03-超声检测方法
- 格式:ppt
- 大小:6.35 MB
- 文档页数:76
超声检查方法第一节:超声检查基本方法一、检查前病人准备1、空腹:适用于腹部脏器检查一般应空腹>12h。
2、适当充盈膀胱:适用于盆腔脏器观察。
3、肠道准备-灌肠:适用于经直肠观察。
4、其它特殊要求。
二、医生准备了解病史,化验结果,其它影像资料,及至查体,仪器工作条件及调节:1、使用频率的要求:胸腹部:3.0-3.5MHz或2.0-5.0MHz,浅表器官:5.0-7.5MHz或5.0-13.0MHz,颅脑:2.0-2.5MHz。
2、扫描方式及探头选择:心脏:相控阵探头、扇扫;腹部:凸阵探头、弧形扫描;浅表器官:线阵探头、矩形。
3、灵敏度调节:总增益与时间增益补偿(TGC),TGC调节使不同深度的图像清晰、不失真,要求:图像完整均匀。
4、探查深度选择三、病人体位:仰卧位(最常用)、侧卧位、俯卧位、坐位、半坐位。
四、超声检查的基本手法首先:藕合剂的使用,排除探头与皮肤之间空气,减少反射折射。
手法:1、顺序连续平行断面法或编织法。
2、定点侧动探头扫查法。
3、十字交叉扫查法。
以求获得完整图像,增强立体概念,不遗漏病变,尽量避免超声盲区。
五、常用超声图像断面与图像方位1、常用断面:纵断面(失状断面)、横断面、斜断面、冠状断面横断面纵断面冠状断面图左人体左人体头(上)人体头(上)图右人体右人体足(下)人体足(下)图上人体前(浅)人体前(浅)左侧时,图上-左图下人体后(深)人体后(深)图下-右右侧时,图上-右图下-左六、超声观察的基本内容1、定位2、大小3、外形4、边缘轮廓、被膜5、内部回声,包括:强、较强、等回声、低、无6、后壁后方回声7、毗邻关系8、位置及活动度9、彩色多普勒、频谱多普勒第二节:颅脑的超声检查主要适用于新生儿、婴幼儿一、适应症1、颅内出血(包括新生儿颅内出血、硬膜下血肿、蛛网膜下出血)2、脑积水3、脑梗塞与脑软片4、囊肿性占位5、脑脓肿6、脑肿瘤7、介入性超声应用二、检查前准备无特殊要求三、仪器条件:相控阵(扇扫)、凸阵、矩形(线阵)均可应用。
超声波测量实验的操作指南与数据处理引言:超声波是一种高频声波,具有广泛的应用领域。
在工业、医疗、环境监测等方面,超声波测量技术被广泛采用。
本文将为您介绍超声波测量实验的操作指南和数据处理方法,帮助您进行准确、可靠的测量。
一、实验前准备:1. 确保实验室环境干净、安静,以减少外界干扰。
2. 检查超声波测量设备的状态,如传感器、发射器和接收器是否正常工作,探头是否清洁。
3. 根据实验需求,选择适当的超声波测量仪器和参数设置。
二、实验操作步骤:1. 将传感器与超声波仪器连接,并固定在待测物体上。
确保传感器与待测物体之间的距离适当。
2. 打开超声波测量仪器,并进行初始化设置。
根据实验需要,设置适当的频率、功率等参数。
3. 将超声波发射器放置在测量区域的一侧,将接收器放置在另一侧,使其正对待测物体。
4. 启动超声波发射器,发射超声波信号。
通过接收器接收反射回的超声波信号,并将数据传输给计算机或储存器。
5. 根据实验需求,可进行多组测量,以提高数据的准确性和可靠性。
三、数据处理方法:1. 数据预处理:对采集到的超声波信号进行滤波、降噪等预处理工作。
可以采用数字滤波器、中值滤波器等方法,提取有效信号。
2. 数据分析:根据实验目的,选取合适的分析方法。
如计算超声波的传播速度、衰减系数等。
3. 数据可视化:使用数据可视化工具,将处理后的数据转化为图表或曲线。
通过观察图表或曲线,可以直观地了解实验结果。
4. 数据比对与验证:将实验测得的数据与已知数据进行比对,验证实验结果的准确性。
如对某材料的密度进行测量,可与已知密度进行对比。
