概率论与数理统计 课程讨论总结
- 格式:doc
- 大小:30.00 KB
- 文档页数:4
2024年哈工大概率论与数理统计学习心得学完《概率论与数理统计》这门课程,了解掌握了一些相关的基础知识与方法,并对该学科有了更加深刻的认识,实在是获益匪浅。
本文围绕概率论发展、对本课程学习的一些想法、个人感悟与收获等方面对本课程学习过程中的一些心得体会进行了简单的总结。
一、概率论与数理统计发展简史概率是与人们的日常生产生活联系十分紧密的一门学科。
因此自人类文明发端以来,概率这个概念就已被人们有意无意地渗透到了日常生活中。
人们常说估计如何如何,这里的“估计”包含着概率的含义,只不过在大多数人那里“概率”没有形成独立的知识体系,人们只是根据生活经验对他进行简单地应用而已。
随着技术革____带来的科技的飞速发展,概率论才逐渐形成一套完备的知识体系。
数理统计是在概率论的基础上发展起来的,因此发展时间也稍微晚些。
顾名思义,概率论是一门研究事情发生的可能性大小的学问。
对概率论的研究始于意大利的文艺复兴的____中人们要求找到掷骰子决定胜负的规则。
随着18、____世纪科学的进步,游戏起源的概率论被应用到这些领域中,这也极大推动了概率论本身的发展。
后来,瑞士数学家伯努利建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。
这标志着概率论成为了数学的一个分支。
随后法国数学家棣莫弗和拉普拉斯又导出了中心极限定理的原始形式。
之后,拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。
____世纪末,俄国数学家切比雪夫、马尔可夫、李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了____实际中遇到的许多随机变量近似服从正态分布。
____世纪初在物理学的刺激下,人们开始研究随机过程。
这方面柯尔莫哥洛夫、马尔可夫、辛钦、莱维及费勒等人作了杰出的贡献。
数理统计是伴随着概率论的发展而发展起来的一个数学分支,其发展大致可分为古典时期、近代时期和现代时期三个阶段。
概率论与数理统计课程总结概率论的重要观点和关键发现1. 概率的定义概率是描述不确定性的数学工具,它告诉我们一个事件发生的可能性程度。
概率可以用来描述随机试验的结果,并帮助我们理解事件发生的规律。
2. 概率的公理化定义概率的公理化定义由科尔莫哥洛夫公理系统提出,包括三个公理:非负性(概率值非负)、规范性(样本空间的概率为1)和可加性(互斥事件的概率加起来等于它们分别的概率之和)。
3. 随机变量随机变量是概率论中的一个重要概念,它将样本空间中的元素映射到实数集上。
随机变量可以是离散型的(取有限或无限个值)或连续型的(取某一区间内的任意值)。
4. 概率分布随机变量的概率分布描述了随机变量取各个值的概率,可以用概率质量函数(对于离散型随机变量)或概率密度函数(对于连续型随机变量)来表示。
5. 期望和方差期望是随机变量的平均值,反映了随机变量的中心位置。
方差是随机变量离其期望值的平均偏离程度,反映了随机变量的离散程度。
6. 大数定律大数定律指出,随着试验次数的增加,随机事件的频率会趋近于其概率。
这意味着随机事件的长期平均结果会逼近理论结果。
7. 中心极限定理中心极限定理指出,当样本容量足够大时,样本均值的分布将近似于正态分布。
这是由于多个独立随机变量之和的分布趋近于正态分布。
数理统计的重要观点和关键发现1. 统计推断统计推断是通过样本数据对总体特征进行推断的方法。
