2013届人教A版理科数学课时试题及解析(57)排列、组合B
- 格式:doc
- 大小:75.00 KB
- 文档页数:4
2013年高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2013•新课标Ⅰ)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选B.2.(5分)(2013•新课标Ⅰ)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4 B.C.4 D.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.3.(5分)(2013•新课标Ⅰ)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.4.(5分)(2013•新课标Ⅰ)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y= C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.5.(5分)(2013•新课标Ⅰ)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选A.6.(5分)(2013•新课标Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C. D.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选A.7.(5分)(2013•新课标Ⅰ)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6与a m,进而得到公差d,由前n项和公式【分析】由a n与S n的关系可求得a m+1及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,故选C.8.(5分)(2013•新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选A.9.(5分)(2013•新课标Ⅰ)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5 B.6 C.7 D.8【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.10.(5分)(2013•新课标Ⅰ)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E 的方程为()A.B.C.D.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选D.11.(5分)(2013•新课标Ⅰ)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D12.(5分)(2013•新课标Ⅰ)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n 的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,又由题意,b n+1﹣c n+1=,∴=a1﹣b n,∴b n+1﹣a1=,∴b n﹣a1=,∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选B.二.填空题:本大题共4小题,每小题5分.13.(5分)(2013•新课标Ⅰ)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.14.(5分)(2013•新课标Ⅰ)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣115.(5分)(2013•新课标Ⅰ)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣16.(5分)(2013•新课标Ⅰ)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅰ)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.18.(12分)(2013•新课标Ⅰ)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.19.(12分)(2013•新课标Ⅰ)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:故EX=400×+500×+800×=506.2520.(12分)(2013•新课标Ⅰ)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.21.(12分)(2013•新课标Ⅰ)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(2013•新课标Ⅰ)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.23.(2013•新课标Ⅰ)(选修4﹣4:坐标系与参数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)【分析】(Ⅰ)对于曲线C1利用三角函数的平方关系式sin2t+cos2t=1即可得到圆C1的普通方程;再利用极坐标与直角坐标的互化公式即可得到C1的极坐标方程;(Ⅱ)先求出曲线C2的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标的互化公式即可求出C1与C2交点的极坐标.【解答】解:(Ⅰ)曲线C1的参数方程式(t为参数),得(x﹣4)2+(y﹣5)2=25即为圆C1的普通方程,即x2+y2﹣8x﹣10y+16=0.将x=ρcosθ,y=ρsinθ代入上式,得.ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C1的极坐标方程;(Ⅱ)曲线C2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x2+y2﹣2y=0,由,解得或.∴C1与C2交点的极坐标分别为(,),(2,).24.(2013•新课标Ⅰ)(选修4﹣5:不等式选讲)已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当时,f(x)≤g(x),求a的取值范围.【分析】(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x ﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,画出函数y的图象,数形结合可得结论.(Ⅱ)不等式化即1+a≤x+3,故x≥a﹣2对都成立.故﹣≥a ﹣2,由此解得a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y=,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对都成立.故﹣≥a﹣2,解得a≤,故a的取值范围为(﹣1,].。
