一种宝玉石的仿制品--硅灰石微晶玻璃
- 格式:pdf
- 大小:174.42 KB
- 文档页数:4
玉的种类很多,可按其产地、色泽、质地来分类,作为手机和机身的高级材质,应参照国家标准GB/T 16552—2003《珠宝玉石名称》和GB/T 16553—1996《珠宝玉石鉴定》,选择纯正稀罕、质量最高的和田出产的羊脂白玉来仿制,仿玉的微晶玻璃也应按这些标准的性能要求,制定仿玉的工艺。
本文在已发表的仿玉微晶玻璃专利的基础上,对制定用于手机的仿玉微晶玻璃成分与工艺原则及研制中若干问题,进行探讨。
用于手机仿羊脂玉微晶玻璃性能要求:(1)颜色,羊脂玉属上等优质白玉,呈脂白色,允许稍有淡青色,白度39.5%~44.5%,平均41.6%;糖色(玉鉴定中的专用名词,指色似红糖色)小于30%,糖色是由羊脂玉中Fe2O3等杂质所引起,要求FeO<0.5%,在仿玉微晶玻璃中Fe2O3含量很少,往往在0.05%以下。
(2)光泽,羊脂玉的光泽较为特殊,古人称其“温润而泽”,就是光泽带有很强的油脂性,给人以滋润的感觉,既不强也不弱,既没有强光的晶莹,也没有弱光的蜡质感,玉的质地愈纯,光泽越好,杂质多,光泽就弱。
但此光泽与玻璃光泽还有区别,玻璃光泽愈强,反而使人感到是用玻璃仿制的。
(3)透明性,羊脂玉是微透明、半透明朦胧状,透光而不透亮。
透明度太差,给人以白瓷感觉,透明度太高则感觉像玻璃。
现有各种标准中只有定性文字描述,缺乏具体文字,笔者估计可见光透率应在25%~40%范围内。
(4)质地,羊脂玉晶粒大小要求为 3 mm以下,结构柔和细腻,致密纯净,仿玉微晶玻璃的晶粒大小可以达到0.02~1 mm,比羊脂玉更细。
(5)硬度,羊脂玉莫氏硬度6~6.5,仿玉微晶玻璃可达6.5左右。
用于手机仿玉微晶玻璃的制造工艺:(1)成分和工艺优选的原则,根据手机用仿玉微晶玻璃的要求设计微晶玻璃成分和制造工艺制度。
设计仿玉微晶玻璃成分要达到预期主晶相的组成、晶体粒度、晶相结构以及晶相含量。
和田玉特征是羊脂白色,质地细腻,具有油脂光泽呈微透明。
凝灰岩简介及其开发利用凝灰岩是一种分布最广泛、最常见的细粒火山碎屑岩。
碎屑主要表现为岩屑、晶屑、玻屑和火山灰,其碎屑粒径一般小于2.0mm。
它是由火山爆发而抛入空中的火山物质经长距离的搬运,散落于盆地,再经压结和水化学胶结固结成岩。
目前,凝灰岩的研究还比较薄弱,凝灰岩的开发应用在我国尚未引起重视,迄今还未形成产业。
丰富的凝灰岩资源如能得到开发应用,它将成为一种新型和重要的非金属矿产资源,不但在国民经济中发挥重要的作用,而且还大大有利于非金属矿产资源的可持续开发与利用。
1、地质简况我国凝灰岩主要分布于中国东部,尤其是东南沿海地区的中生代火山岩带中,为环太平洋火山带的一部分,主要产于上侏罗统南园组、磨石山群,中白垩统帽石山群;华北板块北缘中生代凝灰岩分布也较为广泛,岩层主要产于上侏罗统后城组、张家口组和下白垩统义县组。
我国凝灰岩以酸性凝灰岩为典型,以流纹质和流纹英安质为主,属钙碱性系列火山岩。
2、凝炭岩物相及化学成分特征凝灰岩具有凝灰或沉凝灰等结构。
岩石主要由晶屑、玻屑、岩屑、角砾和火山灰等火山物质组成,晶玻屑常具多种形态,如火焰状、鸡骨状、撕裂状和弧面状等。
据计算,我国东南沿海含叶蜡石凝灰岩建造的CIPW标准矿物含量,主要由石英( Q)、钾长石(or)和钠长石(ab) 等矿物组成,其含量(%)分别为38.55、27.39、22.63,三者之和一般大于90% ,另外还含有少量钙长石,平均3.56%;其它矿物,尤其是铁镁矿物含量很少。
此外,凝灰岩常不同程度地伴生有沸石、蒙脱石、伊利石或高岭石、埃洛石等蚀变矿物。
由表1可知我国酸性凝灰岩化学成分主要为SiO2、Al2O3、K2O和Na2O,次要成分为CaO、MgO、SiO2、FeO和Fe2O3等。
酸性凝灰岩一般SiO2> 70%、Al2O3> 13%;通常K2O+ Na2O > 5% ,且一般K2O > Na2O;一般F e2O3> 0.7%、FeO>0.9%,且通常FeO > Fe2O3,二者之和一般< 3.80%;其它成分均很低。
异极矿加热过程的研究刘琰;邓军;杨立强;王庆飞【期刊名称】《岩石学报》【年(卷),期】2005(021)003【摘要】实验所用的两块异极矿标本采自云南金顶铅锌矿氧化带中.对样品进行了湿法化学全分析、差热分析和失重分析.实验结果表明,所研究的样品化学式与Zn4Si2O7(OH)2·H2O相符.根据以上分析结果,分别在600℃、700℃、800℃、900℃和1300℃进行恒温三小时热处理,并对热处理过的样品进行X光粉晶衍射和红外吸收光谱分析.异极矿大约在500℃失去结晶水,在700℃失去氢氧根.在600℃时,X光粉晶衍射数据表明它的结构与异极矿没有本质差别,仅仅是晶胞微微缩小,此时红外光谱分析表明样品中有结构水存在,因此说明这种结构水是一种"沸石水".这时的样品是Zn4Si2O7(OH)2,即脱水异极矿,而非γ-Zn2SiO4.700℃处理样品与Taylor实验中的β-Zn2SiO4有完全一致的X光粉晶衍射数据,但它不是单一物相,而是以锌橄榄石为主,并含有部分脱水异极矿和硅锌矿,β-Zn2SiO4的结构是橄榄石型的.800℃、900℃和1300℃热处理异极矿保持硅锌矿物相.总体来看,γ-Zn2SiO4并不存在,也不会分解成为ZnO和SiO2.【总页数】6页(P993-998)【作者】刘琰;邓军;杨立强;王庆飞【作者单位】中国地质大学地质过程与矿产资源国家重点实验室,北京,100083;中国地质大学岩石圈构造、深部过程及探测技术教育部重点实验室,北京,100083;中国地质大学地质过程与矿产资源国家重点实验室,北京,100083;中国地质大学岩石圈构造、深部过程及探测技术教育部重点实验室,北京,100083;中国地质大学地质过程与矿产资源国家重点实验室,北京,100083;中国地质大学岩石圈构造、深部过程及探测技术教育部重点实验室,北京,100083;中国地质大学地质过程与矿产资源国家重点实验室,北京,100083;中国地质大学岩石圈构造、深部过程及探测技术教育部重点实验室,北京,100083【正文语种】中文【中图分类】P578.952;P579【相关文献】1.无机钠盐活化异极矿的作用机理研究 [J], 李明晓;谭伟;王宏锋;蒋国祥2.异极矿成矿规律及浮选药剂作用机理研究现状 [J], 章晓林;王其宏;景满;饶霏;武鲁庆;李康康;曹世明;刘殿文3.磷酸酯浮选体系中菱锌矿和异极矿的浮游性研究 [J], 梁溢强;宋涛;朱从杰4.水热法合成异极矿的研究 [J], 李钧培;徐红胜;朱志华;施志展;陈磊;李娟;张瑞宝5.一种异极矿仿制品-钠硅灰石微晶玻璃的研究 [J], 刘俊伯;阮青锋;李夏云;童静芳因版权原因,仅展示原文概要,查看原文内容请购买。
微晶玻璃的定义微晶玻璃是一种新型的玻璃产品,也被称为粉晶玻璃、微晶质玻璃或云母玻璃。
它是一种由各种硼酸、氧化物和氟化物组成的玻璃陶瓷材料,主要通过高温烧制和快速冷却而形成。
与传统的玻璃相比,微晶玻璃具有更高的硬度、耐热性和耐腐蚀性,可以广泛应用于建筑、家居装饰、电子、医疗、航天等领域。
微晶玻璃的制作微晶玻璃的制作过程包括原料配比、混合、烧结和加工四个步骤。
原料配比微晶玻璃的主要原料包括氧化硅、碱金属氧化物、硼酸、氟化物、氧化钇、氧化镁等。
这些原料需要严格按照一定比例混合,以保证后续加工过程的稳定性和产品质量。
混合将原料混合在一起,并使用球磨机等装置将它们粉碎,以便更好地进行后续的烧结加工。
烧结将混合好的原料在高温下进行烧结,以形成微晶玻璃颗粒。
加工经过烧结后的微晶玻璃颗粒需要进行加工,以便制成各种形状和大小的产品。
加工方式包括切割、打磨、抛光等。
微晶玻璃的特性微晶玻璃具有以下主要特性:高硬度微晶玻璃比普通玻璃更硬,更耐划伤和磨损。
它的硬度接近于天然石英,可以有效降低产品的维护成本,延长寿命。
耐腐蚀性微晶玻璃的表面光洁度高,不易吸附污垢和油脂。
它还对酸、碱、盐溶液等腐蚀性物质具有很好的抵抗能力。
耐热性微晶玻璃的熔点较高,耐高温性能好,可以承受较高温度的蒸汽和火焰,不易变形和炸裂。