它分为参数统计推断和非参数统计推断。
参数统计推断是假设总体具有某种概率分布,并对总体参数进行估计和假设检验。
非参数统计推断则更加自由,不需要对总体分布作出假设。
2. 抽样分布抽样分布是随机抽样统计量的概率分布。
它的性质决定了参数的估计和假设检验的准确性。
常见的抽样分布有正态分布、t分布、卡方分布和F分布。
3. 置信区间置信区间是对总体参数的一个范围估计,反映了估计的不确定性。
置信区间的计算方法依赖于样本数据和抽样分布的性质。
4. 假设检验假设检验是用来检验关于总体参数的假设是否成立的统计方法。
概率论与数理统计课程学习总结掌握随机事件与统计分布的分析方法概率论与数理统计是应用非常广泛的一门学科,对于多个学科领域的研究和实践都具有重要的指导作用。
在这门课程学习中,我掌握了随机事件与统计分布的分析方法,并加深了对概率理论和统计学原理的理解。
下面我将对我在概率论与数理统计课程中学到的知识进行总结和回顾。
首先,在学习概率论的过程中,我掌握了随机事件的定义与性质。
随机事件是指在相同条件下可能发生,也可能不发生的现象。
通过学习概率的基本概念和性质,我了解到了如何计算一个事件发生的可能性。
我们可以通过频率法、古典概型和几何概型等不同的方法来计算概率,并应用到实际问题中。
在实践中,概率论可以帮助我们预测未来的发展趋势,为决策提供科学依据。
其次,数理统计的学习让我了解了统计分布的基本特征和分析方法。
统计分布是在一定条件下对观测数据进行分类和总结的工具。
通过学习正态分布、泊松分布、二项分布等不同的分布,我可以对实际问题中的统计数据进行合理的分析和处理。
在实践中,统计学经常被用于研究样本数据的规律性和规模性,从而得出总体的性质和规律。
概率论与数理统计的学习不仅让我了解到了这两门学科的理论基础,还让我明白了它们的实际应用。
在现代社会中,数据量呈指数级增长,概率论与数理统计的方法成为了从中提取和分析有用信息的重要手段。
在金融领域,基于概率论和统计学的方法可以帮助投资者理性决策,降低投资风险;在医学领域,统计分析可以用于研究药物疗效和副作用,提高临床决策的准确性和科学性。
总的来说,概率论与数理统计课程的学习使我掌握了随机事件和统计分布的分析方法,并深化了对概率和统计学理论的理解。
这门课程为我今后的学习和工作提供了基础和支持。
我将继续巩固和应用这些知识,不断提升自己的数据分析能力,为实现个人和社会的发展做出贡献。
概率论和数理统计的重要性越来越受到人们的重视,我相信通过对这门课程的深入学习,我将走上一个更加光明和有前途的道路。
概率论与数理统计课程的教学总结第一篇:概率论与数理统计课程的教学总结关于“概率论与数理统计”课程的教学总结概率论与数理统计无疑是其中最为活跃的分支之一,它既有严密的数学基础,又与各学科联系紧密,在自然科学、社会科学、管理科学、技术科学和工农业生产等各个学科和领域中得到极其广泛的应用,概率论与数理统计也因此成为数学专业和许多其它相关专业的一门重要的必修课程。
但由于随机现象的普遍存在性、研究方法的独特性和教学内容的实用性,很多学生反映这门课程学起来比较困难。
针对这种情况,我们从教学实践出发,进行了大量的教学研究,这学期教的“概率论与数理统计”课程共完成196.8学时的工作量,学生都是经济管理学院的文理兼收的学生,学生学习能力差距很大,这无疑对该门课程的教与学都带来了不同程度的难度。
认为从以下三方面入手,可以有效缓解学生的学习困难,提高教学质量。
一、将数学史渗透于概率统计教学之中在教学中,我们发现学生在概率统计学习中普遍感到入门难。