5. 数据修正与优化:根据实验结果,对数据进行修正或优化。
可以采用拟合算法等方法,提高数据的精度和可靠性。
6. 数据报告与解释:将实验结果整理成报告,并进行合理解释。
报告应包含实验目的、方法、结果和结论等内容,以便他人理解和参考。
结论:超声波测量实验是一种常见且重要的测量技术,它可以应用于多个领域,为工业和科研提供了可靠的数据支持。
超声检测步骤超声检测步骤超声检测作为一种无创的医学诊断技术,广泛应用于临床医学、生命科学和工业领域。
它通过利用超声波在物体内部的传播特性,提供了一种非侵入性、实时性和可靠性较高的检测方法。
本文将深入探讨超声检测的步骤,以帮助读者更好地理解该技术的原理和实施过程。
第一步:准备工作在进行超声检测之前,必须进行一系列的准备工作。
需要确保超声检测设备处于良好的工作状态,并进行必要的校准和检测。
准备好适当的超声探头,根据被检物体的尺寸、形状和材料选择合适的探头。
对被检物体进行清洁和处理,以确保检测结果的准确性和可靠性。
第二步:探头放置与校准在开始实际检测之前,需要准确地放置超声探头,并进行校准。
探头放置的位置和方式取决于被检物体的特点和所需检测的部位。
对于临床医学中的超声检测,通常需要将探头与人体的皮肤直接接触,使用适当的凝胶或润滑剂,以便更好地传导超声波。
还需要进行校准,以确保超声波的发射和接收的准确性。
第三步:数据采集与图像生成当探头正确放置和校准后,就可以开始进行数据的采集和图像的生成。
超声波发射器会发出一系列的超声脉冲,然后探头接收回波信号,并将其转化为电信号。
接收到的信号经过放大、滤波和数字化处理后,根据一定的算法将其转化为可视化的图像。
这些图像可以呈现被检物体的内部结构、形态和异常情况,供医生或操作人员进行分析和判断。
第四步:结果分析与诊断在得到超声图像之后,需要进行结果的分析与诊断。
针对不同的应用领域和目的,可以采用不同的分析方法和工具。
临床医学中常用的方法包括测量被检物体的大小、形态和血流速度等参数,与正常参考值进行比对并作出判断。
对于工业领域,可以利用超声图像进行缺陷检测、材料分析和质量评估等。
第五步:总结与展望超声检测作为一种重要的无创检测技术,具有广阔的应用前景和发展空间。
通过以上的步骤,我们可以看到超声检测的全过程,从准备工作到数据采集、图像生成,再到结果分析与诊断。
在未来,随着技术的不断进步和创新,超声检测将在医学、生命科学和工业领域中发挥更重要的作用,为人们的健康和生活带来更多的益处。
超声波测量方法超声波测量方法一、一般测量方法:1、(1)在一点处用探头进行两次测厚,在两次测量中探头的分割面要互为90,取较小值为被测工件厚度值。
(2)30mm多点测量法:当测量值不稳定时,以一个测定点为中心,在直径约30mm的圆内进行多次测量,取最小值为被测工件厚度值。
2、精确测量法:在规定的测量点周围增加测量数目,厚度变化用等厚线表示。
3、连续测量法:用单点测量法沿指定路线连续测量,间隔不大于5mm。
4、网格测量法:在指定区域划上网格,按点测厚记录。
此方法在尿素高压设备、不锈钢衬里腐蚀监测中广泛使用。
二、超声波测厚示值失真原因分析:超声波测厚在实际应用中,尤其是在役设备的监测中,如果出现示值失真,偏离实际厚度的现象,结果造成管线(设备)隐患存在,就是依据错误的数据更换了管件,造成大量材料浪费。
根据我公司几年来超声波测厚的跟踪使用情况,将示值失真现象及原因分析如下:1、无示值显示或示值闪烁不稳原因分析:这种现象在现场设备和管道检测中时常出现,经过大量现象和数据分析,归纳原因如下:(1)工件表面粗糙度过大,造成探头与接触面耦合效果差,反射回波低,甚至无法接收到回波信号。