透明性微晶玻璃透明度高,可以通过调整成分和加工工艺改善其光学性能,使其具有更好的透光性和透明度。
微晶玻璃的应用微晶玻璃具有广泛的应用前景,可以用于以下方面:建筑微晶玻璃可以用于制作高档玻璃幕墙、楼梯扶手、实验室设备和医疗设备等。
它的高硬度、耐热性和耐腐蚀性可以有效保护建筑物和设备,延长使用寿命。
家居装饰微晶玻璃可以用于制作高档灯饰、花瓶、工艺品等家居装饰品。
它的优美外观和透明度可以为家居带来更高的精致感和品位。
电子微晶玻璃可以用于制造电容器、电池隔膜和触摸屏等电子产品。
它的高硬度和透明度可以使电子产品更加耐用和美观。
医疗微晶玻璃可以用于制作手术器械、人工器官、医疗设备和药品包装等医疗用品。
微晶玻璃简要概述刘帅聪(无机非金属材料工程1301班,湖南工学院材料与化学工程学院湖南衡阳 421002)摘要微晶玻璃是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。
由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。
关键词微晶玻璃特点制备工艺应用发展Brief Introduction of Glass - CeramicsShuai Cong Liu(Inorganic Nonmetallic Materials Engineering1301class,Hunan Institute of TechnologyDepartment of Material and Chemical Engineering Hunan Hengyang 421002)Abstract:Crystalline glass is a composite solid material containing a large amount of microcrystals and vitreous bodies obtained by controlling crystallization during the heating process by the base glass or other materials. Because of its high mechanical strength, adjustable thermal expansion, good thermal shock resistance, chemical resistance, low dielectric loss, good electrical insulation properties such as superior performance, has been widely used in many fields.Key words: glass - ceramics, characteristics, preparation technology, application development1 引言微晶玻璃又名玻璃陶瓷,它是指将加有形核剂(个别可不加)的特定组成的基础玻璃,通过控制结晶变成具有一种或多种微晶体和残余玻璃相的复合材料,即在非晶态的玻璃内均匀分布着大量(体积百分比约占95%~98%)的随机取向的微小陶瓷晶体(通常小于10μm)。
收稿日期:2007 01 02作者简介:阮青锋(1971 ),男,中国地质大学(武汉)矿物学岩石学矿床学专业博士研究生,主要从事宝石学与矿物(晶体)材料方面的教学与研究工作。
水钙铝榴石 一种翡翠相似玉的研究阮青锋1a,2,邱志惠1b,3,张永华2(1.中国地质大学a.资源学院; b.地球科学学院,湖北武汉430074; 2.桂林工学院资源与环境工程系,广西桂林541004; 3.广西师范大学化学化工学院,广西桂林541004)摘 要:采用常规宝石学测试方法及现代测试技术(SEM ,XRD,FT IR)对中国珠宝市场上一种外观与黄色翡翠十分相似的玉石品种进行了较系统的研究。
测试结果显示,相似玉的折射率为1.734,密度为3.46g/cm 3,具细粒隐晶质结构;在SEM 下其颗粒主要呈粒状、棱角状和碎裂状,大小约2~5 m;XRD 和F T IR 分析表明,该相似玉由主要矿物水钙铝榴石和次要矿物符山石组成,与翡翠的宝石学特征存在明显的不同。
关键词:水钙铝榴石;相似玉;黄色翡翠中图分类号:P619 28 文献标识码:A 文章编号:1008 214X(2007)01 0009 03Study on Hydrogrossular:Analogous Jade to Jadeite JadeRU AN Q ing feng 1a,2,QIU Zhi hui 1b,3,ZH ANG Yong hua2(1a.F aculty of E ar th R esour ces ;1b.Faculty of E ar th S ciences ,China Univer sity of Geosciences ,W uhan 430074,China;2.Dep artment of R esour ces and E nvironmental E ngineer ing ,Guilin Univer sity of T echnology ,Guilin 541004,China;3.S chool of Chemistry and Chem ical Engineer ing ,Guangx i N ormal Univer sity ,G uilin 541004,China)Abstract:T he analog ous jade to yellow jadeite jade on oppearance on Chinese gem m arket is studied by using conventional g em molo gical metho ds and mo rden testing techniques (SEM ,XRD,FTIR).The r esults show that the analogo us jade is w ith refractive index of 1.734,density of 3.46g/cm 3,fine grained cry ptocrystalline texture.Under SEM,the cry stal grains ar e in granular,ang ular and cataclastic shapes,w ith size of 2~5 m.T he study by XRD and FT IR indicates that the analogo us jade consists o f essential m ineral hydr ogro ssular and aux il iary mineral vesuviante.Therefo re,the g em molo gical char acteristics of hy dro grossular are obviously different fro m that of y ellow jadeite jade.Key words:hydrogr ossular;analo gous jade;y ellow jadeite jade 翡翠是一种优质的玉石品种,其颜色丰富多彩,质地坚硬致密,已成为人们最喜爱的玉石产品。
微晶玻璃的生产制备1.微晶玻璃概述新型微晶材料的开发研制最先起于美国,亚洲的日本紧随其后,成为目前世界上新型微晶材料的生产大国,此后西欧和亚太地区的经济发达国家不甘落后,也加紧开发研制。
而我国则起步于上世纪的八十年代初,经过二十年的开发,微晶材料的生产工艺基本上已趋于成熟,进入了实用阶段。
它主要用做建筑装饰材料、飞机、火箭、卫星等结构材料,医疗、化工等防腐材料以及军事上,如激光制导材料等。
微晶玻璃是新型微晶材料的一种,它是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。