产生困难的原因主要有两点:一方面,概率统计的研究对象是随机现象所呈现的统计规律性,而不再是确定性现象中量与量之间的关系,学生的思维有一个转变过程;另一方面,概率统计中几乎每个概念都是从实际背景抽象而得到,但我们的学生过去并不习惯于直接从实际问题中进行数学抽象。
针对这些情况,我们在知识教学的过程中穿插了数学史中的历史典故、人物简介以及概念产生的实际背景等,这不但提高了学生的学习兴趣,活跃了课堂气氛,而且还可以使他们在“亲身经历”概念产生的过程中,进一步加深对概念的理解,同时数学家们坚韧不拔的精神也能激发出他们克服困难的积极性。
二、将数学建模的思想渗透到概率统计教学中去在素质教育的背景下,教师不能只重视学生的知识学习,而更应着眼于学生应用能力和创新精神的培养。
“概率统计”是一门应用性很强的学科,因此我们开设“概率统计”课程的中心任务是引导学生从传统的确定性思维模式进入随机性思维模式,使学生掌握处理在工程建设、经济管理、人文社科等研究中出现的随机问题的数学方法。
概率论与数理统计学习心得标准概率论与数理统计是一门非常重要且广泛应用于各个学科领域的数学课程。
在学习过程中,我深刻体会到了概率论与数理统计的理论知识对于实际问题的解决以及决策的帮助是非常大的。
下面我将结合自己的学习经验,总结出概率论与数理统计学习的心得体会。
首先,概率论与数理统计的学习需要具备坚实的数学基础。
概率论与数理统计的内容涉及到概率、随机变量、概率分布、数理统计、估计与检验等多个方面的知识,这些内容的掌握需要对数学有一定的基础和思维能力。
在学习概率论与数理统计之前,我提前巩固了概率论、高等数学和线性代数等相关的数学知识,确保自己可以更好地理解和应用概率论与数理统计的知识。
其次,概率论与数理统计的学习需要注重理论与实践的结合。
概率论与数理统计的学习不仅仅是掌握理论知识,更需要通过实际问题的分析与解决来加深对概率论与数理统计的理解。
在学习过程中,我注重将理论知识与实际问题相结合,通过做习题和实际案例分析来巩固和应用所学知识。
通过实践,我深刻体会到了概率论与数理统计的实际应用价值,也提高了自己的问题分析和解决能力。
第三,概率论与数理统计的学习需要注重逻辑思维的训练。
在概率论与数理统计的学习过程中,逻辑思维是非常重要的。
概率论与数理统计的知识体系较为复杂,需要运用逻辑思维进行推理和证明。
在学习过程中,我注重培养自己的逻辑思维能力,通过大量的例题和练习题来提高自己的逻辑思维能力和解题能力。
同时,我也注重与同学之间的讨论和交流,通过互相分享想法和思路,进一步提高自己的逻辑思维和解题能力。
第四,概率论与数理统计的学习需要注重实践应用能力的培养。
概率论与数理统计的知识是为了解决实际问题而存在的,只有将所学的知识应用到实际中才能发挥其真正的价值。
在学习过程中,我注重通过实际案例的分析和解决来培养自己的实践应用能力。
我参与了一些数理统计建模和数据分析的项目,在实践中学习和应用概率论与数理统计的方法和技巧,进一步提高自己的实践应用能力。
概率论与数理统计学期总结和感想
这学期我学习了概率论与数理统计课程,整个学期的学习,有许多新的想法,以及我的深刻的总结。
首先,对概率论的学习,使我对概率的概念有了更深刻的认识,了解了概率的定义以及概率的基本表示方法,并且了解了如何使用概率论来分析和解决实际问题。
概率论中,最重要的部分是期望和方差,期望和方差是我们分析系统性能和随机现象的两个主要指标,学习期望和方差上,让我更加了解了概率论中的许多概念,让我有能力用数学的方法解决实际问题。
其次,我学习了数理统计课程,数理统计是概率论的一个重要的分支,它的主要用途是用统计方法来分析和求解基本的理论问题,而不只是实际应用。
