卷 第1页(共36页)数学试卷 第2页(共36页)数学试卷 第3页(共36页)绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑,再在答题卡上对应的答题区域内答题.写在试题卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i = ( )A .i -B .iC .1-D .12.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石 3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关.下列结论中正确的是 ( ) A .x 与y 负相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 正相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关5.1l ,2l 表示空间中的两条直线,若p :1l ,2l 是异面直线;q :1l ,2l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.函数256()lg 3x x f x x -+=-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4] D .(1,3)(3,6]-7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0,x x x x >⎧⎪==⎨⎪-<⎩则( )A .|||sgn |x x x =B .||sgn ||x x x =C .||||sgn x x x =D .||sgn x x x =8.在区间[0,1]上随机取两个数x ,y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则( )A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则 ( )A .对任意的a ,b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的a ,b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >10.已知集合22{(,)1,,}A x y x y x y =+∈Z ≤,{(,)||2,||2,,}B x y x y x y =∈Z ≤≤,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题5分,共35分.把答案填在题中的横线上. 11.已知向量OA AB ⊥,||3OA =,则 OA OB =___________.12.若变量,x y 满足约束条件4,2,30,x y x y x y +⎧⎪-⎨⎪-⎩≤≤≥则3x y +的最大值是___________.13.函数2π()2sin sin()2f x x x x =+-的零点个数为___________.14.某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.17. a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a .当a =_________时,()g a 的值最小. --------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共36页)数学试卷 第5页(共36页)数学试卷 第6页(共36页)三、 解答题:本大题共5小题,共65分.解答应写出必要的文字说明、证明过程或演算步骤. 18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图(Ⅰ)请将上表数据补充完整,并直接写出函数()f x 的解析式; (Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =的图象,求()y g x =的图象离原点O 最近的对称中心.19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q ,已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接DE ,BD ,BE .(Ⅰ)证明:DE PBC ⊥平面.试判断四面体EBCD 是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()f x +()g x e x =,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-+-<<. 22.(本小题满分14分)一种画椭圆的工具如图1所示,O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN ON =1=,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动,M 处的笔尖画出的椭圆记为C ,以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年普通高等学校招生全国统一考试(湖北卷)数学(文科)答案解析第Ⅰ卷)(]3,4,故选【提示】根据函数成立的条件进行求解即可3 / 124心圆点所有黄心圆点,共45个,故A B⊕中元素的个数为45故选C.第Ⅱ卷5 / 126【解析】作出约束条件表示的可行域如下图所示:易知可行域边界三角形的三个顶点坐标分别是3,11,31,3--(),(),(),平行移动直线3y x =-,求可知当2tan30100︒=7 / 12812a aa =-)1;当29 / 121011 / 1212。
2015年4月湖北省七市(州)教科研协作体高三联合考试数学(文史类)参考答案及评分标准说明1.本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分。
2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅。
当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数的一半,如果有较严重的概念性错误,就不给分。
3.解答题中右端所标注的分数,表示考生正确做到这一步应得的该题分数。
一.选择题:A 卷:ABDDB CABDCB 卷:ACBDB CACDB二.填空题:11.94 12.6 13.①③④ 14.162915.4π 16.22 17.(Ⅰ)23466627777+++(或23962401);(Ⅱ)(4,2) 三.解答题:18.(Ⅰ)解:()3sin()cos()2sin()336f x x x x πππωωω==+-=⋅++m n 2分 由于图象的对称中心与对称轴的最小距离为4π,所以2424T πππωω==⋅==, 3分 令222262k x k πππππ-++≤≤,解得36k x k ππππ-+≤≤(k ∈Z ) 5分又[0]x π∈,,所以所求单调增区间为2[0][]63πππ,,, 6分 (Ⅱ)解:1()2sin(2)1sin(2)2266266f A A A A k πππππ=+=+=+=+,,或52266A k πππ+=+ A k π=或3A k ππ=+(k ∈Z ),又(0)A π∈,,故3A π= 8分∵3cos (0)5C C π=∈,,,∴4334sin sin sin()sin()5310C B A C C π+==+=+=, 10分 由正弦定理得sin sin b a B A =,∴53sin 334sin B b A ==+ 12分 19.(Ⅰ)解:当n = 1时,1221113232S a a a =-=+, 1分 当n ≥2时,1132n n S a -=-,与已知式作差得1n n n a a a +=-,即12(2)n n a a n +=≥欲使{a n }为等比数列,则2122a a r ==,又21132a a =+,∴132r = 5分 故数列{a n }是以132为首项,2为公比的等比数列,所以62n n a -= 6分(Ⅱ)解:6n b n =-,66||66n n n b n n -<⎧=⎨-⎩,,≥ 若6n <,21112n n n n T b b -=---= 9分 若6n ≥,215611302n n n n T b b b b -=---+++=+,∴221162113062n n n n T n n n ⎧-<⎪⎪=⎨-⎪+⎪⎩,,≥ 12分 20.