在役设备、管道大部分是表面锈蚀,耦合效果极差。
(2)工件曲率半径太小,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好)。
(3)检测面与底面不平行,声波遇到底面产生散射,探头无法接受到底波信号。
(4)铸件、奥氏体钢因组织不均匀或晶粒粗大,超声波在其中穿过时产生严重的散射衰减,被散射的超声波沿着复杂的路径传播,有可能使回波湮没,造成不显示。
(5)探头接触面有一定磨损。
常用测厚探头表面为丙烯树脂,长期使用会使其表面粗糙度嶒加,导致灵敏度下降,从而造成不显示或闪烁。
(6)被测物背面有大量腐蚀坑。
由于被测物另一面有锈斑、腐蚀凹坑,造成声波衰减,导致读数无规则变化,在极端情况下甚至无读数。
2、示值过大或过小原因分析在实际检测工作中,经常碰到测厚仪示值与设计值(或预期值)相比,明显偏大或偏小,原因分析如下:(1)被测物体(如管道)内有沉积物,当沉积物与工件声阻抗相差不大时,测厚仪显示值为壁厚加沉积物厚度。
无损检测技术之超声检测超波检测主要用于探测试件的内部缺陷,它的应用十分广泛.所谓超声波是指超过人耳听觉,频率大于20kHz的声波.用于检测的超声波,频率为0.4<25MHz其中用得最多的是1〜5MHz超声波探伤方法很多,通常有穿透法、脉冲反射法、串列法等.目前用得最多的是脉冲反射法.超声信号显示方面,目前用得最多而且较为成熟的是A型显示.下面主要表达A型显示脉冲反射超声探伤法.1.超声检测定义、作用及特性定义:一般指超声波与工件作用,就反射、透射和衍射的波进行研究,对工件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用进行评价的技术.工业检测中,超声检测通常指宏观缺陷检测和材料厚度测量.作用:通过超声检测发现工件或设备中存在的缺陷,从而实现产品质量控制、节约原材料、改良工艺、提升劳动生产率、消除平安隐患.超声波的重要特性:1〕方向性好超声波是频率很高、波长很短的机械波,在超声波检测中使用的波长为毫米数量级.像光波一样具有良好的方向性,可以定向发射,从而在被检工件中发现缺陷.2〕能量高超声波的水平〔声强〕与频率的平方成正比.3〕能在界面上产生反射、折射、衍射和波形转换超声波具有几何声学的特点,在介质中直线传播,遇到界面产生反射、折射、衍射和波形转换.4〕穿透水平强超声波在大多数介质中传播时,能量损失小,传播距离大,穿透水平强,在一些金属材料中穿透水平可达数米,这是其它检测方法无法比较的.2.超声波的发生及其性质2.1超声波的发生和接收声波是一种机械波,机械波是由机械振动产生的.工业探伤用的高频超声波,是通过压电换能器产生的.压电材料可以将电振动转换成机械振动,也能将机械振动转换成电振动.通常在超声波探伤中只使用一个晶片,这个晶片既作发射又作接收.图9—1姆声波的发生W9-2超声波的纵波与横波V电报班科片2.2超声波的种类超声波有许多种类,在介质中传播有不同的方式,波型不同,其振动方式不同,传播速度也不同.声波的介质质点振动方向与传播方向一致,叫做纵波.质质点振动方向和波传播的方向垂直的波叫横波.纵波可在气、液、固体中传播.可是横波只能在固体介质中传播.止匕外,还有在固体介质的外表传播的表面波、在固体介质的外表下传播的爬波和在薄板中的传播板波.它们都可用来探伤.2.3超声波的主要物理量波长:入单位:mmm同一波线上相邻两振动相位相同的质点间的距离.或者说:沿着波的传播方向,两个相邻的同相位质点间的距离.频率:f单位:赫兹〔Hz〕波动过程中,任一给定点在1秒钟内所通过的完整波的个数.波速:C单位:m/s,km/s波动中,波在单位时间内所传播的距离称为波速.cn f或入=c/f波长与波速成正比,与频率成反比.