第11讲:进化算法(遗传算法,粒子群算法)
- 格式:ppt
- 大小:1.78 MB
- 文档页数:21
人工智能中的遗传算法与粒子群优化算法比较分析遗传算法与粒子群优化算法是两种经典的优化算法,它们都是受到自然界的启发而产生的。
在人工智能领域,这两种算法都被广泛应用于解决优化问题。
本文将对遗传算法与粒子群优化算法进行比较分析,通过对它们的原理、优缺点以及应用领域进行对比,帮助读者更好地理解它们各自的特点和适用范围。
一、遗传算法的原理与特点遗传算法是一种模拟自然界生物进化过程的优化算法。
它的基本原理是借鉴了达尔文的进化论和孟德尔的遗传学理论。
在遗传算法中,候选解被编码成一组染色体,通过选择、交叉和变异等操作来产生新的解,以逐步优化种群中的个体。
遗传算法的主要特点包括并行搜索、全局寻优和适应度函数等。
1.并行搜索:遗传算法通过维护一个种群,每一代的个体都是同时存在的,可以并行地进行搜索。
这种特点使得遗传算法适用于高维度的优化问题,具有较好的鲁棒性和全局搜索能力。
2.全局寻优:由于遗传算法的并行搜索特性,它在寻找全局最优解方面具有一定的优势。
相对于局部搜索算法,遗传算法可以更好地避免陷入局部最优解。
3.适应度函数:遗传算法通过适应度函数来评价个体的优劣,从而进行选择、交叉和变异等操作。
适应度函数可以根据具体问题的特点来设计,使得遗传算法具有较好的通用性和灵活性。
遗传算法的应用领域包括但不限于工程优化、组合优化、机器学习和神经网络等。
在实际应用中,遗传算法被广泛用于解决复杂的优化问题,取得了很好的效果。
二、粒子群优化算法的原理与特点粒子群优化算法是一种模拟鸟群觅食行为的优化算法。
它的基本原理是通过模拟每个候选解在解空间中的移动轨迹,以寻找最优解。
粒子群优化算法的核心思想是借鉴了社会学和物理学的相关理论,通过更新每个粒子的速度和位置来不断调整解的质量,从而逐步收敛到最优解。
1.群体搜索:粒子群优化算法是一种群体智能算法,它通过调整每个粒子的位置和速度来实现全局搜索和局部搜索。
这种特点使得粒子群优化算法适用于多峰函数的优化问题,能够快速找到全局最优解。
粒子群算法介绍优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题•为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等•优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度•爬山法精度较高,但是易于陷入局部极小•遗传算法属于进化算法(Evolutionary Algorithms)的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解•遗传算法有三个基本算子:选择、交叉和变异•但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995年Eberhart博士和kennedy博士提出了一种新的算法;粒子群优化(Particle Swarm Optimization -PSO) 算法.这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。
粒子群优化(Particle Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法(Evoluti on ary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质.但是它比遗传算法规则更为简单,它没有遗传算法的交叉” (Crossover)和变异”(Mutation)操作.它通过追随粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),由Eberhart博士和迭代搜寻最优值。
但是它没有遗传算法用的交叉(crossover)以及变异(mutation),而是粒子在解空间追随最优的粒子进行搜索。