课时作业(五十七)B [第57讲排列、组合][时间:35分钟分值:80分]基础热身1.由0,1,2,3,4这五个数字组成嘚无重复数字嘚四位偶数,按从小到大嘚顺序排成一个数列{a n},则a19=( )A.2 014 B.2 034 C.1 432 D.1 4302.有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品嘚不同取法种数是( )A.1 136 B.1 600 C.2 736 D.1 1203.某学校有教职工100人,其中教师80人,职员20人.现从中选取10人组成一个考察团外出学习考察,则这10人中恰好有8名教师嘚不同选法嘚种数是( )A.C280C820B.A280A820C.A880C220D.C880C2204.某外商计划在5个候选城市投资3个不同嘚项目,且在同一城市投资项目不超过2个,则他不同嘚投资方案有( )A.60种B.70种C.100种D.120种能力提升5.某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定,每位同学选修三门,则每位同学不同嘚选修方案种数是( )A.120 B.98 C.63 D.566.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字嘚四位数,其中能被5整除嘚四位数共有( )A.252个B.300个C.324个D.228个7.2011年,哈三中派出5名优秀教师去大兴安岭地区嘚三所中学进行教学交流,每所中学至少派一名教师,则不同嘚分配方法有( )A.80种B.90种C.120种D.150种8.某校高三师生为“庆元旦·迎新年”举行了一次联欢晚会,高三年级8个班中每个班嘚学生准备了一个节目,且节目单已排好.节目开演前又增加了3个教师嘚节目,其中有2个独唱节目,1个朗诵节目,如果将这3个节目插入原节目单中,要求教师嘚节目不排在第一个和最后一个,并且教师嘚2个独唱节目不连续演出,那么不同嘚排法有( )A.294种B.308种C.378种D.392种9.将甲、乙、丙、丁四名学生分到两个不同嘚班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同嘚分法嘚总数为________(用数字作答).10.有五名男同志去外地出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不同嘚住宿安排有________种(用数字作答).11.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同嘚分配方法共有________种.12.(13分)一次数学考试嘚第一大题有11道小题,其中第(1)~(6)小题是代数题,答对一题得3分;第(7)~(11)题是几何题,答对一题得2分.某同学第一大题对6题,且所得分数不少于本题总分嘚一半,问该同学有多少种答题嘚不同情况?难点突破13.(12分)(1)10个优秀指标名额分配给6个班级,每个班至少一个,共有多少种不同嘚分配方法?(2)在正方体嘚过任意两个顶点嘚所有直线中,异面直线有多少对?课时作业(五十七)B【基础热身】1.A [解析] 千位是1嘚四位偶数有C 13A 23=18,故第19个是千位数字为2嘚四位偶数中最小嘚一个,即2 014.2.A [解析] 方法一:将“至少有1个是一等品嘚不同取法”分三类:“恰有1个一等品”,“恰有2个一等品”,“恰有3个一等品”,由分类计数原理有:C 116C 24+C 216C 14+C 316=1136(种).方法二:考虑其对立事件:“3个都是二等品”,用间接法:C 320-C 34=1 136(种).3.D [解析] 由于结果只与选出嘚是哪8名教师和哪两名职员有关,与顺序无关,是组合问题.分步计数,先选8名教师再选2名职员,共有C 880C 220种选法.4.D [解析] 在五个城市中嘚三个城市各投资一个,有方法数A 35=60,将三个项目分为两组投资到五个城市中嘚两个,有方法数C 13A 25=60,故不同嘚投资方案有120种.【能力提升】5.B [解析] 分两类:(1)不包含A ,B ,C 嘚有C 37种选法;(2)包含A ,B ,C 嘚有C 27·C 13种选法.所以共有C 37+C 27·C 13=98(种)选法,故应选B. 6.B [解析] (1)若仅仅含有数字0,则选法是C 23C 14,可以组成四位数C 23C 14A 33=12×6=72个; (2)若仅仅含有数字5,则选法是C 13C 24,可以组成四位数C 13C 24A 33=18×6=108个; (3)若既含数字0,又含数字5,选法是C 13C 14,排法是若0在个位,有A 33=6种,若5在个位,有2×A 22=4种,故可以组成四位数C 13C 14(6+4)=120个.根据加法原理,共有72+108+120=300个.7.D [解析] 分组法是(1,1,3),(1,2,2),共有C 15C 14C 33A 22+C 15C 24C 22A 22=25,再分配,乘以A 33,即得总数150.8.D [解析] 根据题意可将教师嘚1个朗诵节目排在学生嘚8个节目中嘚7个空中嘚任一个,共有7种排法,然后将教师嘚2个独唱节目排在9个节目中嘚8个空中嘚2个空中,故共有C 17A 28=392种不同嘚排法.故选D.9.8 [解析] 总嘚分法是⎝ ⎛⎭⎪⎫C 14+C 24A 22A 22=14,若仅仅甲、乙分到一个班级,则分法是A 22=2,若甲、乙分到同一个班级且这个班级分到3名学生,则分法是C 12A 22=4,故总数是14-2-4=8. 10.72 [解析] 甲、乙住在同一个房间,此时只能把另外三人分为两组,这时嘚方法总数是C 13A 33=18,而总嘚分配方法数是把五人分为三组再进行分配,方法数是C 15C 24C 22A 22A 33=90,故不同嘚住宿安排共有90-18=72种.11.222 [解析] 总数是C 223=253,若有两个学校名额相同,则可能是1,2,3,4,5,6,7,9,10,11个名额,此时有10C 23=30种可能,若三个学校名额相同,即都是8个名额,则只有1种情况,故不同嘚分配方法数是253-30-1=222.12.[解答] 依题意可知本题嘚总分嘚一半是14分,某同学在11题中答对了6题,则至少答对两道代数题,至多答对4道几何题,因此有如下答题嘚情况:(1)代数题恰好对2道,几何题恰好对4道,此时有C 26C 45=75种情况; (2)代数题恰好对3道,几何题恰好对3道,此时有C 36C 35=200种情况;(3)代数题恰好对4道,几何题恰好对2道,此时有C46C25=150种情况;(4)代数题恰好对5道,几何题仅对1道,此时有C56C15=30种情况;(5)代数题全对,几何题全错,此时有C66C05=1种情况.由分类计数原理得所有可能嘚答题情况有456种.【难点突破】13.