在学习数理统计课程中,我学习了不同类型的统计量,以及如何求取和应用它们,并且学习了分布和卡方检验、假设检验和拟合等方法,进一步让我系统的了解了如何用统计的方法分析和求解实际问题。
最后,这学期学习概率论与数理统计课程让我对数学中的概率论有了更深入的认识,使我有能力用数学的方法分析和求解实际问题,并且,更重要的是,这学期的学习让我更加加深了对于概率论和数学的热爱。
回顾这学期,我经历了许多有意义的事情,无论是学习知识,还是与老师老师和同学交流,都是我本学期最宝贵的经历。
在未来的学习和工作中,我一定会利用所学到的知识和技能,成为一名优秀的科
学研究者。
小结:
总的来说,这学期的学习概率论与数理统计使我更加深入的了解了概率的概念,并有能力用数理工具来分析和求解真实问题,此外,本学期的学习也让我对概率论和数学的热爱更加深厚,未来的学习和工作中,我一定会还会利用所学知识和技能,成为一名优秀的科学研究者。
概率与数理统计学习心得模板概率与数理统计是一门重要的数学学科,它在现代科学和工程技术中发挥着重要的作用。
在学习过程中,我从理论和实践两个方面深入学习了概率与数理统计的基本理论、方法和应用。
通过掌握了概率与数理统计的相关知识和技能,我对统计数据的分析和概率事件的评估能力得到了提升。
以下是我在学习概率与数理统计过程中的心得体会。
一、对概率的理解和应用概率是研究随机事件发生的概率大小的一种数学方法。
在学习概率的过程中,我通过学习了概率的定义、性质、基本运算法则,并了解了概率分布、随机变量等重要概念。
通过掌握了这些基本理论和方法,我能够准确地评估事件的概率。
在应用方面,概率可以帮助我们对未知事件进行预测和分析,为决策提供科学的依据。
通过学习概率与数理统计,我了解到概率在风险评估、投资分析、财务管理等领域中的应用。
例如,通过对市场走势和股票价格的概率分析,可以为投资决策提供指导;在保险业中,可以通过概率分析来确定保险赔付数额,为保险公司和投保人提供保障。
这些应用让我深刻地认识到概率在现实生活中的重要性和实用性。
二、对数理统计的理解和应用数理统计是概率论在统计实践中的应用。
在学习数理统计的过程中,我熟悉了一些重要的概念和方法,如样本、总体、估计、假设检验等。
掌握了这些知识后,我能够对收集到的数据进行分析,并对总体的特征进行推断。
在应用方面,数理统计可以帮助我们通过样本数据对总体属性进行推断。
通过学习数理统计,我了解到统计的基本过程,即数据的收集、整理、分析和解释的过程。
在实际应用中,数理统计可以应用于社会调查、市场调研、医学研究等领域。
例如,在社会调查中,可以通过对样本数据的分析,推断出总体的特征,从而为社会治理和决策提供支持;在医学研究中,可以通过对受试者的数据进行分析,推断出新药的疗效,从而为临床治疗提供依据。
这些应用使我深刻认识到数理统计在现实生活中的广泛应用。
三、理论与实践相结合在学习概率与数理统计的过程中,理论与实践是密不可分的。
统计学专业课程总结模板概率论与数理统计概率论与数理统计是统计学专业的一门重要课程,通过学习这门课程,我对概率论与数理统计的基本概念、理论与应用有了较全面的了解。
下面我将对我在学习这门课程中所获取到的知识进行总结,并分享一个适用于统计学专业课程总结的模板。
一、概率论部分1. 概率的基本概念与性质在概率论部分的学习中,我了解到概率的基本概念,包括随机试验、样本空间、事件、概率等。
了解了事件的基本性质,如互斥事件、相互独立事件等。
同时,我也学会了计算概率的方法,包括古典概型、几何概型、条件概率等。
2. 随机变量与概率分布学习了随机变量的定义与性质,了解了离散型随机变量与连续型随机变量的区别。