(Ⅰ)证:由于C 是以AB 为直径的圆上一点,故AC ⊥BC又SC ⊥平面ABC ,∴SC ⊥BC2分 ∵SC AC C =,∴BC ⊥平面SAC ,BC ⊥SA 4分O 、M 分别为AB 、SB 的中点,故OM 平行于SA ∴OM ⊥BC 6分(Ⅱ)解:四面体S -ABC 的体积221112()3363ABC V SC S AC BC AC BC ∆=⋅=⋅+=≤ 当且仅当2AC BC ==时取得最大值 9分取BC 的中点N ,连接MN 、AN ,则MN 与SC 平行,MN ⊥平面ABC ∴MAN α=∠ 11分 110tan 5122MN AN α===+ 13分 21. (Ⅰ)解:'()ln 1(0)f x x x =+>1分 令'()0f x ≥,即1ln 1ln x e --=≥,所以1x e≥ 同理,令'()0f x ≤,可得1(0]x e ∈, 3分所以()f x 的单调递增区间为1[)e +∞,,单调减区间为1(0]e , 4分min 11()()f x f e e==- 5分 (Ⅱ)解:()ln a F x x x =-,2'()x a F x x+= (1) 当a ≥0时,'()0()F x F x >,在[1]e ,上单调递增,min 3()(1)2F x F a ==-= 所以3[0,)2a =-∉+∞,舍去 8分(2)当0a <时,()F x 在(0)a -,上单调递减,在()a -+∞,上单调递增 S C M A OB H N①若(10)a ∈-,,()F x 在[1]e ,上单调递增,min 3()(1)2F x F a ==-= 所以3(1,0)2a =-∉-,舍去 10分②若[1]a e ∈--,,F (x )在[1]a -,上单调递减,在[]a e -,上单调递增 所以min 3()()ln()12F x F a a =-=-+=,解得[,1]a e e =-∈-- 12分③若()a e ∈-∞-,,F (x )在[1,e ]上单调递减,min 3()()12a F x F e e ==-= 所以(,)2e a e =-∉-∞-,舍去. 综上所述:a e =-. 14分22.(Ⅰ)解:设T (x ,y ),则22y y x x λ⋅=-+-,化简得221(2)44x y x λ+=≠± 又A 、B 的坐标(20)-,、(2,0)也符合上式,故曲线:C 221(01)44x y λλλ+=>≠, 3分 当01λ<<时,曲线C 是焦点在x 轴上的椭圆,焦点为(210)(210)λλ---,,, 4分 当1λ>时,曲线C 是焦点在y 轴上的椭圆,焦点为(021)(021)λλ---,,, 5分 (Ⅱ)解:由于01λ<<,曲线C 是焦点在x 轴上的椭圆,其焦点为(210)(210)λλ---,,,,椭圆的长轴端点到同侧焦点的距离,是椭圆上的点到焦点的最小距离 故2211λ--=,34λ∴=,曲线C 的方程为22143x y += 6分 (ⅰ)由221143x x y =⎧⎪⎨+=⎪⎩解得33(1)(1)22M N -,,,或33(1)(1)22N M -,,, 当33(1)(1)22M N -,,,时,13:(2):(2)22AM y x BN y x =+=-,,解得P (4,3) 当33(1)(1)22N M -,,,时,由对称性知,P (4,-3) 所以点P 坐标为(4,3)或(4,-3)9分 (ⅱ)由(ⅰ)知,若存在,直线l 1只能是4x =9分 以下证明当m 变化时,点P 总在直线4x =上.设M (x 1,y 1),N (x 2,y 2),联立22143x y +=及1x my =+,消去x 得: 22(34)690m y my ++-=,121222693434m y y y y m m +=-=-++, 直线1212:(2),:(2)22y y AM y x BN y x x x =+=-+- 10分消去y 得122112122112122(2)2(2)426(2)(2)3y x y x my y y y x y x y x y y -++-+==+--+以下只需证明1212121212426446()03my y y y my y y y y y -+=⇔-+=+※对于m ∈R 恒成立 而22121222296363646()4()6()0343434m m m my y y y m m m m -+-+=⋅--⋅-==+++ 所以※式恒成立,即点P 横坐标总是4,点P 总在直线4x =上 故存在直线l 1:4x =,使P 总在直线l 1上. 14分。
湖北省七市(州)联考 2015届高考数学模拟试卷(文科)(4月份)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z满足z(1﹣i)=2(i是虚数单位),则z=( )A.1+i B.﹣1+i C.﹣1﹣i D.1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、共轭复数的定义即可得出.解答:解:∵z(1﹣i)=2,∴z(1﹣i)(1+i)=2(1+i),∴z=1+i.故选:A.点评:本题考查了复数的运算法则、共轭复数的定义,属于基础题.2.若命题p为真命题,命题q为假命题,则以下为真命题的是( )A.p∧q B.p∧(¬q)C.(¬p)∨q D.(¬p)∧(¬q)考点:复合命题的真假.专题:简易逻辑.分析:命题p为真命题,命题q为假命题,可得¬q为真命题,再利用复合命题真假的判定方法即可得出.解答:解:∵命题p为真命题,命题q为假命题,∴¬q为真命题,∴p∧(¬q)为真命题,故选:B.点评:本题考查了复合命题真假的判定方法,属于基础题.3.集合M={x|x=sinθ,θ∈R},N={x|≤2x≤8},则M∩N=( )A.B.[﹣1,3] C.D.考点:交集及其运算.专题:集合.分析:利用正弦函数的值域求出x的范围确定出M,求出N中不等式的解集确定出N,找出两集合的交集即可.解答:解:由M中x=sinθ,θ∈R,得到﹣1≤x≤1,即M=[﹣1,1],由N中不等式变形得:=≤2x≤8=23,即≤x≤3,∴N=[,3],则M∩N=[,1],故选:D.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.4.如图,分别以正方形ABCD的四条边为直径画半圆,重叠部分如图中阴影区域,若向该正方形内随机投一点,则该点落在阴影区域的概率为( )A.B.C.D.考点:几何概型.专题:概率与统计.分析:由题意知本题是一个几何概型,试验发生包含的所有事件是矩形面积,而满足条件的阴影区域,可以通过空白区域面得到,空白区域可以看作是由8部分组成,每一部分是由边长为的正方形面积减去半径为的四分之一圆的面积得到.解答:解:如图,由题意知本题是一个几何概型,设正方形ABCD的边长为2,∵试验发生包含的所有事件是矩形面积S=2×2=4,空白区域的面积是2(4﹣π)=8﹣2π,∴阴影区域的面积为4﹣(8﹣2π)=2π﹣4∴由几何概型公式得到P==﹣1,故选B.点评:本题考查几何概型、等可能事件的概率,且把几何概型同几何图形的面积结合起来,几何概型和古典概型是高中必修中学习的,2015届高考时常以选择和填空出现,有时文科会考这种类型的解答.5.已知变量x,y满足条件,则目标函数z=2x+y( ) A.有最小值3,最大值9 B.有最小值9,无最大值C.有最小值8,无最大值D.有最小值3,最大值8考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最值.解答:解:作出不等式对应的平面区域(阴影部分),由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最小,此时z最小.无最大值.由,解得,即A(2,4).此时z的最小值为z=2×2+4=8,故选:C点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.6.如图是张大爷晨练时所走的离家距离(y)与行走时间(x)之间的函数关系图,若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )A.B.C.D.考点:函数的图象.专题:数形结合.分析:由已图形可知,张大爷的行走是:开始一段时间离家越来越远,然后有一段时间离家的距离不变,然后离家越来越近,结合图象逐项排除解答:解:由已图形可知,张大爷的行走是:开始一段时间离家越来越远,然后有一段时间离家的距离不变,然后离家越来越近,C符合;A:行走路线是离家越来越远,不符合;B:行走路线没有一段时间离家的距离不变,不符;C:行走路线没有一段时间离家的距离不变,不符;故选:D点评:本题主要考查了识别图象的及利用图象解决实际问题的能力,还要注意排除法在解题中的应用.7.已知点A(﹣1,0),B(1,0),过定点M(0,2)的直线l上存在点P,使得,则直线l的倾斜角α的取值范围是( )A.B.C.DD.考点:平面向量数量积的运算;直线的倾斜角.专题:平面向量及应用.分析:先需要设出直线l的方程,所以需讨论l是否存在斜率:存在斜率时l方程便为y=kx+2,这样即可设出P(x,kx+2),所以能得到的坐标,从而根据条件会得到关于x的不等式(1+k2)x2+4kx+3<0,要满足条件,该不等式便有解,从而△>0,这样便得到k,这样即可求出此时l倾斜角α的范围;而不存在斜率时,用与上面类似的方法容易判断出这种情况满足条件,从而得到,这两种情况的α求并集即可.解答:解:如图,(1)若l存在斜率,设直线l的方程为y=kx+2;∴设P(x,kx+2);∴=(﹣1﹣x,﹣kx﹣2)•(1﹣x,﹣kx﹣2)=(1+k2)x2+4kx+3<0;∴该不等式有解;∴△=16k2﹣12(1+k2)>0;解得k,或k;∴;∴,且;(2)若l不存在斜率,则l方程为x=0;∴设P(0,y);∴;∴﹣1<y<1;即存在P点使;而此时;∴综上得直线l的倾斜角的范围是.故选:A.点评:考查直线的点斜式方程,由点的坐标求向量的坐标,向量数量积的坐标运算,一元二次不等式是否有解和判别式△的关系,熟悉正切函数的图象,知道倾斜角的取值范围,注意不要漏了斜率不存在的情况.8.为调查某校学生喜欢数学课的人数比例,采用如下调查方法:(1)在该校中随机抽取100名学生,并编号为1,2,3, (100)(2)在箱内放置两个白球和三个红球,让抽取的100名学生分别从箱中随机摸出一球,记住其颜色并放回;(3)请下列两类学生举手:(ⅰ)摸到白球且号数为偶数的学生;(ⅱ)摸到红球且不喜欢数学课的学生.