[解答] (1)由于是10个名额,故名额和名额之间是没有区别嘚,我们不妨把这10个名额在桌面上从左到右一字摆开,这样在相邻嘚两个名额之间就出现了一个空挡,10个名额之间就出现了9个空挡,我们嘚目嘚是把这10个名额分成6份,每份至少一个,那我们只要把这9个空挡中嘚5个空挡上各放上一个隔板,两端嘚隔板外面嘚2部分,隔板和隔板之间嘚4部分,这样就把这10个指标从左到右分成了6份,且满足每份至少一个名额,我们把从左到右嘚6份依次给1,2,3,4,5,6班就解决问题了.这里嘚在9个空挡上放5个隔板嘚不同方法数,就对应了符合要求嘚名额分配方法数.这个数不难计算,那就是从9个空挡中选出5个空挡放隔板,不同嘚放法种数是C59=126.(2)方法一:连成两条异面直线需要4个点,因此在正方体8个顶点中任取4个点有C48种取法.每4个点可分共面和不共面两种情况,共面嘚不符合条件,去掉.因为在6个表面和6个体对角面中都有四点共面,故有(C48-12)种.不共面嘚4点可构成四面体,而每个四面体有3对异面直线,故共有3(C48-12)=174对.方法二:一个正方体共有12条棱、12条面对角线、4条体对角线,计28条,任取两条有C228种情况,除去其中共面嘚情况:(1)6个表面,每个面上有6条线共面,共有6C26条;(2)6个体对角面,每个面上也有6条线共面,共有6C26条;(3)从同一顶点出发有3条面对角线,任意两条线都共面,共有8C23条,故共有异面直线C228-6C26-6C26-8C23=174对.。
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。
直线l满足l ⊥m,l ⊥n,l β,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A)1+ + +…+(B )1++ +…+(C )1+ + +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x(C )y2=4x 或y2=16x (D )y2=2x 或y2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是x ≥1, x+y ≤3, y ≥a(x-3). {(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
课时作业 (五十七 )B [第 57 讲摆列、组合][时间: 35 分钟分值:80分]基础热身1.由 0,1,2,3,4 这五个数字构成的无重复数字的四位偶数,按从小到大的次序排成一个数列 { a n} ,则 a19= ()A.2 014B.2 034C. 1 432D. 1 4302.有 20 个部件,此中 16个一等品, 4 个二等品,若从 20 个部件中随意取 3 个,那么起码有 1 个一等品的不一样取法种数是()A.1 136B.1 600C. 2 736D. 1 1203.某学校有教员工100 人,此中教师80 人,职员 20 人.现从中选用10 人构成一个考察团出门学习观察,则这10 人中恰巧有8 名教师的不一样选法的种数是()A . C802C208B. A802A 2088282C.A 80C20D. C80C204.某外商计划在 5 个候选城市投资 3 个不一样的项目,且在同一城市投资项目不超出2个,则他不一样的投资方案有()A.60 种B.70 种C. 100 种 D .120 种能力提高5.某校开设 10 门课程供学生选修,此中A, B,C 三门因为上课时间同样,至多项选择一门,学校规定,每位同学选修三门,则每位同学不一样的选修方案种数是() A.120 B.98C. 63 D .566.从 1,3,5,7 中任取 2 个数字,从 0,2,4,6,8中任取 2 个数字,构成没有重复数字的四位数,此中能被 5整除的四位数共有 ()A.252 个B.300 个C.324 个D.228 个7. 2011 年,哈三中派出 5 名优异教师去大兴安岭地域的三所中学进行教课沟通,每所中学起码派一名教师,则不一样的分派方法有()A.80 种B.90 种C. 120 种 D .150 种8.某校高三师生为“庆元旦·迎新年”举行了一次联欢晚会,高三年级8 个班中每个班的学生准备了一个节目,且节目单已排好.节目开演前又增添了 3 个教师的节目,此中有2 个独唱节目, 1 个朗读节目,假如将这 3 个节目插入原节目单中,要讨教师的节目不排在第一个和最后一个,而且教师的2个独唱节目不连续演出,那么不一样的排法有()A.294 种B.308 种 C.378 种D. 392 种9.将甲、乙、丙、丁四名学生疏到两个不一样的班,每个班起码分到一名学生,且甲、乙两名学生不可以分到同一个班,则不一样的分法的总数为________(用数字作答 ).10.有五名男同志去外处出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不一样的住宿安排有________种 (用数字作答 ).11.将 24 个志愿者名额分派给 3 个学校,则每校起码有一个名额且各校名额互不同样的分派方法共有 ________种.12.(13 分)一次数学考试的第一大题有11 道小题,此中第 (1) ~(6) 小题是代数题,答对一题得 3 分;第 (7) ~ (11)题是几何题,答对一题得 2 分.某同学第一大题对 6 题,且所得分数许多于此题总分的一半,问该同学有多少种答题的不一样状况?难点打破13. (12 分 )(1)10 个优异指标名额分派给 6 个班级,每个班起码一个,共有多少种不一样的分派方法?(2)在正方体的过随意两个极点的全部直线中,异面直线有多少对?课时作业 (五十七 )B【基础热身】C 31A 32= 18,故第 191. A [分析 ] 千位是 1 的四位偶数有个是千位数字为2 的四位偶数中最小的一个,即 2 014.2. A [分析 ] 方法一:将“起码有1 个是一等品的不一样取法”分三类:“恰有1 个一 等品”,“恰有2 个一等品”,“恰有3 个一等品”,由分类计数原理有:C 161C 42+ C 162C 41+ C 163= 1136(种 ).C 203-C 43= 1 136(种 ).方法二:考虑其对峙事件:“3 个都是二等品”,用间接法: 3. D [分析 ] 因为结果只与选出的是哪 8 名教师和哪两名职员相关,与次序没关,是组合问题.分步计数,先选 8 名教师再选 2 名职员,共有 C 808C 202种选法.4.D [分析 ] 在五个城市中的三个城市各投资一个,有方法数A 53= 60,将三个项目分 为两组投资到五个城市中的两个,有方法数C 31 A 52= 60,故不一样的投资方案有 120 种.【能力提高】 3215.B [分析] 分两类: (1) 不包括 A ,B ,C 的有C 7种选法;(2)包括 A ,B ,C 的有 C 7·C 3种选法.所以共有 C 73+ C 72·C 31= 98(种 )选法,故应选 B.6. B [分析 ] (1)若只是含有数字 0,则选法是2 12 13C 3C 4,能够构成四位数C 3C 4A 3= 12× 6=72 个; 1 2 1 2 3(2)若只是含有数字 5,则选法是 C 个;3C 4,能够构成四位数 C 3C 4A 3=18× 6= 108(3)若既含数字 0,又含数字 5,选法是 C 31C 41,排法是若 0 在个位,有 A 33=6 种,若 5 在个位,有21 12× A 2= 4 种,故能够构成四位数C 3C 4(6+ 4)= 120 个.