通过学习概率质量函数、概率密度函数以及它们的性质,我能够计算随机变量的期望、方差等。
3. 常见概率分布学习了二项分布、泊松分布、均匀分布、正态分布等常见的概率分布。
通过掌握它们的概率密度函数、分布函数以及性质,我能够应用它们解决实际问题。
二、数理统计部分1. 抽样与统计量学习了抽样的基本概念、抽样分布以及常见的抽样方法。
了解了统计量的定义与性质,如样本均值、样本方差等。
通过学习样本的分布特征,我能够利用统计量对总体参数进行估计。
2. 参数估计通过学习点估计的方法,包括矩估计法和最大似然估计法,我能够利用样本数据来估计总体参数,并计算估计量的性质。
3. 假设检验与置信区间学习了假设检验的基本思想和步骤,了解了显著性水平、拒绝域、p值等概念。
同时,也学习了置信区间的计算方法。
通过学习这些内容,我能够对总体参数进行假设检验,并计算出置信区间。
综上所述,通过学习概率论与数理统计这门课程,我对于概率论与数理统计的基本理论及应用有了更深入的了解。
下面是适用于统计学专业课程总结的模板:【模板】一、概率论部分1. 概率的基本概念与性质1.1 随机试验与样本空间1.2 事件与概率2. 随机变量与概率分布2.1 随机变量的定义与性质2.2 离散型随机变量与连续型随机变量2.3 概率质量函数与概率密度函数3. 常见概率分布3.1 二项分布3.2 泊松分布3.3 均匀分布3.4 正态分布二、数理统计部分1. 抽样与统计量1.1 抽样的基本概念与抽样分布1.2 统计量的定义与性质2. 参数估计2.1 点估计与估计量2.2 矩估计法2.3 最大似然估计法3. 假设检验与置信区间3.1 假设检验的基本思想和步骤3.2 显著性水平、拒绝域、p值3.3 置信区间的计算方法总结:通过学习概率论与数理统计专业课程,我对概率论与数理统计的基本概念、性质、理论与应用有了较全面的了解。
概率论与数理统计学习心得概率论与数理统计是一门应用广泛的学科,涉及到许多实际问题的分析和解决。
通过学习这门课程,我深刻体会到了概率论与数理统计在实际生活中的重要性和实用性。
以下是我在学习概率论与数理统计这门课程时的一些心得体会。
首先,概率论与数理统计的基础知识对于数据的分析和解释非常重要。
在现代社会中,我们每天都会接触到大量的数据,如股票价格、气温变化、销售数据等等。
通过概率论与数理统计的知识,我们可以对这些数据进行分析和预测,从而更好地理解和解释这些现象。
其次,概率论与数理统计的方法能够帮助我们作出正确的决策。
在面对不确定性和风险的情况下,概率论与数理统计的方法可以帮助我们评估风险和收益,并作出最优的决策。
例如,在投资决策中,我们可以利用概率论来计算不同投资方案的风险和收益,从而选择最佳的投资方案。
另外,概率论与数理统计的方法还可以用于科学实验和调查的设计和分析。
在进行科学研究或进行市场调查时,我们需要设计实验方案或问卷调查,并分析所得数据。
概率论与数理统计的知识可以帮助我们设计合理的实验方案和问卷调查,并进行数据的分析和解释。
在学习概率论与数理统计的过程中,我最大的收获是掌握了统计推断的方法。
统计推断是根据样本数据对总体进行推断的一种方法。
通过学习统计推断的理论和方法,我不仅可以对一组数据进行描述和概括,还可以利用样本数据对总体进行估计和推断。
这对于科学研究和实际问题的解决非常重要。
此外,概率论与数理统计的学习还培养了我的分析和解决实际问题的能力。
在习题解析和实际应用中,我需要根据具体问题的特点选择合适的概率模型和统计方法,并运用所学知识进行推理和计算。