同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。
进化算法遗传算子介绍进化算法是一类启发式优化算法,通过模拟生物进化过程中的遗传机制,来寻找问题的优化解。
遗传算子是进化算法的核心组成部分,它通过模拟生物进化过程中的遗传变异、交叉和选择等操作,来不断改进种群中的个体,并最终找到最优解。
遗传算子的分类遗传算子主要分为以下几种类型:1. 选择算子选择算子模拟自然选择的过程,根据个体的适应度值选择优秀的个体作为父代参与繁殖,从而传递优秀的基因信息。
常用的选择算子有轮盘赌选择、锦标赛选择等。
2. 交叉算子交叉算子模拟生物进化过程中的基因交换,通过将两个父代个体的染色体进行切割和重组,生成新的子代个体。
常用的交叉算子有单点交叉、多点交叉和均匀交叉等。
3. 变异算子变异算子模拟生物进化过程中的基因变异,通过对个体染色体的部分基因进行随机改变,引入新的基因组合,从而增加种群的多样性。
常用的变异算子有位变异、反转变异和插入变异等。
遗传算子的作用遗传算子在进化算法中起到了至关重要的作用,它们通过不同的操作方式影响个体的基因组合,从而对种群进行优化。
1. 选择算子的作用选择算子可以根据个体的适应度值,对种群中的个体进行评估和排序,选择适应度高的个体作为父代,保留其优秀的基因信息。
选择算子能够提高种群适应度,并促使种群向适应度更高的方向进化。
2. 交叉算子的作用交叉算子通过将父代个体的部分基因进行交换和重组,生成新的子代个体。
交叉算子能够引入新的基因组合,增加种群的多样性,并有利于发现更优的解。
交叉算子还能够加速种群的进化速度,提高种群适应度。
3. 变异算子的作用变异算子引入了个体染色体的突变,通过改变染色体中的部分基因,插入新的基因组合。
变异算子可以增加种群的多样性,防止种群陷入局部最优解。
变异算子还可以引入新的基因组合,有助于发现更优的解。
遗传算子的参数设置在使用遗传算法求解问题时,合适的参数设置是非常关键的。
以下是常见的遗传算子参数:1. 种群规模(Population Size)种群规模定义了每一代中的个体数量,它应该充分考虑问题的复杂度和计算资源的限制。
进化计算的主要分支
进化计算是一种模拟自然进化过程的计算方法,它的主要分支包括以下几种:
1. 遗传算法(Genetic Algorithm,GA):遗传算法是进化计算中最经典和广泛应用的方法之一。
它基于生物进化的遗传原理,通过模拟基因的交叉、变异和选择等操作,来优化问题的解。
2. 进化策略(Evolution Strategies,ES):进化策略是一种基于种群的搜索方法,它通过个体的变异和选择来更新种群,以找到最优解。
与遗传算法不同,进化策略通常不使用交叉操作。
3. 遗传编程(Genetic Programming,GP):遗传编程是一种基于树结构的进化计算方法,它用于解决问题的编程任务。
个体在遗传编程中表示为树状结构,通过遗传操作和适应度评估来优化程序的性能。
4. 协同进化(Coevolution):协同进化是指多个物种或多个智能体在相互作用和共同演化的环境中进行进化。
它可以应用于多目标优化、生态系统建模等领域。
5. 免疫算法(Immunological Algorithm,IA):免疫算法是一种受生物免疫系统启发的计算方法,它利用免疫机制来实现优化和问题求解。
6. 粒子群优化(Particle Swarm Optimization,PSO):粒子群优化是一种基于群体智能的优化算法,它模拟鸟群或鱼群的行为,通过个体之间的协作和竞争来寻找最优解。
这些分支在不同的应用领域和问题类型中都有广泛的应用,并且不断有新的分支和改进方法涌现。
进化计算的优点包括全局搜索能力、适应性和鲁棒性等,使其成为解决复杂优化问题的有效工具。
遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