依据加法原理,共有72+108+ 120= 300 个.1 1 3 12 27. D [分析 ] 分组法是 (1,1,3) , (1,2,2) ,共有 C 5C 4C 3+ C 5C 4C 23A 2 A 2 = 25,再分派,乘以 A 3,2 2即得总数 150.8. D [分析 ] 依据题意可将教师的 1 个朗读节目排在学生的 8 个节目中的 7 个空中的任一个,共有 7 种排法,而后将教师的 2 个独唱节目排在 9 个节目中的 8 个空中的 2 个空中, 故共有 C 71A 82= 392 种不一样的排法.应选 D.1C 42 A 22= 14,若只是甲、 乙分到一个班级, 则分法是 A 22 = 9.8 [分析 ] 总的分法是 C 4+ 2A 2C 21A 22= 4,故总数是 14-2,若甲、乙分到同一个班级且这个班级分到 3 名学生,则分法是 2- 4= 8.10. 72 [分析 ] 甲、乙住在同一个房间,此时只好把此外三人分为两组,这时的方法1 3C 51C 42C 22 3总数是 C 3A3= 18,而总的分派方法数是把五人分为三组再进行分派,方法数是2 A 3=A 290,故不一样的住宿安排共有 90- 18= 72 种.11.222 [分析 ] 总数是 C 232= 253,如有两个学校名额同样, 则可能是 1,2,3,4,5,6,7,9,10,11个名额,此时有 10C 2= 30 种可能,若三个学校名额同样,即都是 8 个名额,则只有 1 种情3况,故不一样的分派方法数是253- 30- 1= 222.12. [解答 ] 依题意可知此题的总分的一半是 14 分,某同学在 11 题中答对了6 题,则起码答对两道代数题,至多答对 4 道几何题,所以有以下答题的状况:(1)代数题恰巧对 2 道,几何题恰巧对 4 道,此时有 C 62C 54=75 种状况;(2)代数题恰巧对 3 道,几何题恰巧对 3 道,此时有 3 3C 6C 5 =200 种状况;(3)代数题恰巧对 4 道,几何题恰巧对 2 道,此时有 C 64C 52=150 种状况;(4)代数题恰巧对 5 道,几何题仅对 1 道,此时有 5 1C 6C 5= 30 种状况;(5)代数题全对,几何题全错,此时有 C 66C 50= 1 种状况.由分类计数原理得全部可能的答题状况有456 种. 【难点打破】13. [解答 ] (1)因为是 10 个名额,故名额和名额之间是没有区其他,我们不如把这10 10个名额在桌面上从左到右一字摆开,这样在相邻的两个名额之间就出现了一个空挡, 个名额之间就出现了9 个空挡,我们的目的是把这10 个名额分红 6 份,每份起码一个,那我们只需把这9 个空挡中的 5 个空挡上各放上一个隔板,两头的隔板外面的 2 部分,隔板和隔板之间的 4 部分,这样就把这10 个指标从左到右分红了 6 份,且知足每份起码一个名额,我们把从左到右的 6 份挨次给1,2,3,4,5,6 班就解决问题了.这里的在 9 个空挡上放 5 个隔板的不一样方法数,就对应了切合要求的名额分派方法数.这个数不难计算,那就是从9 个空挡中选出 5 个空挡放隔板,不一样的放法种数是C95=126.(2)方法一:连成两条异面直线需要 4 个点,所以在正方体 8 个极点中任取 4 个点有 C84种取法.每 4 个点可分共面和不共面两种状况,共面的不切合条件,去掉.因为在 6 个表面和6 个体对角面中都有四点共面,故有(C84- 12)种.不共面的 4 点可构成四周体,而每个四周体有 3 对异面直线,故共有 3(C84- 12)= 174 对.方法二:一个正方体共有12 条棱、 12条面对角线、 4 条体对角线,计 28 条,任取两条有 C282种状况,除掉此中共面的状况:(1)6个表面,每个面上有 6 条线共面,共有6C62条;(2)6 个体对角面,每个面上也有 6 条线共面,共有 6C62条; (3) 从同一极点出发有 3条面对角线,随意两条线都共面,共有8C32条,故共有异面直线C228- 6C26- 6C 26- 8C23= 174 对.。
绝密*启用前2013年普通高等学校招生全国统一考试(新课标)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30 的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯= (8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(A-(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2013高考试题解析分类汇编(理数)10:排列、组合及二项式定理一、选择题1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a( )A .4-B .3-C .2-D .1-D已知(1+ax )(1+x )5的展开式中x 2的系数为+a •=5,解得a=﹣1,故选D .2 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为( )A .243 B .252 C .261 D .279B有重复数字的三位数个数为91010900⨯⨯=。
没有重复数字的三位数有1299648C A =,所以有重复数字的三位数的个数为900648=252-,选B.仁为太傅谢安的孙子试卷试题等到平定京邑后化学教案高祖进驻石头城化学教案景仁与百官同去拜见高祖化学教案高祖注视着他3 .(2013年高考新课标1(理))设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5 B .6 C .7 D .8 B因为m 为正整数,由(x+y )2m 展开式的二项式系数的最大值为a ,以及二项式系数的性质可得a=,同理,由(x+y )2m+1展开式的二项式系数的最大值为b ,可得 b=.再由13a=7b ,可得13=7,即 13×=7×,即 13=7×,即 13(m+1)=7(2m+1).解得m=6,故选B .4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()()8411+x y +的展开式中22x y 的系数是( )A .56B .84C .112D .168D(x+1)3的展开式的通项为T r+1=C 3r x r 令r=2得到展开式中x 2的系数是C 32=3, (1+y )4的展开式的通项为T r+1=C 4r y r 令r=2得到展开式中y 2的系数是C 42=6,(1+x )3(1+y )4的展开式中x 2y 2的系数是:3×6=18,故选D .5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14 B .13C .12D .10B方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()13nx n N n x x +⎛⎫+∈ ⎪⎝⎭的展开式中含有常数项的最小的为( )A .4 B .5 C .6 D .7B展开式的通项公式为5211(3)()3k n kn kkk n kk nnT C x C xx x---+==。