更具体说,它是在高达1500℃高温条件下,从含特殊成份的玻璃液中析出的特殊晶相及硅灰石晶体和玻璃相结合致密整体结晶材料。
其颜色多种多样。
生产方法可分为烧结法、压延法、浇铸法。
产品按配方可分为两大类,一类是矿渣类。
所用原料为矿渣、石英砂、长石、石灰石、萤石、白云石、滑石等;第二类为泥沙类。
所用原料为泥沙、石英砂、长石、纯碱、石灰石、白云石、重晶石、萤石等。
由于微晶玻璃是硅灰石相和玻璃相相结合的致密整体结晶材料,颜色上是以金属氧化物为着色剂,因而其表面特征既有陶瓷的特征,又与天然石材极其相似,加之材料形状多为板材,因而许多人又将其称作为微晶板材、微晶石材、微晶玉石、玻璃陶瓷、结晶化玻璃或人造石材等等。
由于其结构极为致密并用作表面装饰材料。
因此,又有人将其归为实体面材。
与建筑陶瓷及天然石材制品相比,由于微晶玻璃具有特定性能的晶相析出。
因而,在机械强度、表面硬度、热膨胀性能、耐酸碱及抗腐蚀等方面具有一些独特的优点。
1.1微晶玻璃的分类微晶玻璃可按不同的标准分类,从外观看,有透明微晶玻璃和不透明微晶玻璃;按微晶化原理可分为光敏微晶玻璃和热敏微晶玻璃;按照性能分为耐高温、耐热冲击、高强度、耐磨、易机械加工、易化学蚀刻、耐腐蚀、低膨胀、零膨胀、低介电损失、强介电性、强磁性和生物相容等种类;按基础玻璃组成可分为硅酸盐、铝硅酸盐、硼硅酸盐、硼酸盐及磷酸盐等五大类;按所用材料则分为技术微晶玻璃和矿渣微晶玻璃两类。
第43卷第4期2024年4月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.4April,2024CaO-B 2O 3-SiO 2微晶玻璃的制备及介电性能卫志洋,王晓东,苏㊀腾,陈欢乐,高㊀峰,苗㊀洋(太原理工大学材料科学与工程学院,太原㊀030024)摘要:低介电常数㊁低介电损耗的微晶玻璃是制造低温共烧陶瓷基板的重要材料㊂本文采用熔融水淬法制备了CaO-B 2O 3-SiO 2(CBS)微晶玻璃,重点研究了m (CaO)/m (SiO 2)质量比㊁B 2O 3含量对CBS 微晶玻璃介电性能的影响㊂结果表明:CBS 微晶玻璃的主要晶相有Ca 3Si 3O 9㊁Ca 2B 2O 5㊁CaB 2O 4㊁SiO 2和Ca 2SiO 4㊂随着m (CaO)/m (SiO 2)质量比的增加,介电常数增加,介电损耗先降低后增加;硅灰石相的增多使介电损耗从2.87ˑ10-3降到1.36ˑ10-3,介电损耗随着SiO 2㊁Ca 2B 2O 5和CaB 2O 4含量的增加而增大㊂随着B 2O 3含量的增加,介电常数先增加后减少,而介电损耗则相反㊂当m (CaO)/m (SiO 2)质量比为0.89㊁B 2O 3含量为15%(质量分数)时,在900ħ烧结3h,CBS 微晶玻璃的热膨胀系数为7.16ˑ10-6㊀ħ-1,介电常数为5.85,介电损耗为1.37ˑ10-3(10GHz)㊂关键词:CaO-B 2O 3-SiO 2;微晶玻璃;介电常数;介电损耗;微观结构;低温共烧中图分类号:TQ174.1㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)04-1274-10Preparation and Dielectric Properties of CaO-B 2O 3-SiO 2Glass-CeramicsWEI Zhiyang ,WANG Xiaodong ,SU Teng ,CHEN Huanle ,GAO Feng ,MIAO Yang(College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China)Abstract :Glass-ceramics with low dielectric constant and low dielectric loss is an important material for the manufacture of low temperature cofired ceramic substrates.CaO-B 2O 3-SiO 2(CBS)glass-ceramics was prepared by melt-water quenching method,and the effects of m (CaO)/m (SiO 2)mass ratio and B 2O 3content on the dielectric properties of CBS glass-ceramics were studied.The results show that the main crystalline phases of CBS glass-ceramics are Ca 3Si 3O 9,Ca 2B 2O 5,CaB 2O 4,SiO 2and Ca 2SiO 4.The dielectric constant increases,the dielectric loss decreases first and then increases with the increase of m (CaO)/m (SiO 2)mass ratio.The increase of wollastonite phase decreases the dielectric loss from 2.87ˑ10-3to 1.36ˑ10-3.The dielectric loss increases with the increase of SiO 2,Ca 2B 2O 5and CaB 2O 4content.With the increase of B 2O 3content,the dielectric constant increases first and then decreases,and the dielectric loss is reversed.When m (CaO)/m (SiO 2)mass ratio is 0.89and B 2O 3content is 15%(mass fraction),the coefficient of thermal expansion is 7.16ˑ10-6㊀ħ-1,the dielectric constant is 5.85,and the dielectric loss is 1.37ˑ10-3(10GHz)after sintering at 900ħfor 3h.Key words :CaO-B 2O 3-SiO 2;glass-ceramics;dielectric constant;dielectric loss;microstructure;low temperature co-firing 收稿日期:2023-10-18;修订日期:2024-01-09基金项目:国家留学基金委山西省研究项目(2022-042);山西省重点研发计划项目(202102030201006);山西省基础研究计划(202203021221059)作者简介:卫志洋(1997 ),男,硕士研究生㊂主要从事低温共烧陶瓷的研究㊂E-mail:weizhiyang27@通信作者:苗㊀洋,博士,副教授㊂E-mail:miaoyang198781@ 0㊀引㊀言当今时代信息技术和高频通信迅猛发展,对性能卓越的介电材料需求日益增加㊂低介电常数㊁低损耗的材料具有较小的延迟且适用于新一代通信的数据传输[1]㊂CaO-B 2O 3-SiO 2(CBS)微晶玻璃因优异的介电特性及广泛的应用前景受到关注㊂在CBS 体系中,硅灰石的介电常数εr 和介电损耗tan