如果总共有26名学生举手,那么用概率与统计的知识估计,该校学生中喜欢数学课的人数比例大约是( )A.88% B.90% C.92% D.94%考点:收集数据的方法.专题:计算题;概率与统计.分析:先分别计算号数为偶数的概率、摸到白球的概率、摸到红球的概率,从而可得摸到白球且号数位偶数的学生,进而可得摸到红球且不喜欢数学课的学生人数,由此可得结论.解答:解:由题意,号数为偶数的概率为,摸到白球的概率为=0.4,摸到红球的概率为1﹣0.4=0.6那么按概率计算摸到白球且号数位偶数的学生有100×0.4=20个一共有26学生举手,则有6个摸到红球且不喜欢数学课的学生,除以摸红球的概率就是不喜欢数学课的学生6÷0.6=10那么喜欢数学课的有90个,90÷100=90%,故选B.点评:本题考查概率的计算,考查学生分析解决问题的能力,属于基础题.9.已知点F(﹣c,0)(c>0)是双曲线=1的左焦点,离心率为e,过F且平行于双曲线渐近线的直线与圆x2+y2=c2交于点P,且P在抛物线y2=4cx上,则e2=( ) A.B.C.D.考点:双曲线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:利用抛物线的性质、双曲线的渐近线、直线平行的性质、圆的性质、相似三角形的性质即可得出.解答:解:如图,设抛物线y2=4cx的准线为l,作PQ⊥l于Q,设双曲线的右焦点为F′,P(x,y).由题意可知FF′为圆x2+y2=c2的直径,∴PF′⊥PF,且tan∠PFF′=,|FF′|=2c,满足,将①代入②得x2+4cx﹣c2=0,则x=﹣2c±c,即x=(﹣2)c,(负值舍去)代入③,即y=,再将y代入①得,==e2﹣1即e2=1+=.故选:D.点评:本题考查双曲线的性质,掌握抛物线的性质、双曲线的渐近线、直线平行的性质、圆的性质是解题的关键.10.已知函数f(x)是定义在R上的奇函数,且f(x﹣1)为偶函数,当x∈[0,1]时,f(x)=,若函数g(x)=f(x)﹣x﹣b有三个零点,则实数b的取值集合是(以下k∈Z)( )A.(2k﹣,2k+)B.(2k+,2k+)C.(4k﹣,4k+)D.(4k+,4k+)考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:由题意,画出函数f(x)的图象,利用数形结合的方法找出f(x)与函数y=x+b有三个零点时b的求值.解答:解:因为函数f(x)是定义在R上的奇函数,且f(x﹣1)为偶函数,当x∈[0,1]时,f(x)=,故当x∈[﹣1,0]时,f(x)=﹣,所以函数f(x)的图象如图.g(x)=f(x)﹣x﹣b有三个零点,即函数f(x)与函数y=x+b有三个交点,当直线y=x+b与函数f(x)图象在(0,1)上相切时,即=x+b有2个相等的实数根,即 x2+bx﹣1=0有2个相等的实数根.由△=0求得b=,数形结合可得g(x)=f(x)﹣x﹣b有三个零点时,实数b满足﹣<b<,故此式要求的b的集合为(﹣,).再根据函数f(x)的周期为4,可得要求的b的集合为(4k﹣,4k+),故选:C.点评:本题主要考查函数的奇偶性和周期性的应用,函数的零点和方程的根的关系,体现了转化和数形结合的数学思想,属于中档题.二.填空题:本大题共7小题,每小题5分,共35分.将答案填在答题卡相应位置上11.对具有线性相关关系的变量x,y,测得一组数据如下表,若y与x的回归直线方程为,则m=4x 0 1 2 3y ﹣1 1 m 8考点:线性回归方程.专题:计算题;概率与统计.分析:利用平均数公式计算预报中心点的坐标,根据回归直线必过样本的中心点可得答案.解答:解:由题意,=1.5,=,∴样本中心点是坐标为(1.5,),∵回归直线必过样本中心点,y与x的回归直线方程为,∴=3×1.5﹣1.5,∴m=4故答案为:4.点评:本题考查了线性回归直线的性质,回归直线必过样本的中心点.12.执行如下程序框图,输出的i=6.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的s,i的值,当s=57时,不满足条件s <30,退出循环,输出i的值为6.解答:解:模拟执行程序框图,可得s=0,i=1,s=1,i=2满足条件s<30,s=4,i=3满足条件s<30,s=11,i=4满足条件s<30,s=26,i=5满足条件s<30,s=57,i=6不满足条件s<30,退出循环,输出i的值为6.故答案为:6.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的s,i的值是解题的关键,属于基础题.13.用a,b,c表示空间三条不同的直线,α,β,γ表示空间三个不同的平面,给出下列命题:①若a⊥α,b⊥α,则a∥b;②若α⊥γ,β⊥γ,则α∥β;③若b⊂α,b⊥β,则α⊥β;④若c是b在α内的射影,a⊂α且a⊥c,则a⊥b.其中真命题的序号是①③④.考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:根据空间直线和平面,平面和平面之间垂直和平行的性质分别进行判断即可.解答:解:①根据垂直于同一平面的两条直线互相平行即可得到若a⊥α,b⊥α,则a∥b 成立,故①正确;②垂直于同一平面的两个平面不一定平行,有可能相交,故②错误.①③④解:①根据垂直于同一平面的两条直线互相平行即可得到若a⊥α,b⊥α,则a∥b 成立,故①正确;②垂直于同一平面的两个平面不一定平行,有可能相交,故②错误.③根据面面垂直的判定定理知,若b⊂α,b⊥β,则α⊥β成立,故③正确,④∵c是b在α内的射影,∴在b上一点B作BC⊥α,则C在直线c上,则BC⊥a,∵a⊥c,∴a⊥平面BOC,则a⊥b,故④正确,故答案为:①③④点评:本题主要考查空间直线和平面平行或垂直的位置关系的判断,根据相应的判定定理和性质定理是解决本题的关键.14.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466﹣485年间.其中记载着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加尺.(不作近似计算)考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由题意易知该女子每天织的布成等差数列,且首项为5,前30项和为390,由求和公式可得公差d的方程,解方程可得.解答:解:由题意易知该女子每天织的布(单位:尺)成等差数列,设公差为d,由题意可得首项为5,前30项和为390,∴30×5+d=390,解得d=故答案为:.点评:本题考查等差数列的求和公式,属基础题.15.在三棱锥P﹣ABC中,侧棱PA,PB,PC两两垂直,侧面积为2,该三棱锥外接球表面积的最小值为4π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:三棱锥的三条侧棱两两垂直,扩展为长方体,二者的外接球是同一个,根据球的表面积,求出球的直径,就是长方体的对角线长,设出三度,利用基本不等式求出三棱锥外接球的直径的最值,从而得出该三棱锥外接球的表面积的最小值.解答:解:三棱锥的三条侧棱两两垂直,扩展为长方体,二者的外接球是同一个,因为三棱锥S﹣ABC的侧面积为2,设长方体的三同一点出发的三条棱长为:a,b,c,所以(SA•SB+SA•SC+SB•SC)=(ab+bc+ac)=2,⇒ab+bc+ac=4,该三棱锥外接球的直径2R就其长方体的对角线长,从而有:(2R)2=a2+b2+c2≥ab+bc+ac=4,当且仅当a=b=c时取等号.所以2R≥2⇒R≥1,则该三棱锥外接球的表面积的最小值为4πR2=4π×12═4π故答案为:4π点评:本题是基础题,考查球的内接体知识,基本不等式的应用,考查空间想象能力,计算能力,三棱锥扩展为长方体是本题的关键.16.某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据三视图的性质得到俯视图中椭圆的短轴长和长周长,再根据椭圆的性质a2﹣b2=c2,和离心率公式,计算即可.解答:解:设正视图正方形的边长为m,根据正视图与俯视图的长相等,得到俯视图中椭圆的短轴长2b=m,俯视图的宽就是圆锥底面圆的直径m,得到俯视图中椭圆的长轴长2a=m,则椭圆的焦距=m,根据离心率公式得,e==故答案为:.点评:本题主要考查了椭圆的离心率公式,以及三视图的问题,属于基础题.17.记集合T={0,1,2,3,4,5,6},M=,将M中的元素按从大到小的顺序排成数列b i,并将b i按如下规则标在平面直角坐标系的格点(横、纵坐标均为整数的点)处:点(1,0)处标b1,点(1,﹣1)处标b2,点(0,﹣1)处标b3,点(﹣1,﹣1)处标b4,点(﹣1,0)标b5,点(﹣1,1)处标b6,点(0,1)处标b7,…,以此类推,则(1)b5=;(2)标b50处的格点坐标为(4,2).考点:归纳推理.专题:计算题;推理和证明.分析:(1)根据题意,将M中的元素按从大到小的顺序排成数列b i,分子分别为6,6,6,6;6,6,6,5;6,6,6,4;6,6,6,3;6,6,6,2,…,可得结论;(2)由图形,格点的连线呈周期性过横轴,研究每一周的格点数及每一行每一列格点数的变化,得出规律即可.解答:解:(1)根据题意,将M中的元素按从大到小的顺序排成数列b i,分子分别为6,6,6,6;6,6,6,5;6,6,6,4;6,6,6,3;6,6,6,2,…,故b5==;(2)从横轴上的点开始点开始计数,从b1开始计数第一周共9个格点,除了四个顶点外每一行第一列各有一个格点,外加一个延伸点第二周从b10开始计,除了四个顶点的四个格点外,每一行每一列有三个格点,外加一个延伸点共17个,拐弯向下到达横轴前的格点补开始点的上面以补足起始点所在列的个数,由此其规律是后一周是前一周的格点数加上8×(周数﹣1)令周数为t,各周的点数和为S t=9+8(t﹣1)=8t+1,每一行(或列)除了端点外的点数与周数的关系是b=2t﹣1由于S1=9,S2=17,S3=25,S4=33,由于9+17+25=51,第50个格点应在第三周的倒数第二个点上,故其坐标为(4,2).