当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长声速声波在介质中是以一定的速度传播的,如空气中的声速为340m/s,水中的声速为1500m/s,钢中纵波的声速为5900m/s,横波的声速为3230m/s,外表波的声速3007m/s.横波的声速大约是纵波声速的一半,而外表波声速大约是横波的0.9倍.分贝与奈培在生产和科学实验中,所遇到的声强数量级往往相差悬殊,如引起听觉的声强范围,最大值和最小值相差12个数量级.显然采用绝对量来度量是不方便的,但如果对其比值〔相对量〕取对数来比较计算那么可大大简化运算.分贝就是两个同量纲的量之比取对数后的结果.△=20lgP1/P2在超声波检测中,当超声波探伤仪的垂直线性较好时,仪器示波屏上的波高与回波声压成正比.这时有△=20lgP2/P1=20lgH2/H1〔dB〕这里声压基准P1或波高基准H1可以任意选取.当H2/H1=1时,△=0dB,说明两波高相等时,二者的分贝差为零.当H2/H1=2时,/\=6dB,说明H2为H1的两倍时,H2比H1高6dB.当H2/H1=1/2时,△=—6dB,说明H2为H1的1/2时,H2比H1低6dB.2.4超声波检测的原理超声波检测主要是基于超声波在工件中的传播特性,如在遇到声阻抗不同的两种介质的界面时会发生反射,声波通过材料时能量会损失等,以脉冲反射法为例,其原理如下:1〕超声波探伤仪〔声源〕产生高频电磁振荡信号〔脉冲波〕,采用一定的方式使超声波进入工件;2〕超声波在工件中传播并与工件材料以及其中的缺陷相互作用,其传播方向或特征被改变;3〕反射回来的超声波被超声波探头接收,进行处理和分析;4〕根据接收的超声波特征、进行评估.目前用得最多的方法是脉冲反射法.脉冲反射法在垂直探伤时用纵波,在斜入射探伤时大多用横波.把超声波射入被检物的一面,然后在同一面接收从缺陷处反射回来的回波,根据回波情况来判断缺陷的情况.纵波垂直探伤和横波倾斜入射探伤是超声波探伤中两种主要探伤方法探头图A10斜射法探伤的几何关系如斜模中的延迟w 族第的出看&折射曲X 」收解的水平即肉d 摄降的霜再距南F-顺韬反射液T 蛤液发射脉神,I.4 圣陷回波F53.试块超声探伤中是以试块作为比较的依据.试块上有各种的特征,例如特定的尺寸,规定的人工缺陷,即某一尺寸的平底孔、横通孔、凹梢等.用试块作为调节仪器、定量缺陷的参考依据,是超声探伤的一个特点.试块在超声探伤中的用途主要有三方面:①确定适宜的探伤方法.②确定探伤灵敏度和评价缺陷大小.③校验仪器和测试探头性能.4.超声波检测工艺要点A.探伤时机选择根据要到达的检测目的,选择最适当的探伤时机.B.探伤方法选择根据工件情况,选定探伤方法.例如,对焊缝,选择单斜探头接触法;对钢管,选择聚焦探头水浸法;对轴类锻件,选用单探头垂直探伤法.C.探伤方向很重要.探伤方向应以能发现缺陷为准,应根据缺陷的种类和方向来决定.D.频率的选择根据工件厚度和材料的晶粒大小,合理的选择探伤频率.E.确定探伤灵敏度用适当的标准试块的人工缺陷或试件无缺陷底面调节到一定的波高,确定探伤灵敏度.5,超声检测方法的水平范围和局限性5.1水平范围a〕能检测出原材料〔板材、复合板材、管材、锻件等〕和零部件中存在的缺陷;b〕能检测出焊接接头内存在的缺陷,面状缺陷检出率较高;c〕超声波穿透水平强,可用于大厚度〔100m做上〕原材料和焊接接头的检测;d〕能确定缺陷的位置和相对尺寸.5,2局限性a〕较难检测粗晶材料和焊接接头中存在的缺陷;b〕缺陷位置、取向和形状对检测结果有一定的影响;c〕A型显示检测不直观,检测记录信息少;d〕较难确定体积状缺陷或面状缺陷的具体性质.。