δ较低,常用于陶瓷基板材料领域[2]㊂微晶玻璃的性能在很大程度上依赖于其化学组成,尤其是钙硅比和氧化硼含量㊂第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1275㊀适量的CaO能提高化学稳定性,对CBS的机械强度有一定的强化作用㊂Ca2+具有高极化率,因此钙含量较高的CBS的εr都较大,需要控制氧化钙的含量㊂CaO由CaCO3分解得到,B2O3和SiO2都是网络形成体,但是网络结构不同,主要起骨架的作用[3]㊂B2O3是二维层状结构,主要由[BO3]连接而成㊂当加入CaO时,系统中游离氧增加,并与[BO3]结合生成[BO4],[BO4]可以强化CBS的强度[4]㊂当加入过量的B2O3时,大量的B3+破坏陶瓷的结构,使陶瓷的性能恶化,削弱了CBS的介电性能[5]㊂SiO2是三维结构,由[SiO4]构成,其介质损耗小,但熔融温度高,制备微晶玻璃时有很大的困难㊂Ca2+可以与Si O反应,会改变网络的原有结构[6],粒子位移更容易,在较高的温度下,液相的黏度会降低,晶体生长更容易,促进微晶玻璃的析晶㊂He等[7]通过两步烧结工艺制备了三种配方的CBS,研究了硼对CBS微晶玻璃晶相和微观结构的影响㊂观察到硼含量较高的样品结构疏松,晶粒排列被破坏;当n(Ca)ʒn(Si)ʒn(B)摩尔比为1.0ʒ1.0ʒ0.6时,在700ħ保温1h,再升温至900ħ时介电性能良好,εr均为6(1㊁10MHz),tanδ为2.27ˑ10-3(1MHz)和3.37ˑ10-3(10MHz)㊂Chiang等[8]制备了6种CaO-B2O3-SiO2玻璃试样,探讨了三种组分对致密性㊁热性能和介电性能的影响㊂高CaO含量的样品烧结温度低,密度较大,高SiO2含量的样品烧结温度高,密度较小㊂Ca2+的极化率为3.16Å3,远高于B3+的0.05Å3和Si4+的0.87Å3,因此高CaO的试样εr较高㊂[SiO4]对玻璃的结构有强化作用,当SiO2含量较高时,玻璃的介电损耗较小㊂韦鹏飞等[9]通过熔融法制备了CBS,主要探究了B2O3对CBS性能的影响㊂结果发现,当B2O3为35%(文中均为质量分数)时,在850ħ下烧结15min,介电性能最好,εr为6.42,tanδ为0.0009(9.7Hz)㊂现有研究显示,钙硅比和氧化硼含量的调整可以显著影响微晶玻璃的结构与性能㊂本研究旨在深入探讨这两个关键因素如何协同作用,从而影响钙硼硅微晶玻璃的介电性能㊂通过实验研究和理论分析,着眼于通过精确控制化学成分来优化微晶玻璃的介电特性,以满足现代高频电子设备的严苛要求㊂本文采用熔融淬火法制备了CBS微晶玻璃,在低温共烧陶瓷(low temperatrue co-fired ceramic,LTCC)基板制作要求的烧结温度范围内,重点研究了m(CaO)/m(SiO2)质量比和B2O3对CBS材料介电性能的影响㊂1㊀实㊀验1.1㊀样品制备原料为CaCO3(99.99%)㊁SiO2(99.99%)㊁H3BO3(99.99%),购自麦克林试剂公司,表1和表2分别为不同m(CaO)/m(SiO2)质量比和不同B2O3含量的CRS玻璃配方㊂按照表中设计的原料配比,准确称量三种氧化物粉末总计30g,将原料研磨3h,置于氧化铝坩埚,在1500ħ下熔融2h㊂将高温下的熔融玻璃水淬得到碎玻璃,研磨成粉并过200目(74μm)筛,然后球磨干燥得到玻璃粉末㊂造粒压块,将生坯样品在500ħ下加热1h 除去黏合剂,然后在六个温度(800㊁825㊁850㊁875㊁900和925ħ)下烧结3h,空气中加热速率为5ħ/min㊂表1㊀不同m(CaO)/m(SiO2)质量比的CBS玻璃配方Table1㊀CBS glass formulations with different m(CaO)/m(SiO2)mass ratiosNumber Mass fraction/%CaO B2O3SiO2m(CaO)/m(SiO2) CBS132.5015.0052.500.62CBS240.0015.0045.000.89CBS342.9215.0042.10 1.02CBS448.0015.0037.00 1.30表2㊀不同B2O3含量的CBS玻璃配方Table2㊀CBS glass formulations with different B2O3contentNumber Mass fraction/%CaO SiO2B2O3m(CaO)/m(SiO2) CBS543.3048.608.100.89CBS642.4047.6010.000.891276㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷续表Number Mass fraction /%CaO SiO 2B 2O 3m (CaO)/m (SiO 2)CBS740.0045.0015.000.89CBS837.7042.3020.000.891.2㊀结构与性能表征烧结试样的体积密度通过阿基米德排水法测量㊂采用X 射线粉末衍射仪(XRD,TD-3500)测定相组成,测试电压为35kV,电流为25mA,扫描速率为5(ʎ)/min,扫描范围为10ʎ~80ʎ,Cu-K α辐射㊂利用扫描电子显微镜(SEM,ZEISS)观察微晶玻璃的微观结构㊂采用同步热分析仪(NETZSCH,STA449)进行DSC 测试,在空气气氛中以10ħ/min 的速率从10ħ升至1100ħ,氧化铝坩埚用作参考材料,测试样品是过筛后的玻璃粉㊂拉曼光谱(RENISHAW)测量的波数范围为100~1100cm -1㊂在TE011模式下,使用Rohde&Schwarz网络分析仪(ZNA43,10MHz ~43.5GHz)测量烧结样品的Q 值,以计算介电性能㊂2㊀结果与讨论2.1㊀m (CaO )/m (SiO 2)质量比对CBS 微晶玻璃介电性能的影响固定B 2O 3的含量,设定m (CaO)/m (SiO 2)质量比为0.62㊁0.89㊁1.02㊁1.30,制得CBS i (i =1㊁2㊁3㊁4,下同)系列,表征m (CaO)/m (SiO 2)质量比对CaO-B 2O 3-SiO 2的影响㊂表1为具体的配方组成㊂2.1.1㊀差热分析图1㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的DSC 曲线Fig.1㊀DSC curves of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 图1为四种不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2玻璃的DSC 曲线㊂四个DSC 曲线中有较大的析晶峰和吸热台阶,其中CBS1和CBS4的放热峰有较宽的温度范围,两个放热峰的峰值温度相差较小,导致第二个放热峰不明显[10]㊂所有玻璃的吸热台阶都在625~675ħ,此时液相开始出现,改变m (CaO)/m (SiO 2)质量比后,玻璃化转变温度相差不大㊂放热峰峰值温度分别为841.9㊁831.7㊁852.1㊁853.9ħ,此放热峰对应生成的CaSiO 3相㊂玻璃的第二个放热峰在图中不明显,此放热峰对应Ca 2B 2O 5晶体的析出[11]㊂2.1.2㊀密度及收缩率体积密度能够反映陶瓷材料的致密化程度㊂体积密度越大样品越致密,微晶玻璃中的气孔就越少[12]㊂图2为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的体积密度㊁密度和横向收缩率㊂当B 2O 3的质量分数为15%时,在烧结温度增加的情况下,CBS1和CBS4的密度减小,这是由于升温结晶过程中玻璃相在不断减小,而结晶生成新相的密度没有玻璃相的密度高㊂而CBS2和CBS3的密度先增加后减小,这是在升温过程中由于液相作用下微粒的流动和结晶以及在这个过程中气孔排除的结果㊂2.1.3㊀物相分析图3为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的XRD 谱㊂XRD 晶相组成上略有差异,主要晶相包括Ca 3Si 3O 9㊁Ca 2B 2O 5㊁CaB 2O 4㊁SiO 2和Ca 2SiO 4㊂对比CBS i 的XRD 谱,当Ca 2+的含量较少时,[SiO 4]会与[SiO 4]结合生成SiO 2[13]㊂当Ca 2+的含量增加时,CBS2中硅灰石衍射峰强度大于SiO 2的衍射峰强度,故CBS2中硅灰石相的数量相对其他微晶玻璃较多,这有益于材料的介电性能㊂随着m (CaO)/m (SiO 2)质量比的增加,微晶玻璃中SiO 2逐渐较少,CaO 与[BO 3]结合增多,开始出现Ca 2B 2O 5晶相衍射峰并增强㊂第4期卫志洋等:CaO-B 2O 3-SiO 2微晶玻璃的制备及介电性能1277㊀图2㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的体积密度㊁密度和横向收缩率Fig.2㊀Volume density,density and transverse shrinkage of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)massratios图3㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的XRD 谱Fig.3㊀XRD patterns of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)massratios 图4㊀不同m(CaO)/m(SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的拉曼光谱Fig.4㊀Raman spectra of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 2.1.4㊀拉曼图谱分析图4为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的拉曼光谱㊂CBS1微晶玻璃的拉曼光谱在大约114㊁143㊁400和558cm -1处为SiO 2振动峰㊂其中114㊁143和400cm -1处的振动峰归因于六层结构内的Si O Si 对称拉伸-弯曲㊂184cm -1处的弱峰归因于O 在Si O Si 中的对称拉伸-弯曲,该模式与四方α-方英石结构框架内的六元SiO 4四面体环相关[14-15]㊂大约503cm -1处的弱峰归属于CaSiO 3中的Ca O 拉伸/弯曲[15-16]㊂而558cm -1属于CaSiO 3中的振动[16-17]㊂CBS2和CBS3㊁CBS4微晶玻璃的拉曼光谱大致相似,在大约114㊁143㊁196㊁282㊁313㊁400㊁439㊁486㊁503㊁558㊁681和761cm -1处出现峰值㊂282㊁313㊁439和558cm -1处的峰被指定为CaSiO 3中的振动㊂以486和503cm -1为中心的峰归因于CaSiO 3中的Ca O 拉伸/弯曲㊂681和761cm -1处的峰与桥接氧的对称拉伸和CaSiO 3中Si O Si 键的弯曲有关[16-18]㊂而114㊁143和400cm -1处的峰与方英石的Si O Si 对称拉伸/弯曲有关[14,18-19]㊂196cm -1处的峰对应于石英四元环内的Si O Si 对称拉伸/弯曲[20-21]㊂增加钙硅比会导致玻璃网络中的硅氧四面体结构减少,钙离子则与更多的氧离子形成配位键,这种结构变化导致玻璃网络的刚性增加㊂钙离子具有较高的极化率,其极化作用会增强玻璃网络的极性;钙离子的极化作用增强,导致玻璃网络的极性增加,这使得玻璃中的电子云重叠增加;钙离子与氧离子的配位键逐渐增强,而硅氧四面体之间的共价键则逐渐减弱,这使得玻璃网络更加紧密,热膨胀系数降低,玻璃网络的内部应力和应变增加,导致拉曼峰向短波方向移动㊂极性的增加又使得介电常数增加,此外,钙离子与氧离子配位键的增强还会导致玻璃网络的电子云重叠增加,从而增强电子的流动性,1278㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷增加电导率,这对介电性能产生负面影响㊂2.1.5㊀SEM 显微形貌分析图5为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的SEM 照片㊂试样温度为最高密度所对应的烧结温度,部分微裂纹为氢氟酸腐蚀的结果㊂图中纤维状㊁角砾㊁条带状等交错的晶体为硅灰石相,而球状晶体主要是SiO 2[21]㊂其中玻璃相大多被腐蚀完全,露出各种大小晶粒,含部分间隙㊂随着Ca 2+的增加,Si O 键的结构被破坏,造成玻璃结构的疏松,这促进了晶体的形成和长大,增加了试样中晶相的数量[22]㊂在图5(b)中,大部分晶相为硅灰石,其余图5(a)㊁(c)㊁(d)中SiO 2以球状晶相包裹住其他晶相,不易看出㊂致密程度只是影响微晶玻璃介电性能的一个因素,晶相的组成和数量也有很大的影响[23]㊂图5㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的SEM 照片Fig.5㊀SEM images of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 2.1.6㊀介电性能分析图6㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的介电常数和介电损耗Fig.6㊀Dielectric constant and dielectric loss of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 微晶玻璃材料是多相系统,包括晶相㊁玻璃相和气相㊂影响材料介电常数的因素包括晶相的组成㊁数量和相的介电常数[24]㊂图6为四种不同m (CaO)/m (SiO 2)质量比的微晶玻璃的介电性能㊂增加Ca 2+会降低试样的致密化程度,同时结构被破坏,材料的极化强度增强[25],介电常数也增加㊂介电损耗随着m (CaO)/m (SiO 2)质量比明显降低,这是由于硅灰石相的介电损耗较低,随着硅灰石相的增多,介电损耗从2.26ˑ10-3降到1.36ˑ10-3;继续增大m (CaO)/m (SiO 2),SiO 2㊁Ca 2B 2O 5和Ca 3B 2O 6开始出现并增加,试样的介电损耗又开始增大㊂可以得出,当m (CaO)/m (SiO 2)质量比为0.89时,介电性能最佳㊂2.2㊀B 2O 3对CBS 微晶玻璃介电性能的影响当m (CaO)/m (SiO 2)质量比为0.89时,设定B 2O 3的含量为8.1%(文中均为质量分数)㊁10.0%㊁15.0%㊁20.0%㊁26.0%,制得CBS i (i =5㊁6㊁7㊁8,下同)第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1279㊀系列,表征了B2O3含量对CaO-B2O3-SiO2的影响㊂2.2.1㊀差热分析图7为不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的DSC曲线㊂不同DSC曲线中都有较大的析晶峰及吸热台阶[26]㊂放热峰峰值温度分别为835.3㊁833.9㊁831.7㊁845.1ħ,整体趋势是先降低后升高,此时生成CaSiO3相,说明B2O3含量的适当增加会使CaSiO3的析出温度降低,更易在较低温度下析出㊂硅灰石的介电性能较好,所以需要更多的硅灰石以提升CBS的介电性能[27]㊂当B2O3含量为20%时,CBS8的CaSiO3析晶峰峰值温度比CBS7增加了15ħ左右,所需的温度升高,从而增大了烧结难度㊂而且当系统中出现大量的B3+时,会抢夺与Si4+反应的Ca2+,进而影响CaSiO3的析出[28]㊂两个析晶峰之间的温度差距较小不易看出,使得第二个放热峰不太明显,此放热峰相应生成Ca2B2O5晶相,每种玻璃均出现了反映玻璃化转变的吸热台阶,玻璃网络中出现液相㊂玻璃化转变温度也是先降低后略微升高,说明硼的存在可以加速玻璃化,同时降低玻璃的熔点,有利于结晶相的析出[29]㊂图7㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的DSC曲线Fig.7㊀DSC curves of CaO-B2O3-SiO2glass-ceramics with different