作 (五十七 )A [第 57摆列、合][: 35 分分:80分]基身1. a∈N*,且 a<20 , (27- a)(28- a)⋯ (34- a)等于 ()827- a78A . A 27-aB .A 34-a C. A 34-a D. A34-a2.从 20 名男同学, 10 名女同学中任 3 名参加体能,到的 3 名同学中既有男同学又有女同学的不一样法的种数()A.1 260B.4 060C.1 140D.2 8003.某位有 7 个在一同的位,有 3 不一样型的需停放,假如要求节余的 4 个位在一同,不一样的停放方法的种数()A.16B. 18 C. 24 D .324.一天有文、数学、英、物理、化学、生物、体育七,体育不在第一上,数学不在第六、七上,天表的不一样排法种数()7525A.A7-A5B.A4A5C.A 51A 61A 55D. A 66+ A 41A 51A 55能力提高5.用 1、2、3、4、 5、6 成一个无重复数字的六位数,要求三个奇数1、3、 5 有且只有两个相,不一样的排法种数()A.18 B.108C. 216D. 4326.从 10 名大学生中 3 个人担当村助理,甲、乙起码有 1 人入,而丙没有入的不一样法的种数()A.85B. 56 C. 49 D .287.用 0到910个数字,能够成没有重复数字的三位偶数的个数()A . 324 B. 328C. 360D. 6488.研究性学小有 4 名同学要在同一天上、下午到室做A,B, C,D, E 五个操作,每个同学上、下午各做一个,且不重复,若上午不可以做 D ,下午不可以做 E ,不一样的安排方式共有()A.144 种B.192 种C.216 种D.264 种9. 2010 年上海世博会某国将展出 5 件作品,此中不一样法作品 2 件、不一样画作品 2 件、志性建筑 1 件,在展台大将 5 件作品排成一排,要求 2 件法作品必相, 2 件画作品不可以相,国展出5件作品不一样的方案有________种(用数字作答) .10.从 5 名男医生、 4 名女医生中 3 名医生成一个医小分,要求男、女医生都有,不一样的方案共有 ________种 (数字回答 ).11.由 0,1,2,⋯, 9 十个数字成的无重复数字的四位数中,个位数字与百位数字之差的等于 8 的个数 ________个.12. (13 分)有六名同学按以下方法和要求分,各有不一样的分方法多少种?(1)分红三个,各人数分1、 2、 3;(2)分红三个去参加三不一样的,各人数分1、 2、 3;(3)分红三个,各人数分2、 2、 2;(4)分红三个去参加三不一样的,各人数分2、 2、 2;(5)分红四个,各人数分1,1,2,2;(6)分红四个去参加四不一样的活,各人数分1、 1、 2、 2.难点打破13. (12分 )从射击、乒乓球、跳水、田径四个大项的北京奥运冠军中选出10 名作“夺冠之路”的励志报告.(1)若每个大项中起码选派两人,则名额分派有几种状况?(2)若将 10 名冠军分派到11 个院校中的9 个院校作报告,每个院校起码一名冠军,则有多少种不一样的分派方法?作 (五十七 )A【基身】1. D[ 分析 ] A 348-a= (27- a)(28- a)⋯ (34-a).2.D[分析 ]基本领件数是C303,此中不切合要求的基本领件个数是C203+ C103,故所求的种数 C3- (C3+ C3= 2 800.3020103 的全摆列,即 4× A 33= 24.3. C[分析 ]四个位在一同有四种可能,再乘以4.D[分析]若数学在第一,有排法 A 66种;若数学不在第一,数学排法有 A11A5115 4,体育排法有 A5,其他排法有5,依据乘法原理此的排法是 A 4A 5A5.依据加法原理,的排法种数 A 66+A 41A51 A 55.【能力提高】C32A 22种方法;第二步,将5. D[分析 ]第一步,先将1、3、 5 分红两,共2、4、6排成一排,共 A 33种方法;第三步:将两奇数插入三个偶数形成的四个空位,共 A 42种方法.由乘法原理,共有 C32A 22A 33A 42= 3× 2× 6× 12= 432 种排法.6. C[分析 ]方法1:由条件可分两:一是甲、乙两人只有一个入,法有C21·C72= 42;另一是甲、乙都入,法有C22·C71= 7.因此共有 42+7= 49 种法.故C.方法 2:甲、乙均不入的有C3种,数是 C3,故甲、乙起码一人入的方法数是C3-C73=799 84- 35= 49.A 92= 9× 8= 72 个; 0 不排在个位,有 A 41·A81·A 81=7.B[分析]当 0 排在个位,有4× 8× 8= 256 个.由分数原理,得切合意的偶数共有72+ 256= 328 个.故 B.8.D[分析 ]依据意得,上午要做的是A,B,C,E,下午要做的是 A,B,C,D ,且上午做了A,B,C 的同学下午不再做同样的.先安排上午,从 4 位同学中任一人做 E ,其他三人分做A, B, C ,有 C41·A 33= 24 种安排方式.再安排下午,分两:①上午就 E 的同学下午 D ,另三位同学A, B,C 位摆列,有 2 种方法,不一样的安排方式有N1= 1× 2= 2 种;②上午 E 的同学下午A,B,C 之一,此外三位从剩下的两和 D 一共三中,但必与上午的目开,有 3种方法,不一样的安排方式有N2=C31·3= 9 种.于是,不一样的安排方式共有N= 24× (2+9) = 264 种.故 D.9.24[分析 ]把需要相的两个元素看做一个整体,而后与不相的元素外的元素行摆列,在隔出的空位上安排需要不相的元素.2 件法作做看作一个整体,方法数是 A 22=2,把个整体与志性建筑作品摆列,有A22种摆列方法,此中分开了三个空位,在此中插入 2 件画作品,有方法数 A 32= 6.依据乘法原理,共有方法数2×2× 6= 24(种) .10.70[分析 ] 分 1 名男医生 2 名女医生、 2 名男医生 1 名女医生两种状况,或许用接法.直接法: C51C42+C52C41= 70.接法: C93- C53- C43= 70.2211.210[分析 ] 假如个位数和百位数是0,8,方法数是 A2A 8= 112;假如个位数和百位数是 1,9,因为首位不可以排 0,方法数是 A 22C71C71= 98.故数是 112+ 98= 210.12. [解答123] (1) 即 C6C5C3= 60.(2)即 C61C52 C33A 33= 60× 6= 360.222C6C4C2=15.(3)即3A 3222(4)即 C6C4 C2= 90.1122C6C5C4C2(5)即 A 22·A22= 45.1122(6)C 6C5C4C2= 180.【点打破】13. [解答 ] (1) 名分派只与人数相关,与不一样的人没关.每大中派两人,节余两个名,C41= 4 种,当节余两人出自同一大,名分派状况有当节余两人出自不一样大,名分派状况有C2= 6 种.4∴有 C14+ C24=10 种.929(2)从 11 个院校中选9 个,再从 10 个冠军中任取 2 个组合,再进行摆列,有 C11C10A 9=898 128 000.。