粒子群算法原理及简单案例[ python ]介绍粒子群算法(Particle swarm optimization,PSO)是模拟群体智能所建立起来的一种优化算法,主要用于解决最优化问题(optimization problems)。
1995年由 Eberhart和Kennedy 提出,是基于对鸟群觅食行为的研究和模拟而来的。
假设一群鸟在觅食,在觅食范围内,只在一个地方有食物,所有鸟儿都看不到食物(即不知道食物的具体位置。
当然不知道了,知道了就不用觅食了),但是能闻到食物的味道(即能知道食物距离自己是远是近。
鸟的嗅觉是很灵敏的)。
假设鸟与鸟之间能共享信息(即互相知道每个鸟离食物多远。
这个是人工假定,实际上鸟们肯定不会也不愿意),那么最好的策略就是结合自己离食物最近的位置和鸟群中其他鸟距离食物最近的位置这2个因素综合考虑找到最好的搜索位置。
粒子群算法与《遗传算法》等进化算法有很多相似之处。
也需要初始化种群,计算适应度值,通过进化进行迭代等。
但是与遗传算法不同,它没有交叉,变异等进化操作。
与遗传算法比较,PSO的优势在于很容易编码,需要调整的参数也很少。
一、基本概念与遗传算法类似,PSO也有几个核心概念。
粒子(particle):一只鸟。
类似于遗传算法中的个体。
1.种群(population):一群鸟。
类似于遗传算法中的种群。
2.位置(position):一个粒子(鸟)当前所在的位置。
3.经验(best):一个粒子(鸟)自身曾经离食物最近的位置。
4.速度(velocity ):一个粒子(鸟)飞行的速度。
5.适应度(fitness):一个粒子(鸟)距离食物的远近。
与遗传算法中的适应度类似。
二、粒子群算法的过程可以看出,粒子群算法的过程比遗传算法还要简单。
1)根据问题需要,随机生成粒子,粒子的数量可自行控制。
2)将粒子组成一个种群。
这前2个过程一般合并在一起。
3)计算粒子适应度值。
4)更新种群中每个粒子的位置和速度。
遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
人工智能的优化算法技术引言:当前人工智能技术正在飞速发展,深度学习和神经网络等技术的发展推动了人工智能在各个领域的应用。
然而,随着模型和数据的规模不断扩大,人工智能的算法优化成为了一个十分重要的问题。
本文将介绍一些常用的人工智能优化算法技术,包括遗传算法、粒子群算法、模拟退火算法、蚁群算法以及混合进化算法等。
一、遗传算法遗传算法是一种受到进化生物学启发的优化算法。
它通过模拟基因间的遗传机制来搜索最优解。
遗传算法的基本流程包括初始化种群、选择、交叉、变异和适应度评估等步骤。
种群中的个体通过选择、交叉和变异等操作,不断进化和优化,以适应输入数据和优化目标。
优点:1. 遗传算法在搜索空间大、多样性高的问题上具有较好的效果。
2. 遗传算法能够找到全局最优解,不容易陷入局部最优解。
3. 遗传算法相对简单易懂,易于实现和调整。
缺点:1. 遗传算法的效率相对较低,需要大量的计算资源和时间。
2. 遗传算法对问题的建模和问题域的知识要求较高,需要手动选择和设计适应度函数等。
二、粒子群算法粒子群算法是一种受到鸟群觅食行为启发的优化算法。
粒子群算法模拟了鸟群中鸟群成员通过信息传递不断寻找更好食物位置的过程。
在粒子群算法中,个体通过不断更新速度和位置,以找到最优解。
优点:1. 粒子群算法具有一定的全局搜索能力,能够在搜索空间中快速找到潜在的解。
2. 粒子群算法的收敛速度相对较快,能够加快优化过程。
3. 粒子群算法易于实现和调整。
缺点:1. 粒子群算法容易陷入局部最优解,全局搜索能力有限。
2. 粒子群算法对问题的建模和参数设置较为敏感,需要经验调整算法参数以达到最佳效果。
三、模拟退火算法模拟退火算法是一种受到固体物质退火原理启发的优化算法。
模拟退火算法模拟了固体物质在退火过程中逐渐减少温度,从而达到更低能量状态的过程。
在模拟退火算法中,个体通过接受差解以一定概率跳出局部最优解,并在搜索空间中发现更优解。
优点:1. 模拟退火算法具有一定的全局搜索能力,能够在搜索空间中寻找潜在的解。