故答案为:;(4,2).点评:本题考查归纳推理,归纳推理是由特殊到一般的推理,求解本题的关键是从特殊数据下手,找出规律,总结出所要的表达式.三.解答题:本大题共5小题,满分65分.解答应写出文字说明,证明过程或演算步骤.18.已知向量,函数f(x)=图象的对称中心与对称轴之间的最小距离为.(1)求ω的值,并求函数f(x)在区间[0,π]上的单调递增区间;(2)△ABC中,角A,B,C的对边分别为a,b,c,f(A)=1,cosC=,a=5,求b.考点:平面向量数量积的运算;三角函数中的恒等变换应用;正弦定理.专题:解三角形;平面向量及应用.分析:(1)先求出f(x)=2sin(ωx+),而f(x)图象的对称中心与对称轴之间的最小距离为其周期的四分之一,这样即可求得ω=2,从而f(x)=2sin(2x+),写出f(x)的单调增区间,然后再找出[0,π]上的单调递增区间即可;(2)由f(A)=1,能够求出A=,由cosC=求出sinC,而由sinB=sin()即可求出sinB,而由正弦定理:,即可求出b.解答:解:(1);由于图象的对称中心与对称轴的最小距离为,所以;令,解得,k∈Z;又x∈[0,π],所以所求单调增区间为;(2)或;∴A=kπ或,(k∈Z),又A∈(0,π);故;∵;∴;由正弦定理得;∴.点评:考查求函数Asin(ωx+φ)的周期的公式,并且知道该函数的对称轴与对称中心,以及能写出该函数的单调区间,数量积的坐标运算,已知三角函数值求角,两角和的正弦公式,正弦定理.19.设数列{a n}前n项和为S n,且满足a1=r,S n=a n+1﹣.(Ⅰ)试确定r的值,使{a n}为等比数列,并求数列{a n}的通项公式;(Ⅱ)在(Ⅰ)的条件下,设b n=log2a n,求数列{|b n|}的前n项和T n.考点:数列的求和;等比数列的通项公式.专题:点列、递归数列与数学归纳法.分析:(Ⅰ)通过n=1可得,通过n≥2时,得a n+1=2a n(n≥2),利用等比数列的性质可得,计算即得结论;(Ⅱ)通过(I)知b n=n﹣6,分n<6、n≥6两种情况讨论即可.解答:解:(Ⅰ)当n=1时,,当n≥2时,,与已知式作差得a n=a n+1﹣a n,即a n+1=2a n(n≥2),欲使{a n}为等比数列,则a2=2a1=2r,又,∴,故数列{a n}是以为首项,2为公比的等比数列,所以;(Ⅱ)由(I)知b n=n﹣6,∴,若n<6,,若n≥6,,∴.点评:本题考查等比数列的通项公式,前n项和公式,对数的运算,考查分类讨论的思想,注意解题方法的积累,属于中档题.20.如图,点C是以A,B为直径的圆O上不与A,B重合的一个动点,S是圆O所在平面外一点,且总有SC⊥平面ABC,M是SB的中点,AB=SC=2.(1)求证:OM⊥BC;(2)当四面体S﹣ABC的体积最大时,设直线AM与平面ABC所成的角为α,求tanα.考点:棱柱、棱锥、棱台的体积;直线与平面所成的角.专题:计算题;空间位置关系与距离;空间角.分析:(1)证明BC⊥平面SAC,BC⊥SA,OM平行于SA,可得OM⊥BC;(2)求出四面体S﹣ABC的体积最大时,,取BC的中点N,连接MN,AN,则MN 与SC平行,M N⊥平面ABC,则α=∠MAN,即可求tanα.解答:(1)证明:由于C是以AB为直径的圆上一点,故AC⊥BC又SC⊥平面ABC,SC⊥BC,又SC∩AC=C,∴BC⊥平面SAC,BC⊥SA,∵O,M分别为AB,SB的中点,∴OM平行于SA,∴OM⊥BC…(2)解:四面体S﹣ABC的体积,当且仅当时取得最大值…取BC的中点N,连接MN,AN,则MN与SC平行,MN⊥平面ABC,则α=∠MAN,∴…点评:本题考查线面垂直的判定与性质,考查四面体体积的计算,考查学生分析解决问题的能力,属于中档题.21.已知函数f(x)=xlnx,(1)求函数f(x)的单调区间和最小值.(2)若函数F(x)=在[1,e]上的最小值为,求a的值.考点:利用导数研究函数的单调性;函数单调性的性质.专题:导数的综合应用.分析:(1)由已知得f′(x)=lnx+1(x>0),由此利用导数性质能求出函数f(x)的单调区间和最小值.(2)F′(x)=,由此根据实数a的取值范围进行分类讨论,结合导数性质能求出a的值.解答:解(本小题满分12分)(1)∵f′(x)=lnx+1(x>0),令f′(x)≥0,即lnx≥﹣1=lne﹣1.∴x≥e﹣1=,∴x∈[,+∞).同理,令f′(x)≤0,可得x∈(0,].∴f(x)单调递增区间为[,+∞),单调递减区间为(0,],由此可知y=f(x)min=f()=﹣.(2)F′(x)=,当a≥0时,F′(x)>0,F(x)在[1,e]上单调递增,F(x)min=F(1)=﹣a=,∴a=﹣∉[0,+∞),舍去.当a<0时,F(x)在(0,﹣a)上单调递减,在(﹣a,+∞)上单调递增,若a∈(﹣1,0),F(x)在[1,e]上单调递增,F(x)min=F(1)=﹣a=,∴a=﹣∉(﹣1,0),舍去;若a∈[﹣e,﹣1],F(x)在[1,﹣a]上单调递减,在[﹣a,e]上单调递增,∴F(x)min=F(﹣a)=ln(﹣a)+1=,a=﹣∈[﹣e,﹣1];若a∈(﹣∞,﹣e),F(x)在[1,e]上单调递减,F(x)min=F(e)=1﹣,∴a=﹣∉(﹣∞,﹣e),舍去.综上所述:a=﹣.点评:本题考查函数的单调区间的最小值的求法,考查实数值的求法,解题时要认真审题,注意导数性质和分类讨论思想的合理运用.22.已知点A,B的坐标分别为(﹣2,0),(2,0).直线AT,BT交于点T,且它们的斜率之积为常数﹣λ(λ>0,λ≠1),点T的轨迹以及A,B两点构成曲线C.(1)求曲线C的方程,并求其焦点坐标;(2)若0<λ<1,且曲线C上的点到其焦点的最小距离为1.设直线l:x=my+1交曲线C 于M,N,直线AM,BN交于点P.(ⅰ)当m=0时,求点P的坐标;(ⅱ)求证:当m变化时,P总在直线x=4上.考点:直线与圆锥曲线的综合问题.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)设T(x,y),由直线的斜率公式,化简整理讨论即可得到曲线方程;(2)由于0<λ<1,曲线C是焦点在x轴上的椭圆,求得焦点和a﹣c为最小值,解得λ,进而得到椭圆方程,(ⅰ)当m=0时,由x=1代入椭圆方程,即可得到P的坐标;(ⅱ)设M(x1,y1),N(x2,y2),联立及x=my+1,运用韦达定理和恒成立思想,即可得到定直线x=4.解答:解:(1)设T(x,y),则,化简得,又A,B的坐标(﹣2,0),(2,0)也符合上式,故曲线C:;当0<λ<1时,曲线C是焦点在x轴上的椭圆,焦点为,当λ>1时,曲线C是焦点在y轴上的椭圆,焦点为;(2)由于0<λ<1,曲线C是焦点在x轴上的椭圆,其焦点为,椭圆的长轴端点到同侧焦点的距离,是椭圆上的点到焦点的最小距离,故,∴,曲线C的方程为;(ⅰ)联立解得或,当时,,解得P(4,3),当时,由对称性知,P(4,﹣3),所以点P坐标为(4,3)或(4,﹣3);(ⅱ)以下证明当m变化时,点P总在直线x=4上.设M(x1,y1),N(x2,y2),联立及x=my+1,消去x得:(3m2+4)y2+6my﹣9=0,,直线,消去y得,以下只需证明(※)对于m∈R恒成立.而所以(※)式恒成立,即点P横坐标总是4,点P总在直线x=4上,故存在直线l':x=4,使P总在直线l'上.点评:本题考查曲线方程的求法,主要考查椭圆的性质和方程的运用.联立直线方程运用韦达定理以及恒成立思想的运用,属于中档题.。
绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i =A .i -B .iC .1-D .12.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 A .134石 B .169石 C .338石 D .1365石3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是 A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关. 下列结论中正确的是 A .x 与y 负相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 正相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则 A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.函数256()lg 3x x f x x -+=-的定义域为A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩则 A .|||sgn |x x x = B .||sgn ||x x x = C .||||sgn x x x =D .||sgn x x x =8. 在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤” 的概率,则A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度,得到离心率为2e 的双曲线2C ,则 A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 10.