B2O3content2.2.2㊀密度及收缩率图8为不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的体积密度㊁密度和横向收缩率㊂样品的密度随着温度的增加先增加后减小[30]㊂B2O3能够与游离氧结合生成[BO4],促进CBS结构的致密,当B2O3含量过量时,以独立的层状结构存在,使CBS结构中的气孔增多㊂当B2O3含量为13%时,试样的体积密度整体高于其他对比量,此时试样的烧结致密化程度最高㊂随着B2O3含量的增加,收缩率随着试样中颗粒间缝隙以及气孔的变化而略微下降,下降至接近14%㊂图8㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的体积密度㊁密度和横向收缩率Fig.8㊀Volume density,density and transverse shrinkage of CaO-B2O3-SiO2glass-ceramics with different B2O3content2.2.3㊀物相分析图9为不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的XRD谱㊂前两种玻璃的XRD曲线峰型相似,主要1280㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷的晶相均为Ca 3Si 3O 9㊁Ca 2B 2O 4㊁Ca 2B 2O 5和SiO 2,随着B 2O 3含量的增加及Ca 2SiO 4析出,SiO 2的晶相峰强度逐渐降低,硅灰石衍射峰的强度逐渐增强㊂B 2O 3的增加会开放系统的网络结构,离子在网络外的运动变得容易,液相的黏度降低,促进晶体的形成和长大,这对晶体的结晶是有利的[31]㊂此外,随着B 2O 3含量的增加,Ca 2B 2O 5开始析出,SiO 2减小,这对介电性能也有所影响㊂2.2.4㊀拉曼图谱分析图10为不同B 2O 3含量的CaO-B 2O 3-SiO 2微晶玻璃的Raman 谱,CBS5㊁CBS6和CBS7㊁CBS8微晶玻璃的拉曼光谱大致相似,在大约114㊁143㊁196㊁253㊁282㊁313㊁373㊁400㊁426㊁458㊁486㊁503㊁558㊁623㊁681㊁761㊁797㊁910㊁954和981cm -1处出现峰值㊂253㊁282㊁313㊁373和558cm -1处的峰为CaSiO 3中的振动[14,17-18,20]㊂以253㊁486和503cm -1为中心的峰归因于CaSiO 3中的Ca O 拉伸-弯曲振动[32-33]㊂此外,623㊁681㊁761和797cm -1处的峰归因于桥接氧的对称拉伸和CaSiO 3中Si O Si 键的弯曲㊂910㊁954和981cm -1处的峰归因于CaSiO 3中分别具有3㊁2和1个非桥氧单元的四面体硅酸盐单元的对称拉伸[17,19-20]㊂114㊁143㊁400㊁426和458cm -1处的峰归属于方英石六元环内Si O Si 键的对称拉伸-弯曲振动㊂196cm -1处的峰对应于柯石英四元环内Si O Si 键的对称拉伸-弯曲[17-18,20]㊂当增加氧化硼的质量分数时,玻璃中的[BO 3]八面体结构增加,这使得玻璃网络更加开放,热膨胀系数增加㊂玻璃网络的内部应力和应变降低,导致拉曼峰向长波方向移动㊂图9㊀不同B 2O 3含量的CaO-B 2O 3-SiO 2微晶玻璃的XRD 谱Fig.9㊀XRD patterns of CaO-B 2O 3-SiO 2glass-ceramics with different B 2O 3content 图10㊀不同B 2O 3含量的CaO-B 2O 3-SiO 2微晶玻璃的Raman 谱Fig.10㊀Raman spectra of CaO-B 2O 3-SiO 2glass-ceramics with different B 2O 3content 2.2.5㊀SEM 微观形貌分析图11为不同B 2O 3含量的CBS 微晶玻璃的SEM 照片㊂由于氢氟酸的腐蚀完全,试样的晶相已完全显露㊂图11(a)中大都是球状,只有中间部分可以看到板状晶体,此时试样中除玻璃相外,以SiO 2居多,还有部分的硅灰石相生成㊂随着B 2O 3含量的增加,图11(b)㊁(c)中呈纤维状㊁角砾㊁条带状的硅灰石相开始增多,且晶体的间隙相对较小,晶粒增大,表明B 2O 3含量的升高使结晶过程明显增强[34]㊂图11(d)中出现细小粒状㊁柱状的SiO 2,晶粒细小而且数量较多,但还没有长大,腐蚀所暴露的间隙说明了玻璃相的位置,所以介电损耗会比其他试样增加[35]㊂2.2.6㊀介电性能分析图12为不同B 2O 3含量的CBS 试样的介电常数和介电损耗㊂随着B 2O 3含量的升高,介电常数先增加后减少,介电损耗则相反㊂当B 2O 3含量为8.1%时,晶相以SiO 2居多,硅灰石被SiO 2包裹,由于SiO 2的介电常数较低,为3.8,所以此阶段试样的介电常数也比较低,为6.22;当B 2O 3含量开始增加,由于硅灰石相的介电常数比SiO 2高,但介电损耗比较低,此时试样主要是硅灰石相㊁少量的SiO 2以及玻璃相,所以介电常数增加,介电损耗下降㊂结合图11(d)和图9的XRD 谱,大的孔隙以及Ca 2B 2O 4的逐渐增多是介电损耗增加的主要原因㊂第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1281㊀图11㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的SEM照片Fig.11㊀SEM images of CaO-B2O3-SiO2glass-ceramics with different B2O3content图12㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的介电常数和介电损耗Fig.12㊀Dielectric constant and dielectric loss of CaO-B2O3-SiO2glass-ceramics with different B2O3content㊀㊀表3为本文与几种当前商用LTCC基板材料在性能上的对比,可知本文材料基本可以达到当前材料应用的要求㊂表3㊀本文与几种典型商用LTCC基板材料对比Table3㊀This thesis compares with several typical commercial LTCC substrate materialsLTCCs(main composition)Supplierεr tanδ/10-3CTE/(10-6㊀ħ-1) A6M(CaO-B2O3-SiO2)Ferro 5.90<2@10.0GHz7.00C0-d720(MgO-Al2O3-SiO2)Kyocera 4.900.85@1MHz 2.10951(Al2O3+CaZrO3+glass)Dupont7.806@3.0GHz 5.80 This thesis 5.85 1.37@10.0GHz7.163㊀结㊀论1)通过熔融水淬法制备出的CBS微晶玻璃密度为2.54g/cm3,试样的烧结温度为900ħ,满足温度方1282㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷面基板材料的要求㊂2)增加Ca2+能够破坏Si O键的结构,使硅灰石晶相的质量分数上升;当缺乏Ca2+时,[SiO4]会与[SiO4]结合,生成SiO2相㊂钙离子的极化作用导致玻璃网络的极性增加,最终导致介电常数的增加㊂硼的存在加速了玻璃化,降低了玻璃的熔点,晶相的析出更加容易,硅灰石晶相数量的增加,会影响材料的介电性能㊂介电常数先增加后减少,介电损耗则相反㊂3)通过调节m(CaO)/m(SiO2)质量比以及B2O3含量得到了性能良好的微晶玻璃㊂当m(CaO)/m(SiO2)质量比为0.89,B2O3质量分数为15%时,热膨胀系数为7.16ˑ10-6㊀ħ-1,介电常数为εr为5.85,介电损耗tanδ为1.37ˑ10-3(10GHz)㊂参考文献[1]㊀LIN Z H,LI M H,HE J Q,et al.Effect of Ta2O5addition on the structure,crystallization mechanism,and properties of CaO-B2O3-SiO2glassesfor LTCC applications[J].Ceramics International,2023,49(3):4872-4880.