课时作业(五十七)A[第57讲排列、组合][时间:35分钟分值:80分]基础热身1.a∈N*,且a<20,则(27-a)(28-a)…(34-a)等于()C.A734-a D.A834-aA.A827-a B.A27-a34-a2.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法的种数为()A.1 260 B.4 060C.1 140 D.2 8003.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为()A.16 B.18 C.24 D.324.一天有语文、数学、英语、物理、化学、生物、体育七节课,体育不在第一节上,数学不在第六、七节上,这天课表的不同排法种数为()A.A77-A55B.A24A55C.A15A16A55D.A66+A14A15A55能力提升5.用1、2、3、4、5、6组成一个无重复数字的六位数,要求三个奇数1、3、5有且只有两个相邻,则不同的排法种数为()A.18 B.108 C.216 D.4326.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85 B.56 C.49 D.287.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.6488.研究性学习小组有4名同学要在同一天上、下午到实验室做A,B,C,D,E五个操作实验,每个同学上、下午各做一个实验,且不重复,若上午不能做D实验,下午不能做E实验,则不同的安排方式共有()A.144种B.192种C.216种D.264种9.2010年上海世博会某国将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该国展出这5件作品不同的方案有________种(用数字作答).10.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求男、女医生都有,则不同的组队方案共有________种(数字回答).11.由0,1,2,…,9这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的个数为________个.12.(13分)有六名同学按下列方法和要求分组,各有不同的分组方法多少种?(1)分成三个组,各组人数分别为1、2、3;(2)分成三个组去参加三项不同的试验,各组人数分别为1、2、3;(3)分成三个组,各组人数分别为2、2、2;(4)分成三个组去参加三项不同的试验,各组人数分别为2、2、2;(5)分成四个组,各组人数分别为1,1,2,2;(6)分成四个组去参加四项不同的活动,各组人数分别为1、1、2、2.难点突破13.(12分)从射击、乒乓球、跳水、田径四个大项的北京奥运冠军中选出10名作“夺冠之路”的励志报告.(1)若每个大项中至少选派两人,则名额分配有几种情况?(2)若将10名冠军分配到11个院校中的9个院校作报告,每个院校至少一名冠军,则有多少种不同的分配方法?课时作业(五十七)A【基础热身】1.D[解析] A834-a=(27-a)(28-a)…(34-a).2.D[解析] 基本事件总数是C330,其中不符合要求的基本事件个数是C320+C310,故所求的种数为C330-(C320+C310=2 800.3.C[解析] 四个车位连在一起有四种可能,再乘以3的全排列,即4×A33=24.4.D[解析] 若数学课在第一节,则有排法A66种;若数学不在第一节,则数学课排法有A14,体育课排法有A15,其余课排法有A55,根据乘法原理此时的排法是A14A15A55.根据加法原理,总的排法种数为A66+A14A15A55.【能力提升】5.D[解析] 第一步,先将1、3、5分成两组,共C23A22种方法;第二步,将2、4、6排成一排,共A33种方法;第三步:将两组奇数插入三个偶数形成的四个空位,共A24种方法.由乘法原理,共有C23A22A33A24=3×2×6×12=432种排法.6.C[解析] 方法1:由条件可分为两类:一类是甲、乙两人只有一个入选,选法有C12·C27=42;另一类是甲、乙都入选,选法有C22·C17=7.所以共有42+7=49种选法.故选C.方法2:甲、乙均不入选的有C37种,总数是C39,故甲、乙至少一人入选的方法数是C39-C37=84-35=49.7.B[解析] 当0排在个位时,有A29=9×8=72个;0不排在个位时,有A14·A18·A18=4×8×8=256个.由分类计数原理,得符合题意的偶数共有72+256=328个.故选B.8.D[解析] 根据题意得,上午要做的实验是A,B,C,E,下午要做的实验是A,B,C,D,且上午做了A,B,C实验的同学下午不再做相同的实验.先安排上午,从4位同学中任选一人做E实验,其余三人分别做A,B,C实验,有C14·A33=24种安排方式.再安排下午,分两类:①上午就选E实验的同学下午选D实验,另三位同学对A,B,C实验错位排列,有2种方法,则不同的安排方式有N1=1×2=2种;②上午选E实验的同学下午选A,B,C实验之一,另外三位从剩下的两项和D一共三项中选,但必须与上午的实验项目错开,有3种方法,则不同的安排方式有N2=C13·3=9种.于是,不同的安排方式共有N=24×(2+9)=264种.故选D.9.24[解析] 把需要相邻的两个元素看做一个整体,然后与不相邻的元素外的元素进行排列,在隔出的空位上安排需要不相邻的元素.2件书法作做看作一个整体,方法数是A22=2,把这个整体与标志性建筑作品排列,有A22种排列方法,其中隔开了三个空位,在其中插入2件绘画作品,有方法数A23=6.根据乘法原理,共有方法数2×2×6=24(种).10.70[解析] 分1名男医生2名女医生、2名男医生1名女医生两种情况,或者用间接法.直接法:C15C24+C25C14=70.间接法:C39-C35-C34=70.11.210[解析] 如果个位数和百位数是0,8,则方法数是A22A28=112;如果个位数和百位数是1,9,则由于首位不能排0,则方法数是A22C17C17=98.故总数是112+98=210.12.[解答] (1)即C16C25C33=60.(2)即C16C25C33A33=60×6=360.(3)即C26C24C22A33=15.(4)即C26C24C22=90.(5)即C16C15A22·C24C22A22=45.(6)C16C15C24C22=180.【难点突破】13.[解答] (1)名额分配只与人数有关,与不同的人无关.每大项中选派两人,则还剩余两个名额,当剩余两人出自同一大项时,名额分配情况有C14=4种,当剩余两人出自不同大项时,名额分配情况有C24=6种.∴有C14+C24=10种.(2)从11个院校中选9个,再从10个冠军中任取2个组合,再进行排列,有C911C210A99=898 128 000.。