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合 12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为 A .77B .49C .45D .30二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位 置上. 答错位置,书写不清,模棱两可均不得分. 11.已知向量OA AB ⊥,||3OA =,则OA OB ⋅=_________.12.若变量,x y 满足约束条件4,2,30,x y x y x y +≤⎧⎪-≤⎨⎪-≥⎩则3x y +的最大值是_________.13.函数2π()2sin sin()2f x x x x =+-的零点个数为_________.14.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额 (单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半 轴交于两点A ,B (B 在A 的上方),且2AB =. (Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.17. a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.第16题图第14题图 第15题图AB。
湖北省天门市2015届高考数学模拟试卷(文科)(4月份)一、选择题(共10小题,每小题5分,满分50分)1.已知全集U=R,A={x|x<1},B={x|x≥2},则集合∁U(A∪B)=( )A.{x|1≤x<2} B.{x|1<x≤2}C.{x|x≥1}D.{x|x≤2}考点:交、并、补集的混合运算.专题:集合.分析:求出A与B的并集,根据全集U=R,求出并集的补集即可.解答:解:∵全集U=R,A={x|x<1},B={x|x≥2},∴A∪B={x|x<1或x≥2},则∁U(A∪B)={x|1≤x<2},故选:A.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.已知z为复数,(1﹣i)2z=(1+i)3(i为虚数单位),则=( )A.1+i B.﹣1+i C.1﹣i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:函数思想;数系的扩充和复数.分析:设z=a+bi,利用向量相等,列出方程组,求出a、b的值即可.解答:解:设z=a+bi,a、b∈R,∴(1﹣i)2(a+bi)=(1+i)3,即﹣2i(a+bi)=2i(1+i),∴﹣a﹣bi=1+i,即,解得a=﹣1,b=﹣1,∴z=﹣1﹣i,∴=﹣1+i.故选:B.点评:本题考查了复数的共轭复数以及复数相等的应用问题,也考查了复数的代数运算问题,是基础题目.3.一个几何体的三视图如图所示,正视图和侧视图都是等边三角形,该几何体的四个顶点在空间直角坐标系O﹣xyz中的坐标分别是(0,0,0),(2,0,0),(2,2,0),(0,2,0)则第五个顶点的坐标可能为( )A.(1,1,1)B.(1,1,)C.(1,1,)D.(2,2,)考点:简单空间图形的三视图.专题:空间向量及应用.分析:由三视图可知该几何体为正四棱锥,根据四个点的坐标关系确定第5个点的坐标即可.解答:解:由三视图可知该几何体为正四棱锥,该几何体的四个顶点在空间直角坐标系O ﹣xyz中的坐标分别是(0,0,0),(2,0,0),(2,2,0),(0,2,0),设A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),则AB=2,BC=2,CD=2,DA=2,∴这四个点为正四棱锥的底面正方形的坐标,设顶点为P(a,b,c),则P点在xoy面的射影为底面正方形的中心O'(1,1,0),即a=1,b=1,由正视图是正三角形,∴四棱锥侧面的斜高为2,则四棱锥的高为,即c=,∴P点的坐标为(1,1,),故第五个顶点的坐标为(1,1,),故选:C.点评:本题主要考查三视图的识别和应用,利用三视图确定该几何体为正四棱锥是解决本题的关键,然后根据坐标关系即可确定第5个顶点的坐标,考查学生的空间想象能力.4.甲、乙两位歌手在“中国好声音”选拔赛中,5位评委评分情况如茎叶图所示,记甲、乙两人的平均得分分别为、,则下列判断正确的是( )A.<,甲比乙成绩稳定B.<,乙比甲成绩稳定C.>,甲比乙成绩稳定D.>,乙比甲成绩稳定考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:根据茎叶图的数据,利用平均值和数值分布情况进行判断即可.解答:解:由茎叶图知,甲的得分情况为17,16,28,30,34;乙的得分情况为15,28,26,28,33,因此可知甲的平均分为,乙的平均分为=86,故可知<,排除C、D,同时根据茎叶图数据的分布情况可知,乙的数据主要集中在86左右,甲的数据比较分散,乙比甲更为集中,故乙比甲成绩稳定,选B.故选B.点评:本题主要考查茎叶图的应用,以及平均数的求法要求熟练掌握相应的概念和公式,考查学生的计算能力.5.已知双曲线C:=1(a>0,b>0)的焦距为2,抛物线y=+1与双曲线C的渐近线相切,则双曲线C的方程为( )A.B.C.D.考点:双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:由已知条件,根据双曲线的焦距排除A,B,再由抛物线y=+1与双曲线C的渐近线相切排除C.解答:解:∵双曲线C:=1(a>0,b>0)的焦距为2,∴排除选A和B,∵的渐近线方程为y=±2x,把y=2x代入抛物线y=+1,得,,∴抛物线y=+1与y=2x不相切,由此排除C.故选:D.点评:本题考查双曲线标准方程的求法,在选择题中合理地运用排除法往往能化繁为简,节约答题时间.6.已知多项式f(x)=4x5+2x4+3.5x3﹣2.6x2+1.7x﹣0.8,用秦九韶算法算f(5)时的V1值为( )A.22 B.564.9 C.20 D.14130.2考点:秦九韶算法.专题:算法和程序框图.分析:利用秦九韶算法可得f(x)=((((4x+2)x+3.5)x﹣2.6)x+1.7)x﹣0.8,即可得出.解答:解:∵f(x)=((((4x+2)x+3.5)x﹣2.6)x+1.7)x﹣0.8,∴v0=4,v1=4×5+2=22.故选:A.点评:本题考查了秦九韶算法,属于基础题.7.数列{c n}为等比数列,其中c1=2,c8=4,f(x)=x(x﹣c1)(x﹣c2)…(x﹣c8),f′(x)为函数f(x)的导函数,则f′(0)=( )A.0 B.26C.29D.212考点:导数的运算.专题:导数的概念及应用;等差数列与等比数列.分析:由已知求出数列{c n}的通项公式,对函数f(x)求导,求出f′(x),令x=0求值.解答:解:因为数列{c n}为等比数列,其中c1=2,c8=4,所以公比q=,由f(x)=x(x﹣c1)(x﹣c2)…(x﹣c8),得f′(x)=(x﹣c1)(x﹣c2)…(x﹣c8)+x[(x ﹣c1)(x﹣c2)…(x﹣c8)]',所以f′(0)=(﹣c1)(﹣c2)…(﹣c8)=c1c2…c8==212;故选D.点评:本题考查了等比数列的通项求法以及导数的运算;解答本题求出等比数列的通项公式以及函数的导数是关键.8.“序数”指每个数字比其左边的数字大的自然数(如1246),在两位的“序数”中任取一个数比36大的概率是( )A.B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:列举可得总的“序数”个数,找出比36大的,由概率公式可得.解答:解:十位是1的两位的“序数”:8个;十位是2的:7个,依此类推:十位分别是3,4,5,6,7,8的各有6,5,4,3,2,1个,故两位的“序数”共有8+7+6+5+4+3+2+1=36个.比36大的有:十位是3的:3个;十位是4的:5个,依此类推:十位分别是5,6,7,8的各有4,3,2,1个∴比36大的两位的“序数”有3+5+4+3+2+1=18.∴所求概率P==故选:A.点评:本题考查古典概型及其概率公式,列举是解决问题的关键,属基础题.9.已知定义在R上的奇函数f(x),当x>0时,f(x)=则关于x的方程6[f(x)]2﹣f(x)﹣1=0的实数根个数为( )A.6 B.7 C.8 D.9考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:先设t=f(x),求出方程6[f(x)]2﹣f(x)﹣1=0的解,利用函数的奇偶性作出函数在x>0时的图象,利用数形结合即可得到结论.解答:解:设t=f(x),则关于x的方程6[f(x)]2﹣f(x)﹣1=0,等价6t2﹣t﹣1=0,解得t=或t=,当x=0时,f(0)=0,此时不满足方程.若2<x≤4,则0<x﹣2≤2,即f(x)==(2|x﹣3|﹣1),若4<x≤6,则2<x﹣2≤4,即f(x)==(2|x﹣5|﹣1),作出当x>0时,f(x)=的图象如图:当t=时,f(x)=对应3个交点.∵函数f(x)是奇函数,∴当x<0时,由f(x)=,可得当x>0时,f(x)=,此时函数图象对应4个交点,综上共有7个交点,即方程有7个根.故选:B点评:本题主要考查函数方程根的个数的判断,利用换元法,利用数形结合是解决本题的关键,综合性较强,难度较大.10.