通过这样的实践,我逐渐提高了分析问题和解决问题的能力。
最后,概率论与数理统计的学习还帮助我发展了一种科学的思维方式。
概率论与数理统计的方法注重数据分析和推理的科学性和准确性。
在学习过程中,我学会了从数据和事实出发,根据统计原理进行推理和分析,并且能够对统计结论进行适当的评价和解释。
2024年哈工大概率论与数理统计学习心得学习概率论与数理统计是作为一个工科学生, 在大学时期必修的一门课程。
在2024年, 我有幸能够在哈尔滨工业大学学习这门课程, 并且取得了一定的收获。
下面, 我将分享我在学习概率论与数理统计方面的一些心得体会。
首先, 在学习概率论方面, 我深刻体会到了概率的重要性和应用广泛性。
概率论主要研究随机事件的概率、随机变量及其概率分布等内容, 是计算机、统计学、金融等领域的基础。
通过学习概率论, 我了解到概率不仅仅是一个理论概念, 更是一种描述不确定性的工具。
在现实生活中, 我们所面临的很多问题都存在不确定性, 如天气预报、股市走势等。
通过概率论的学习, 我可以更准确地评估可能发生的事件, 并且能够采取合适的措施来降低风险。
其次, 在学习数理统计方面, 我学到了如何通过样本推断总体的特征。
数理统计主要研究如何收集数据、如何通过数据推断总体的特征并进行决策等。
在学习过程中, 我提高了数据分析能力, 掌握了抽样调查的原理和方法, 并学会了对数据进行描述、总结和分析。
通过统计数据, 我可以用合理的方法推断总体的特征, 并对未来的情况作出预测。
这对于很多实际问题的解决具有非常重要的意义, 如市场调查、产品质量控制等。
此外, 概率论与数理统计的学习还培养了我批判性思维和解决问题的能力。
在学习过程中, 我需要理解和运用各种概率模型和统计方法来解决现实生活中的问题。
这要求我们具备批判性思维, 能够对所学知识进行深入分析和理解, 并灵活运用于实际情况中。
同时, 我还需要通过编程和数学求解等方式, 对问题进行建模和求解。
通过这样的学习过程, 我逐渐培养了解决实际问题的能力, 提高了自己的综合素质。
在学习过程中, 我还发现了一些困难和挑战。
首先, 概率论和数理统计是一门比较抽象的学科, 其中涉及到的概念和理论较多, 需要我们进行艰苦的钻研和思考。
其次, 统计方法的运用需要借助计算机编程进行实现, 这要求我们具备一定的编程能力和统计软件的使用能力。
概率论与数理统计课程讨论总结概率论与数理统计是公认的一门“老师难教,学生难学”的大学数学课程,如何能让各个专业的学生轻松、愉快的学好这们课程摆在了每个老师的面前,这也是这次培训的最重要的议题。
杨孝平和陈萍两位教授是概率论与数理统计国家精品课程的主持人,从事多年概率统计教学、概率统计教材编写,听完他们的讲课,我们长沙分中心的老师们都有一个感受,那就是“受益匪浅,感受良多”。
3月28日下午我们分中心组织了一场班级讨论,各位老师踊跃发言,以下就是我们班级讨论的主要内容。
一、高中所学概率知识与大学概率课程的衔接
1、存在的问题
①.好多概率统计问题在高中学过,还有一部分内容,同学都认为是重复,如:古典概率、期望和方差、抽样等。
②.记号不统一,高中和大学课本中的记号有很多不一样,这应该说在引起学生注意方面有一定作用,但我们很大部分学生对高中知识记忆深刻,很难改过来,甚至有同学概率统计学完了,还是没改过来,这样势必影响了进一步的学习。
2、解决办法
①.高中学过的内容,我认为可以弱化,甚至可以不出现,只作一些补充说明,重点加强随机变量内容。
②.记号实现统一。
二、概论统计教学中的案例教学。
教育学理论中有个概念——“范例教学”。