2013 年全国高考理科数学试题分类汇编10:摆列、组合及二项式定理一、选择题1.( 2013 年一般高等学校招生一致考试新课标Ⅱ卷数学(理)(纯 WORD 版含答案))已知(1ax)(1 x)5的睁开式中x2的系数为 5, 则a()A.4B.3C.2D.1【答案】 D2.( 2013 年一般高等学校招生一致考试山东数学(理)试题(含答案))用 0,1,,9十个数字 ,能够构成有重复数字的三位数的个数为()A. 243B. 252C. 261D. 279【答案】 B3.( 2013 年高考新课标1(理))设m为正整数,(x y)2 m睁开式的二项式系数的最大值为a ,( x y) 2m 1睁开式的二项式系数的最大值为b ,若 13a7b ,则m()A. 5B. 6C. 7D. 8【答案】 B4.( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD 版含答案(已校正))184()x1+y 的睁开式中x2y2的系数是A.56D B.84C.112D.168【答案】5.( 2013年一般高等学校招生一致考试福建数学(理)试题(纯WORD版))知足a, b1,0,1,2 ,且对于x的方程ax22x b 0 有实数解的有序数对 (a,b) 的个数为()A. 14B. 13C. 12D. 10【答案】 B6.( 2013 年上海市春天高考数学试卷(含答案 ))(1 x)10的二项睁开式中的一项为哪一项()A.45x B.90x2C.120 x3D.252x4【答案】 C7.( 2013年一般高等学校招生一致考试辽宁数学(理)试题(WORD版))使得n1的睁开式中含有常数项的最小的为()3x n N nx xA.4B.5C.6D.7【答案】B从 1,3,5,7,9 这五个数中,每次拿出两个不一样的数分别为a, b , 8 .( 2013 年高考四川卷(理))共可获得 lg a lg b 的不一样值的个数是()A.9B.10C.18D.20【答案】 C16x, x0,9 .( 2013年高考陕西卷(理))设函数 f ( x)x则当 x>0时, f [ f (x)] 表,x ,x0.达式的睁开式中常数项为()A. -20B. 20C. -15D. 15【答案】 A10.( 2013年高考江西卷(理)) (x2-2 ) 5 睁开式中的常数项为()x3A. 80B. -80C. 40D. -40【答案】 C二、填空题11.( 2013年上海市春天高考数学试卷(含答案 ))36的所有正约数之和可按以下方法获得: 因为36=2 232, 所以36的所有正约数之和为(1 3 32)(223 2 32)(2 22232232 )(1222()1 3 32)91参照上述方法, 可求得2000 的所有正约数之和为________________________【答案】483612 .( 2013年高考四川卷(理))二项式(x y)5的展开式中, 含x2y3的项的系数是_________.(用数字作答)【答案】1013.( 2013年上海市春天高考数学试卷(含答案 ) )从4 名男同学和 6 名女同学中随机选用 3 人参加某社团活动, 选出的 3 人中男女同学都有的概率为________(结果用数值表示).【答案】4514(.2013年一般高等学校招生一致考试浙江数学(理)试题(纯WORD版))将A, B,C, D,E,F六个字母排成一排, 且A, B均在C 的同侧, 则不一样的排法共有________种( 用数字作答)【答案】48015.( 2013年一般高等学校招生一致考试重庆数学(理)试题(含答案))从 3名骨科.4 名脑外科和 5 名内科医生中选派 5 人构成一个抗震救灾医疗小组生都起码有 1人的选派方法种数是___________( 用数字作答), 则骨科. 脑外科和内科医【答案】 5901 616.( 2013 年一般高等学校招生一致考试天津数学(理)试题(含答案)) x的二项x睁开式中的常数项为 ______.【答案】 1517.( 2013 年一般高等学校招生一致考试浙江数学(理)试题(纯 WORD版))设二项式( x1)5 的睁开式中常数项为A , 则 A ________.3x【答案】1018.( 2013 年高考上海卷(理) )设常数 aR , 若x2ax5的二项睁开式中x 7 项的系数为10 , 则 a ______【答案】 a219.( 2013 年高考北京卷(理) ) 将序号分别为 1,2,3,4,5的 5 张观光券所有分给 4 人,每人起码 1 张 , 假如分给同一人的 2 张观光券连号 , 那么不一样的分法种数是 _________.【答案】 96820.( 2013 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD 版))若ax3x的睁开式中 x 4 的系数为 7, 则实数 a ______.【答案】1221.( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD 版含答案(已校正) ) 6 个人排成一行 , 此中甲、乙两人不相邻的不一样排法共有____________ 种.( 用数字作答 ).【答案】 480。
课时作业(五十七)B[第57讲排列、组合]
[时间:35分钟分值:80分]
基础热身
1.由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{a n},则a19=()
A.2 014 B.2 034 C.1 432 D.1 430
2.有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法种数是()
A.1 136 B.1 600 C.2 736 D.1 120
3.某学校有教职工100人,其中教师80人,职员20人.现从中选取10人组成一个考察团外出学习考察,则这10人中恰好有8名教师的不同选法的种数是() A.C280C820B.A280A820
C.A880C220D.C880C220
4.某外商计划在5个候选城市投资3个不同的项目,且在同一城市投资项目不超过2个,则他不同的投资方案有()
A.60种B.70种C.100种D.120种
能力提升
5.某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定,每位同学选修三门,则每位同学不同的选修方案种数是() A.120 B.98 C.63 D.56
6.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有()
A.252个B.300个
C.324个D.228个
7.2011年,哈三中派出5名优秀教师去大兴安岭地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有()
A.80种B.90种C.120种D.150种
8.某校高三师生为“庆元旦·迎新年”举行了一次联欢晚会,高三年级8个班中每个班的学生准备了一个节目,且节目单已排好.节目开演前又增加了3个教师的节目,其中有2个独唱节目,1个朗诵节目,如果将这3个节目插入原节目单中,要求教师的节目不排在第一个和最后一个,并且教师的2个独唱节目不连续演出,那么不同的排法有() A.294种B.308种C.378种D.392种
9.将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的总数为________(用数字作答).10.有五名男同志去外地出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不同的住宿安排有________种(用数字作答).