若函数f(x)=2sinωx(ω>0)的图象在(0,3π)上恰有一个极大值和一个极小值,则ω的取值范围是( )A.B.C.D.考点:y=Asin(ωx+φ)中参数的物理意义.专题:三角函数的图像与性质.分析:求出函数的周期,利用已知条件列出方程,即可得到ω的取值范围.解答:解:由题意可知函数的周期为:,函数f(x)=2sinωx(ω>0)的图象在(0,3π)上恰有一个极大值和一个极小值,可得:,即,解得ω∈.故选:B.点评:本题考查三角函数的化简求值,三角函数的周期的应用,考查计算能力.二、填空题(共7小题,每小题5分,满分35分)11.执行如图的程序框图,若输入x=12,则输出y=.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x,y的值,当x=4,y=时由于||<1,此时满足条件|y﹣x|<1,退出循环,输出y的值为.解答:解:模拟执行程序框图,可得x=12,y=6,不满足条件|y﹣x|<1,x=6,y=4不满足条件|y﹣x|<1,x=4,y=由于||<1,故此时满足条件|y﹣x|<1,退出循环,输出y的值为.故答案为:.点评:本题主要考查了循环结构的程序框图,正确判断退出循环时y的值是解题的关键,属于基础题.12.在等比数列{a n}中,对于任意n∈N*都有a n+1a2n=3n,则a1a2…a6=729.考点:数列递推式.专题:等差数列与等比数列.分析:通过等比数列的定义及a n+1a2n=3n可得公比及a2,利用等比中项的性质计算即可.解答:解:∵a n+1a2n=3n,∴a n+2a2(n+1)=3n+1,∴q3===3,即q=,∵a2a2=31,∴a2=,∴a5==3,∴a2•a5==9,∴a1a2…a6=(a1•a6)(a2•a5)(a3•a4)=93=729,故答案为:729.点评:本题考查求数列前几项的乘积,注意解题方法的积累,属于中档题.13.点P(x,y)在线性约束条件表示的区域内运动,则|OP|的最小值为.考点:简单线性规划.专题:数形结合.分析:由约束条件作出可行域,由点到直线的距离公式求得答案.解答:解:由约束条件作出可行域如图,由图可知,|OP|的最小值为原点O到直线x+y﹣1=0的距离,即为.故答案为:.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.若向量,的夹角为45°,且||=l,|2﹣|=,则||=3.考点:平面向量数量积的运算.专题:平面向量及应用.分析:将|2﹣|=平方,然后将夹角与||=l代入,得到||的方程,解方程可得.解答:解:因为向量,的夹角为45°,且||=l,|2﹣|=,所以42﹣4+2=10,即||2﹣4•1•||•cos45°+4﹣10=0,即为||2﹣2•||﹣6=0,解得||=3或||=﹣(舍),故答案为:.点评:本题解题的关键是将模转化为数量积,从而得到所求向量模的方程,利用到了方程的思想.15.已知a、b为实数,则“a>b>1”是“<”的充分不必要条件(填“充分不必要”、“必要不充分”及“充要”等).考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据不等式的性质,结合充分条件和必要条件的定义进行判断.解答:解:若a>b>1,则a﹣1>b﹣1>0,∴0<<成立.若当a=0,b=2时,满足<,但a>b>1不成立.故““a>b>1”是“<”的充分不必要条件.故答案为:充分不必要.点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键,比较基础.16.设F1、F2是双曲线(a>0, b>0)的左、右焦点,P是双曲线右支上一点,满足()=0(O为坐标原点),且3||=4||,则双曲线的离心率为5.考点:双曲线的简单性质.专题:平面向量及应用;圆锥曲线的定义、性质与方程.分析:运用双曲线的定义,结合条件可得|PF1|=8a,|PF2|=6a,再由()=0,可得|OP|=|OF2|,得到∠F1PF2=90°,由勾股定理及离心率公式,计算即可得到.解答:解:由于点P在双曲线的右支上,则由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=|PF2|,解得|PF1|=8a,|PF2|=6a,由()=0,即为()•(﹣)=0,即有2=2,则△PF1F2中,|OP|=|OF2|=|OF1|,则∠F1PF2=90°,由勾股定理得|PF1|2+|PF2|2=|F1F2|2,即有64a2+36a2=4c2,即有c=5a,即e==5.故答案为:5点评:本题考查双曲线的定义、方程和性质,考查双曲线的离心率的求法,同时考查向量垂直的条件和勾股定理的运用,考查运算能力,属于中档题.17.已知函数f(x)=mlnx+nx(m、,n∈R),曲线y=f(x)在点(1,f(1))处的切线方程为x﹣2y﹣2=0.(1)m+n=;(2)若x>1时,f(x)+<0恒成立,则实数k的取值范围是.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出原函数的导函数,由f′(1)=得到m+n的值;利用函数在点(1,f(1))处的切线方程为x﹣2y﹣2=0求得m,n的值,得到函数f(x)的解析式,代入f(x)+<0并整理,构造函数g(x)=(x>1),利用导数求得g(x)>得答案.解答:解:由f(x)=mlnx+nx(m、,n∈R),得,∴f′(1)=m+n,∵曲线y=f(x)在点(1,f(1))处的切线方程为x﹣2y﹣2=0,∴m+n=;由f′(1)=,f(1)=n,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣n=(x﹣1),即x﹣2y+2n﹣1=0.∴2n﹣1=﹣2,解得n=﹣.∴m=1.则f(x)=lnx﹣,f(x)+<0等价于lnx﹣+,即,令g(x)=(x>1),g′(x)=x﹣lnx﹣1,再令h(x)=x﹣lnx﹣1,,当x>1时h′(x)>0,h(x)为增函数,又h(1)=0,∴当x>1时,g′(x)>0,即g(x)在(1,+∞)上为增函数,∴g(x)>g(1)=.则k.故答案为:;(﹣∞,].点评:本题考查利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,考查数学转化思想方法,是中高档题.三、解答题(共5小题,满分65分)18.设λ∈R,f(x)=,其中,已知f(x)满足(1)求函数f(x)的单调递增区间;(2)求不等式的解集.考点:两角和与差的正弦函数;平面向量数量积的运算;正弦函数的对称性;余弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(1)利用向量的数量积以及两角和的正弦函数,化简函数的解析式,利用正弦函数的单调性求解即可.(2)直接利用余弦函数的图象与性质,写出不等式的解集即可.解答:解:(1)f(x)=,其中,=λsinxcosx﹣cos2x+sin2x=…∵,∴…∴令,得,∴f(x)的单调递增区间是…(2)∵,∴∴∴不等式的解集是…点评:本题考查向量的数量积以及两角和与差的三角函数,三角函数的单调性的应用,考查计算能力.19.已知等差数列{a n}满足a1=1,且a2、a7﹣3、a8成等比数列,数列{b n}的前n项和T n=a n ﹣1(其中a为正常数).(1)求{a n}的前项和S n;(2)已知a2∈N*,I n=a1b1+a2b2+…+a n b n,求I n.考点:数列的求和;等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(1)通过a2、a7﹣3、a8成等比数列,计算可得d=1或,进而可得结论;(2)通过a2∈N*及a1=1可得a n=n,进而可得b n=a n﹣1(a﹣1)(n∈N*),分a=1、a≠1两种情况讨论即可.解答:解:(1)设{a n}的公差是d,∵a2、a7﹣3、a8成等比数列,∴a2•a8=,∴(1+d)(1+7d)=(1+6d﹣3)2,∴d=1或,当d=1时,;当时,;(2)∵a2∈N*,a1=1,∴{a n}的公差是d=1,即a n=n,当n=1时,b1=a﹣1,当n≥2时,,∵b1=a﹣1=a1﹣1(a﹣1)满足上式,∴b n=a n﹣1(a﹣1)(n∈N*),当a=1时,b n=0,∴I n=0;当a≠1时,,∴aI n=a(a﹣1)+2a2(a﹣1)+…+(n﹣1)a n﹣1(a﹣1)+na n(a﹣1),∴=a n﹣1﹣na n(a﹣1),∴I n=na n﹣,∴I n=.点评:本题考查求数列的通项及前n项和,考查分类讨论的思想,考查运算求解能力,注意解题方法的积累,属于中档题.20.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是梯形,其中AD∥BC,BA⊥AD,AC与BD交于点O,M是AB边上的点,且AM=2BM,已知PA=AD=4,AB=3,BC=2.(1)求平面PMC与平面PAD所成锐二面角的正切;(2)已知N是PM上一点,且ON∥平面PCD,求的值.考点:二面角的平面角及求法;直线与平面平行的判定.专题:空间位置关系与距离;空间角.分析:解法1:(1)连接CM并延长交DA的延长线于E,说明∠MFA是平面PMC与平面PAD 所成锐二面角的平面角然后求解tan∠MFA==,得到结果.(2)连接MO并延长交CD于G,连接PG,在△BAD中,通过,说明MO∥AD,然后求解的值.解法2 (1)以A为坐标原点,AB、AD、AP为x.y,z轴建立如图所示直角坐标系,求出平面PMC的法向量,平面PAD的法向量,通过向量的数量积求解平面PMC与平面PAD所成锐二面角的正切.