[2]㊀曹㊀禹,海㊀韵,朱宝京,等.低温共烧陶瓷用玻璃材料研究进展[J].硅酸盐学报,2022,50(4):1182-1192.CAO Y,HAI Y,ZHU B J,et al.Research progress on glass materials for low-temperature co-fired ceramics[J].Journal of the Chinese Ceramic Society,2022,50(4):1182-1192(in Chinese).[3]㊀WANG M,ZUO R Z,JIN J,et al.Investigation of the structure evolution process in sol-gel derived CaO-B2O3-SiO2glass ceramics[J].Journalof Non-Crystalline Solids,2011,357(3):1160-1163.[4]㊀周丹丹.低温共烧陶瓷CaO-B2O3-SiO2的组成㊁结构与性能的研究[D].上海:华东理工大学,2018.ZHOU D D.Study on the component,structure and properties of low temperature sintered CaO-B2O3-SiO2ceramics[D].Shanghai:East China University of Science and Technology,2018(in Chinese).[5]㊀JIA A Q,ZHANG W J,CHENG X Y,et al.Effects of B2O3contents on crystallization behaviors and dielectric properties of CaO-B2O3-SiO2glass ceramics[J].Key Engineering Materials,2016,680:301-305.[6]㊀DAI B,ZHU H K,ZHOU H Q,et al.Sintering,crystallization and dielectric properties of CaO-B2O3-SiO2system glass ceramics[J].Journal ofCentral South University,2012,19(8):2101-2106.[7]㊀HE D F,GAO C.Effect of boron on crystallization,microstructure and dielectric properties of CBS glass-ceramics[J].Ceramics International,2018,44(14):16246-16255.[8]㊀CHIANG C C,WANG S F,WANG Y R,et al.Characterizations of CaO-B2O3-SiO2glass-ceramics:thermal and electrical properties[J].Journal of Alloys and Compounds,2008,461(1/2):612-616.[9]㊀韦鹏飞,郝凌云,杨晓莉,等.Ca/Si摩尔比对CBS系微晶玻璃结构与性能的影响[J].电子元件与材料,2014,33(2):65-67.WEI P F,HAO L Y,YANG X L,et al.Effect of Ca/Si mol ratio on microstructure and properties of CaO-B2O3-SiO2glass ceramics[J].Electronic Components and Materials,2014,33(2):65-67(in Chinese).[10]㊀SHAO H B,WANG T W,ZHANG Q T.Preparation and properties of CaO-SiO2-B2O3glass-ceramic at low temperature[J].Journal of Alloysand Compounds,2009,484(1/2):2-5.[11]㊀FU Y,LI P Z,TAO H J,et al.The effects of Ca/Si ratio and B2O3content on the dielectric properties of the CaO-B2O3-SiO2glass-ceramics[J].Journal of Materials Science:Materials in Electronics,2019,30(15):14053-14060.[12]㊀ZHU H K,ZHOU H Q,LIU M,et al.Microstructure and microwave dielectric characteristics of CaO-B2O3-SiO2glass ceramics[J].Journal ofMaterials Science:Materials in Electronics,2009,20(11):1135-1139.[13]㊀MAO H J,WANG F L,CHEN X Y,et al.Preparation of BaO-MgO-Al2O3-SiO2/Al2O3glass-ceramic/ceramic LTCC substrate material formicrowave application[J].Journal of Materials Science:Materials in Electronics,2023,34(4):247.[14]㊀KINGMA K J,HEMLEY R.Raman spectroscopic study of microcrystalline silica[J].American Mineralogist,1994,98(7):975-978.[15]㊀BATES J B.Raman spectra ofαandβcristobalite[J].The Journal of Chemical Physics,1972,57(9):4042-4047.[16]㊀KUNRCXR J D.Raman and infrared study of pressure-induced structural changes in CaMgSirO6,and CaSiO,glasses[J].AmericanMineralogist,1992,77,258-269.[17]㊀WANG S F,LAI B C,HSU Y F,et al.Dielectric properties of CaO-B2O3-SiO2glass-ceramic systems in the millimeter-wave frequency range of20-60GHz[J].Ceramics International,2021,47(16):22627-22635.[18]㊀LI J F,SUN Y Q,LI Z M,et al.Short-range and medium-range structural order in CaO-SiO2-TiO2-B2O3glasses[J].ISIJ International,2016,56(5):752-758.[19]㊀PARTYKA J,LES'NIAK M.Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials fromSiO2-Al2O3-Na2O-K2O-CaO system modified by variable molar ratio of SiO2/Al2O3[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2016,152:82-91.第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1283㊀[20]㊀TSAI Y L,HUANG E,LI Y H,et al.Raman spectroscopic characteristics of zeolite group minerals[J].Minerals,2021,11(2):167.[21]㊀HUANG B H,XIA T,SHANG F,et al.A new BaB2O4microwave dielectric ceramic for LTCC application[J].Journal of the European CeramicSociety,2023,43(14):6107-6111.[22]㊀ZHANG P,HAO M M,XIAO M,et al.Crystal structure and microwave dielectric properties of novel BiMg2MO6(M=P,V)ceramics with lowsintering temperature[J].Journal of Materiomics,2021,7(6):1344-1351.[23]㊀LIU J Z,WU X F,XU N X,et al.Crystallization,sinterability and dielectric properties of CaO-B2O3-SiO2glass ceramics with Al2O3additives[J].Journal of Materials Science:Materials in Electronics,2015,26(11):8899-8903.[24]㊀关振铎,张中太,焦金生.无机材料物理性能[M].2版.北京:清华大学出版社,2011.GUAN Z D,ZHANG Z T,JIAO J S.Physical properties of inorganic materials[M].2nd ed.Beijing:Tsinghua University Press,2011(in Chinese).[25]㊀YAN T N,ZHANG W J,MAO H,et al.The effect of CaO/SiO2and B2O3on the sintering contraction behaviors of CaO-B2O3-SiO2glass-ceramics[J].International Journal of Modern Physics B,2019,33(9):1950070.[26]㊀ZHU H Y,FU R L,AGATHOPOULOS S,et al.Crystallization behaviour and properties of BaO-CaO-B2O3-SiO2glasses and glass-ceramics forLTCC applications[J].Ceramics International,2018,44(9):10147-10153.[27]㊀DING Y Y,LIU S X,LI X Y,et al.Luminescent low temperature co-fired ceramics for high power LED package[J].Journal of Alloys andCompounds,2012,521:35-38.[28]㊀WANG S F,LAI B C,HSU Y F,et al.Physical and structural characteristics of sol-gel derived CaO-B2O3-SiO2glass-ceramics and theirdielectric properties in the5G millimeter-wave bands[J].Ceramics International,2022,48(7):9030-9037.[29]㊀ZHOU X H,LI E Z,YANG S L,et al.Effects of La2O3-B2O3on the flexural strength and microwave dielectric properties of low temperatureco-fired CaO-B2O3-SiO2glass-ceramic[J].Ceramics International,2012,38(7):5551-5555.[30]㊀ALENCAR M V S,BEZERRA G V P,SILVA L D,et al.Structure,glass stability and crystallization activation energy of SrO-CaO-B2O3-SiO2glasses doped with TiO2[J].Journal of Non-Crystalline Solids,2021,554:120605.[31]㊀FU S L,HSI C S,KANG C Y,et al.Investigations of lead-free glasses for post-fired and embedded thick film resistors[J].Key EngineeringMaterials,2013,573:137-142.[32]㊀HAJIAN A,ARTEMENKO A,KROMKA A,et al.Impact of sintering temperature on phase composition,microstructure,and porosificationbehavior of LTCC substrates[J].Journal of the European Ceramic Society,2022,42(13):5789-5800.[33]㊀DONG C,WANG H,YAN T N,et al.The influence of CaF2doping on the sintering behavior and microwave dielectric properties of CaO-B2O3-SiO2glass-ceramics for LTCC applications[J].Crystals,2023,13(5):748.[34]㊀LU Y,SHAN Y T,GUO X,et al.Effect of silica addition on microstructure,sintering behavior,and dielectric properties of borosilicateglass/alumina composites for LTCC application[J].Journal of Materials Science:Materials in Electronics,2023,34(5):443. [35]㊀任海深.B2O3-La2O3-MgO-TiO2微晶玻璃基低温共烧陶瓷研究[D].上海:中国科学院上海硅酸盐研究所,2018.REN H S.Study on B2O3-La2O3-MgO-TiO2glass-ceramics based LTCC materials[D].Shanghai:Shanghai Institute of Ceramics,Chinese Academy of Sciences,2018(in Chinese).。