“案例”就是指某一实践问题,“案例教学”是指在教学时要从问题到理论,再从理论到应用,而不是从概念到概念、从理论到理论,基于这样的理解,在概率与统计的教学中应处处有案例教学。
理论的来源之一是实际问题解决的需要。
概率统计中的思想方法、原理、公式等理论的引入,最能激发学生兴趣并印象深刻的做法是从贴近生活现实的问题即案例引入,如果遇上的问题不能用已有的理论解决,则意味着人们必须创设新的理论。
这些新问题怎样解决?于是,新的概率统计的思想方法、原理、公式等理论便产生了。
创设的新的概率统计理论可以解决哪些问题?典型案例即实践中的问题又出来了。
所以在概率论与数理统计的教学中应处处有案例,这样教出来的学生才不会是“书呆子”。
三、对概率统计课程中某些章节内容的教学想法
1、条件分布和乘法公式和全概率公式的推导适合探究式或讨论式教学。
2、数字特征部分可以用投资组合的案例来分析。
3、假设检验可以用可乐生产线上的产品容量的案例来分析。
4、回归分析部分可以用保险精算中的案例来分析回归分析部分也适合探究式或讨论式教学。
5、方差分析也可以用案例分析。
四、课时安排及教材选取
各个专业的概论统计课程到底该安排多少课时?什么教材比较好?概率论和数理统计应不应该分成两们课程来开?不同专业是否该开设不同的统计应用课程?这些问题也是我们概论统计一线教师非常关心的问题。
讨论结果是,各个学校课时安排大相径庭,有48课时的,有56课时的,还有64课时。
教材使用也五花八门,老师们也希望能有一套统一的优秀教材和规定课时,以供大家使用,这样记号也会一致。
五、通过两位专家的讲学以及和老师们的交流,学到很多知识尤其是教学过程中存在的问题和解决的办法。
1. 对于学习概率统计里面的抽象概念,如何通过一个具体的实例导入概念。
2. 转变大学教育的观念,大学教育应该是有限的知识+良好的素质和能力,而非所有的知识+终身教育,长沙分中心的所有老师一致认为观念的合理正确性。
3. 如何将统计方法与实际案例分析结合的比较完美,陈教授给出了较好的建议。
4. 上课是一门艺术,如何上好第一堂课是同学们学习兴趣的前提,陈教授同样给出了中肯的建议。
1、回归分析部分可以用保险精算中的案例来分析,数字特征部分可以用投资组合的案例来分析,假设检验可以用可乐生产线上的产品容量的案例来分析,方差分析也可以用案例分析。
回归分析部分也适合探究式或讨论式教学。
条件分布和乘法公式和全概率公式的推导适合探究式或讨论式教学
3.概率与统计课程教学内容应如何与高中阶段概率统计知识衔接?
一、现状
经过几年的教学,以及与学生的交流,我们发现学生在学习概率统计时,开始对概率统计很有兴趣,并且认为很容易学,因为他们认为概率统计就是和高中的差不多,因此,他们就不认真听,不认真学,结果,好多同学没有看到大学概率统计与中学概率统计的联系与区别,第一章就没学好,以至将概率统计落下了,很可惜,应值得我们重视。
二、主要问题
三、
在认真聆听两位教授讲学,老师们进行了热烈讨论,并用课程论坛进行文字交流,提出问题,畅谈了教学组织情况和课程建设情况。
通过两位专家的讲学和老师们的交流,学到很多知识尤其是教学过程中存在的问题和解决的办法,同时提出有如下方面的深刻感受:
1. 对于学习概率统计里面的抽象概念,如何通过一个具体的实例导入概念。
2. 转变大学教育的观念,大学教育应该是有限的知识+良好的素质和能力,而非所有的知识+终身教育,长沙分中心的所有老师一致认为观念的合理正确性。
3. 如何将统计方法与实际案例分析结合的比较完美,陈教授给出了较好的建议。
4. 上课是一门艺术,如何上好第一堂课是同学们学习兴趣的前提,陈教授同样给出了中肯的建议。