(2)求出平面PCD的法向量,设=λ,然后求解即可.解答:解法1:(1)连接CM并延长交DA的延长线于E,则PE是平面PMC与平面PAD所成二面角的棱,过A作AF垂直PE于F,连接MF.∵PA⊥平面ABCD,∴PA⊥MA,又MA⊥AD,∴MA⊥平面PAD,∵AF⊥PE,∴MF⊥PE,∴∠MFA是平面PMC与平面PAD所成锐二面角的平面角…∵BC=2,AD=4,BC∥AD,AM=2MB∴AE=4,又PA=4,∴AF=∴tan∠MFA==,所以平面PMC与平面PAD所成锐二面角的正切为…(2)连接MO并延长交CD于G,连接PG∵ON∥平面PCD,∴ON∥PG在△BAD中∵,又∴∴MO∥AD …又在直角梯形ABCD中,MO=OG=,∵ON∥PG∴PN=MN,∴…解法2 (1)以A为坐标原点,AB、AD、AP为x.y,z轴建立如图所示直角坐标系,则A(0,0,0)、B(3,0,0)、C(3,2,0)、D(0,4,0)、M(2,0,0)、P(0,0,4)、O(2,4/3,0)设平面PMC的法向量是=(x,y,z),则∵=(1,2,0),=(﹣2,0,4)∴令y=﹣1,则x=2,z=1∴=(2,﹣1,1)又AB⊥平面PAD,∴=(1,0,0)是平面PAD的法向量∴∴所以平面PMC与平面PAD所成锐二面角的正切为…(2)设平面PCD的法向量=(x’,y’,z’)∵=(3,2,﹣4),=(0,4,﹣4)∴令y'=3,则x'=2,z'=3∴设=λ,则∵=(2,0,﹣4)∴=(2λ,0,﹣4λ)==(2λ﹣2,﹣4/3,4﹣4λ)∵⊥∴4λ﹣4﹣4+12﹣12λ=0∴,∴…点评:本题考查二面角的平面角的求法,几何法与向量法的应用,考查空间想象能力以及计算能力.21.若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=在I上是减函数,则称y=f(x)是I上的“非完美增函数”,已知f(x)=lnx,g(x)=2x++alnx(a∈R)(1)判断f(x)在(0,1]上是否是“非完美增函数”;(2)若g(x)是[1,+∞)上的“非完美增函数”,求实数a的取值范围.考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:(1)依据“非完美增函数”的定义判断即可;(2)由题意可得g(x)在[1,+∞)上为增函数,G(x)==2++在[1,+∞)上是减函数,利用导数研究函数的单调性,即可求得结论.解答:解:(1)由于f(x)=lnx,在(0,1]上是增函数,且F(x)==,∵F′(x)=,∴当x∈(0,1]时,F′(x)>0,F(x)为增函数,∴f(x)在(0,1]上不是“非完美增函数”;(2)∵g(x)=2x++alnx,∴g′(x)=2﹣+=,∵g(x)是[1,+∞)上的“非完美增函数”,∴g′(x)≥0在[1,+∞)上恒成立,∴g′(1)≥0,∴a≥0,又G(x)==2++在[1,+∞)上是减函数,∴G′(x)≤0在[1,+∞)恒成立,即﹣+≤0在[1,+∞)恒成立,即ax﹣axlnx﹣4≤0在[1,+∞)恒成立,令p(x)=ax﹣axlnx﹣4则p′(x)=﹣alnx,∴解得0≤a≤4,综上所述0≤a≤4.点评:本题以新定义的形式考查函数的单调性,考查运用所学知识分析解决新问题的能力.22.已知椭圆C:的离心率为,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2(1)求椭圆C的方程;(2)设圆T:(x﹣t)2+y2=,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在x轴上移动且t∈(1,3)时,求EF的斜率的取值范围.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)由椭圆离心率得到a,c的关系,再由△PF1F2的周长是得a,c的另一关系,联立求得a,c的值,代入隐含条件求得b,则椭圆方程可求;(2)椭圆的上顶点为M(0,1),设过点M与圆T相切的直线方程为y=kx+1,由圆心到切线距离等于半径得到关于切线斜率的方程,由根与系数关系得到,再联立一切线方程和椭圆方程,求得E的坐标,同理求得F坐标,另一两点求斜率公式得到k EF=.然后由函数单调性求得EF的斜率的范围.解答:解:(1)由,即,可知a=4b,,∵△PF1F2的周长是,∴,∴a=4,b=1,所求椭圆方程为;(2)椭圆的上顶点为M(0,1),设过点M与圆T相切的直线方程为y=kx+1,由直线y=kx+1与T相切可知,即(9t2﹣4)k2+18tk+5=0,∴,由,得.∴,同理,则=.当1<t<3时,为增函数,故EF的斜率的范围为.点评:本题考查了椭圆方程的求法,考查了直线与圆,直线与椭圆的位置关系,考查了直线与圆相切的条件,训练了利用函数单调性求函数的最值,是中档题.。
绝密★启用前试卷类型:A6 7 7 58 8 8 6 8 4 0 9 3甲乙天门市2015年高三年级四月调研考试数 学(文史类)本试卷共4页,共22题。
全卷满分150分,考试时间120分钟。
注意事项:1. 答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2. 选择题的作答,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3. 填空题和解答题的作答:用签字笔直接写在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将答题卡上交。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U =R ,{}|1A x x =<,{}|2B x x =≥,则集合∁U (A ∪B )= A 、{}|12x x ≤<B 、{}|12x x <≤C 、{}|1x x ≥D 、{}|2x x ≤ 2.已知z 为复数,()()2311i z i -=+(i 为虚数单位),则z = A 、1i +B 、1i -+C 、1i -D 、1i --3.一个几何体的三视图如图所示,正视图和侧视图都是等边三 角形。
若该几何体的四个顶点在空间直角坐标系O xyz -中的 坐标分别是(0,0,0),(2,0,0),(2,2,0),(0,2,0), 则第五个顶点的坐标可能为A 、(1,1,1)B 、(1,1C 、(1,1D 、(2,24.甲、乙两名同学,在班级的演讲比赛中,得分情况如图所示,记甲、 乙两人的平均得分分别为x 甲、x 乙,则下列判断正确的是 A 、x x <甲乙,甲比乙成绩稳定 B 、x x <甲乙,乙比甲成绩稳定C 、x x >甲乙,甲比乙成绩稳定D 、x x >甲乙,乙比甲成绩稳定5.已知双曲线2222:1(0,0)x yC a ba b-=>>的焦距为21116y x =+与双曲线C 的渐正视图 侧视图俯视图近线相切,则双曲线C 的方程为A 、2214y x -=B 、2214x y -= C 、22128x y -= D 、22182x y -=6.已知多项式8.07.16.25.324)(2345-+-++=x x x x x x f ,用秦九韶算法算(5)f 时的V 1值为A 、22B 、564.9C 、20D 、14130.27.数列{c n }为等比数列,其中c 1=2,c 8=4,)())(()(821c x c x c x x x f -⋅⋅⋅--=,)(x f '为函数f (x )的导函数,则)0(f '=A 、0B 、26C 、29D 、2128.“序数”指每个数字比其左边的数字大的自然数(如1246),在两位的“序数”中任取一个数比36大的概率是A 、12B 、23C 、34D 、459.已知定义在R 上的奇函数)(x f ,当0>x 时,.2),2(2120,12)(1⎪⎩⎪⎨⎧-≤-=-><x x f x x f x 则关于x 的方程()[]()0162=--x f x f 的实数根个数为A 、6B 、7C 、8D 、910.若函数()()2sin 0f x x ωω=>的图象在()0,3π上恰有一个极大值和一个极小值,则ω的取值范围是 A 、2,13⎛⎤⎥⎝⎦B 、15,26⎛⎤⎥⎝⎦C 、24,33⎛⎤⎥⎝⎦D 、35,44⎛⎤ ⎥⎝⎦二、填空题:本大题共7小题,每小题5分,共35分。
请将答案填在答题卡对应题号的位置上。
答错位置,书写不清,模棱两可均不得分。
11.执行如图的程序框图,若输入12x =,则输出y = ▲ . 12.在等比数列{}n a 中,对于任意*n N ∈都有123n n n a a +=,则126a a a ⋅⋅⋅= ▲ .13.点P (x,y )在线性约束条件10102x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩表示的区域内运动,则|OP|的最小值为 ▲ .14.若向量m ,n 的夹角为45°,且|m |=l ,|2m –n则| n |= ▲ .15.已知a 、b 为实数,则“a >b >1”是“1a -1<1b -1”的 ▲ 条件(填“充分不必要”、“必要不充分”及“充要”等).16.设1F 、2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,若双曲线右支上存在一点P ,使22()0OP OF PF +⋅=(O 为坐标原点),且||4||321PF =,则双曲线的离心率为 ▲ .17.已知函数),(ln )(R n m nx x m x f ∈+= ,曲线()y f x =在点()()1,1f 处的切线方程为220x y --=.(1)=+n m ▲ ;(2)若1x >时,()0kf x x+<恒成立,则实数k 的取值范围是 ▲ .三、解答题:本大题共5小题,共65分。