11.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有________种.
12.(13分)一次数学考试的第一大题有11道小题,其中第(1)~(6)小题是代数题,答对一题得3分;第(7)~(11)题是几何题,答对一题得2分.某同学第一大题对6题,且所得分数不少于本题总分的一半,问该同学有多少种答题的不同情况?
难点突破
13.(12分)(1)10个优秀指标名额分配给6个班级,每个班至少一个,共有多少种不同的分配方法?
(2)在正方体的过任意两个顶点的所有直线中,异面直线有多少对?
课时作业(五十七)B
【基础热身】
1.A [解析] 千位是1的四位偶数有C 13A 23=18,故第19个是千位数字为2的四位偶
数中最小的一个,即2 014.
2.A [解析] 方法一:将“至少有1个是一等品的不同取法”分三类:“恰有1个一
等品”,“恰有2个一等品”,“恰有3个一等品”,由分类计数原理有:C 116C 24+C 216C 14+
C 316=1136(种).
方法二:考虑其对立事件:“3个都是二等品”,用间接法:C 320-C 34=1 136(种).
3.D [解析] 由于结果只与选出的是哪8名教师和哪两名职员有关,与顺序无关,是
组合问题.分步计数,先选8名教师再选2名职员,共有C 880C 220种选法.
4.D [解析] 在五个城市中的三个城市各投资一个,有方法数A 35=60,将三个项目分
为两组投资到五个城市中的两个,有方法数C 13A 25=60,故不同的投资方案有120种.
【能力提升】
5.B [解析] 分两类:(1)不包含A ,B ,C 的有C 37种选法;(2)包含A ,B ,C 的有C 27·
C 13种选法.所以共有C 37+C 27·C 13=98(种)选法,故应选B.
6.B [解析] (1)若仅仅含有数字0,则选法是C 23C 14,可以组成四位数C 23C 14A 33=12×6
=72个;
(2)若仅仅含有数字5,则选法是C 13C 24,可以组成四位数C 13C 24A 33=18×6=108个;
(3)若既含数字0,又含数字5,选法是C 13C 14,排法是若0在个位,有A 33=6种,若5
在个位,有2×A 22=4种,故可以组成四位数C 13C 14(6+4)=120个.
根据加法原理,共有72+108+120=300个. 7.D [解析] 分组法是(1,1,3),(1,2,2),共有C 15C 14C 33A 22+C 15C 24C 22A 22
=25,再分配,乘以A 33,即得总数150.
8.D [解析] 根据题意可将教师的1个朗诵节目排在学生的8个节目中的7个空中的任一个,共有7种排法,然后将教师的2个独唱节目排在9个节目中的8个空中的2个空中,
故共有C 17A 28=392种不同的排法.故选D. 9.8 [解析] 总的分法是⎝⎛⎭
⎫C 14+C 24A 22A 22=14,若仅仅甲、乙分到一个班级,则分法是A 22=2,若甲、乙分到同一个班级且这个班级分到3名学生,则分法是C 12A 22=4,故总数是14-
2-4=8.
10.72 [解析] 甲、乙住在同一个房间,此时只能把另外三人分为两组,这时的方法总数是C 13A 33=18,而总的分配方法数是把五人分为三组再进行分配,方法数是C 15C 24C 22A 22A 33=90,故不同的住宿安排共有90-18=72种.
11.222 [解析] 总数是C 223=253,
若有两个学校名额相同,则可能是1,2,3,4,5,6,7,9,10,11个名额,此时有10C 23=30种可能,若三个学校名额相同,即都是8个名额,则只有1种情
况,故不同的分配方法数是253-30-1=222.
12.[解答] 依题意可知本题的总分的一半是14分,某同学在11题中答对了6题,则至少答对两道代数题,至多答对4道几何题,因此有如下答题的情况:
(1)代数题恰好对2道,几何题恰好对4道,此时有C 26C 45=75种情况;
(2)代数题恰好对3道,几何题恰好对3道,此时有C 36C 35=200种情况;
(3)代数题恰好对4道,几何题恰好对2道,此时有C 46C 25=150种情况;
(4)代数题恰好对5道,几何题仅对1道,此时有C 56C 15=30种情况;
(5)代数题全对,几何题全错,此时有C 66C 05=1种情况.
由分类计数原理得所有可能的答题情况有456种.
【难点突破】
13.[解答] (1)由于是10个名额,故名额和名额之间是没有区别的,我们不妨把这10个名额在桌面上从左到右一字摆开,这样在相邻的两个名额之间就出现了一个空挡,10个名额之间就出现了9个空挡,我们的目的是把这10个名额分成6份,每份至少一个,那我们只要把这9个空挡中的5个空挡上各放上一个隔板,两端的隔板外面的2部分,隔板和隔
板之间的4部分,这样就把这10个指标从左到右分成了6份,且满足每份至少一个名额,我们把从左到右的6份依次给1,2,3,4,5,6班就解决问题了.这里的在9个空挡上放5个隔板的不同方法数,就对应了符合要求的名额分配方法数.这个数不难计算,那就是从9个空挡中选出5个空挡放隔板,不同的放法种数是C59=126.
(2)方法一:连成两条异面直线需要4个点,因此在正方体8个顶点中任取4个点有C48种取法.每4个点可分共面和不共面两种情况,共面的不符合条件,去掉.因为在6个表面和6个体对角面中都有四点共面,故有(C48-12)种.不共面的4点可构成四面体,而每个四面体有3对异面直线,故共有3(C48-12)=174对.
方法二:一个正方体共有12条棱、12条面对角线、4条体对角线,计28条,任取两条有C228种情况,除去其中共面的情况:(1)6个表面,每个面上有6条线共面,共有6C26条;
(2)6个体对角面,每个面上也有6条线共面,共有6C26条;(3)从同一顶点出发有3条面对角线,任意两条线都共面,共有8C23条,
故共有异面直线C228-6C26-6C26-8C23=174对.。