解答应写出文字说明、证明过程或演算步骤。
把答案填在答题卡上对应题号指定框内。
18.(本题满分12分)设(),R f x a b λ∈=⋅,其中()cos ,sin ,sin cos ,cos()2a x x b x x x πλ⎛⎫==-- ⎪⎝⎭,已知()f x 满足()03f f π⎛⎫-= ⎪⎝⎭(1)求函数()f x 的单调递增区间;(2)求不等式3)62cos(2>-πx 的解集。
19.(本题满分12分)已知等差数列{}n a 满足121, a a =、73a -、8a 成等比数列,数列{}n b 的前n 项和1n n T a =-(其中a 为正常数)(1)求{}n a 的前项和n S ;(2)已知*2a N ∈,1122n n n I a b a b a b =++⋅⋅⋅+,求n I20.(本题满分13分)如图,在四棱锥P-ABCD 中,P A ⊥底面ABCD ,底面ABCD 是梯形,其中AD //BC ,BA ⊥AD ,AC与BD交于点O,M是AB边上的点,且AM=2BM,已知P A=AD=4,AB=3,BC=2.(1)求平面PMC与平面P AD所成锐二面角的正切;(2)已知N是PM上一点,且ON//平面PCD,求PN PM的值.21.(本题满分14分)若函数()f x是定义域D内的某个区间I上的增函数,且()()f xF xx=在I上是减函数,则称()y f x=是I上的“单反减函数”,已知()()2ln,2ln()f x xg x x a x a Rx==++∈(1)判断()f x在(]0,1上是否是“单反减函数”;(2)若()g x是[)1,+∞上的“单反减函数”,求实数a的取值范围.22.(本题满分14分)已知椭圆C:()222210x ya ba b+=>>,12,F F是椭圆的两个焦点,P是椭圆上任意一点,且∆PF1F2的周长是8+(1)求椭圆C的方程;(2)设圆T:()2249x t y-+=,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在x轴上移动且()1,3t∈时,求EF的斜率的取值范围.APDB COMN天门市2015年高三年级四月调研考试数学(文史类)参考答案及评分标准一、选择题:ABCBB ADABB 二、填空题:11.103; 12.729 =36; 13.2;14. 15.充分不必要; 16.5; 17.21, 1(,]2-∞。
三、解答题:18.解:(1)()()cos sin cos sin cos 2f x x x x x x πλ⎛⎫=-+- ⎪⎝⎭22sin cos cos sin x x x x λ=-+ sin 2cos 22x x λ=- ………………2分()03f f πλ⎛⎫-=∴= ⎪⎝⎭……………3分()2cos 22sin 26f x x x x π⎛⎫∴=-=- ⎪⎝⎭令()222262k x k k Z πππππ-≤-≤+∈,得()63k x k k Z ππππ-≤≤+∈()f x ∴的单调递增区间是(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦…………7分(2)∵32)62cos(4>-πx ,∴23)62cos(>-πx ()222666k x k k Z πππππ∴-<-<+∈()6k x k k Z πππ∴<<+∈不等式的解集是()|6x k x k k Z πππ⎧⎫<<+∈⎨⎬⎩⎭……………12分19.解:(1)设{}n a 的公差是d ,则()()()()222873117163a a a d d d =-∴++=+-1d ∴=或329d =…………………4分当d=1时,()()11111122n S n n n n n =⨯+-⨯=+ 当329d =时,()213355112295858n S n n n n n =⨯+-⨯=+ ……………6分 (2)2n a N a n ∈∴=当1n =时,11b a =-当2n ≥时,()111n n n n b T T a a --=-=-()()()1111111*n n b a a a b a a n N --=-=-∴=-∈ …………8分当1a =时,00n n b I =⇒= ……………9分 当1a ≠时()()()()211121311n n I a a a aa na a -=⨯-+-+-+⋅⋅⋅+- ()()()()()21 121111n nn aI a a a a n a a na a -∴=-+-+⋅⋅⋅+--+- ()()()()()111111n n n a I a a a a a na a -∴-=-+-+⋅⋅⋅+---()11n na na a =---11n nn a I na a -∴=-- …………………11分()()()()0110,11,1n n na I a na a a ⎧=⎪∴=⎨--∈⋃+∞⎪-⎩…………………12分20.解法1:(1)连接CM 并延长交DA 的延长线于E,则PE 是平面PMC 与平面PAD 所成二面角的棱,过A 作AF 垂直PE 于F ,连接MF ∵PA ⊥平面ABCD ∴PA ⊥MA ,又MA ⊥AD ,∴MA ⊥平面PAD ∵AF ⊥PE ∴MF ⊥PE,∴∠MFA 是平面PMC 与平面PAD 所成锐二面角的平面角……3分 ∵BC=2, AD=4, BC//AD, AM=2MB ∴AE=4,又PA=4,AF=tan ∠MFA=MA FA所以平面PMC 与平面PAD 所成锐二面角的正切为2…………6分 (2)连接MO 并延长交CD 于G ,连接PG∵ON//平面PCD, ∴ON//PG 在BAD 中 ∵12BO BC OD AD ==,又12BM MA = ∴BO BMOD MA= ∴MO//AD ………………………………………………9分 又在直角梯形ABCD 中,MO=OG=43,∵ON//PG ∴PN=MN , ∴12PN PM = ……………………………………12分 解法2 (1)以A 为坐标原点,AB 、AD 、AP 为x.y,z 轴建立如图所示直角坐标系,则A (0,0,0)、B (3,0,0)、C (3,2,0)、D (0,4,0)、M (2,0,0)、P (0,0,4)、O (2,4/3,0)设平面PMC 的法向量是u=(x,y,z),则 ∵ MC =(1,2,0),MP =(-2,0,4) 20240x y x z +=⎧∴⎨-+=⎩令y=-1,则x=2,z=1∴u = (2,-1,1)又AB ⊥平面PAD ,∴v=(1,0,0)是平面PAD 的法向量cos ||u vu v θ⋅∴== t a n 2θ∴=所以平面PMC 与平面PAD 所成锐二面角的正切为2………………6分 (2)设平面PCD 的法向量v’= (x’,y’,z’)∵ PC =(-3,2,-4),PD =(0,4,4)∴3'2'4'04'4'0x y z y z +-=⎧⎨-=⎩令'3y =,则'2,'3x z ==∴()'2,3,3v =设PN =λPM ,则∵PM =(2,0,-4)∴PN =(2λ,0,-4λ)ON = AN-AO = AP + PN -AO =(2λ-2,-4/3,4-4λ) ∵ON ⊥V‘ ∴4λ-4-4+12-12λ=0 ∴12λ=,∴12PN PM = ………………12分21.解:(1)由于f (x )=lnx ,在(0,1]上是增函数,且F (x )==,∵F ′(x )=,∴当x ∈(0,1]时,F ′(x )>0,F (x )为增函数,∴f (x )在(0,1]上不是“单反减函数”;•••••••••••••6分 (2)∵g (x )=2x++alnx ,∴g ′(x )=2﹣+=,••••••••••••••••8分∵g (x )是[1,+∞)上的“单反减函数”,∴g ′(x )≥0在[1,+∞)上恒成立, ∴g ′(1)≥0,∴a ≥0,•••••••••••••••••••••9分 又G (x )==2++在[1,+∞)上是减函数,∴G ′(x )≤0在[1,+∞)恒成立,即﹣+≤0在[1,+∞)恒成立,即ax ﹣axlnx ﹣4≤0在[1,+∞)恒成立,••••••••••••••••••11分 令p (x )=ax ﹣axlnx ﹣4则p ′(x )=﹣alnx , ∴解得0≤a ≤4,综上所述0≤a ≤4.••••••••••••••••14分22.解:(1)由154e =,可知a=4b ,15c b = 因为12PF F 的周长是8215+所以228215a c +=+所以a=4,b=1,所求椭圆方程为22116x y += …………………………4分 (2)椭圆的上顶点为M(0,1),设过点M 与圆T 相切的直线方程为1y kx =+, 由直线1y kx =+与T 21231kt k +=+, 即()22941850t k tk -++=121222185,9494t k k k k t t ∴+=-=--,…………6分 由1221116y k x x y =+⎧⎪⎨+=⎪⎩得()2211116320k x k x ++=12132116E k x k ∴=-+ 同理 22232116F k x k =-+ ………8分 ()()121211E F E F E FEF E F E F E F k x k x y y k x k x k x x x x x x +-+--===--- 122126116283k k tk k t+==-- ……………11分 当1<t<3时,()26283t f t t =-为增函数,故EF 的斜率的范围为6,1825⎛⎫⎪⎝⎭……………14分。