代数综合型问题
- 格式:doc
- 大小:161.50 KB
- 文档页数:7
代数综合问题初中代数综合题,主要以方程、函数这两部分为重点,因此牢固地掌握方程与不等式的解法、一元二次方程的解法和根的判别式、函数解析式的确定及函数性质等重要基础知识是解好代数综合题的关键.在许多问题中,代数和几何问题交织在一起,就要沟通这些知识之间的内在联系,以数形结合的方法找到解决问题的突破口.今天我们主要介绍三类问题的常见解法: 1、整体的想法;2、关于整数根的问题;3、需要数形结合的问题.例1. 已知关于x 的方程 03)13(2=+++x m mx . (1)求证: 不论m 为任何实数, 此方程总有实数根;(2)若抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式;(3)若点P ),(11y x 与Q ),(21y n x +在(2)中抛物线上 (点P 、Q 不重合), 且y 1=y 2, 求代数式81651242121++++n n n x x 的值.例2. 已知:如图,平行于x 轴的直线y =a(a ≠0)与函数y =x 和函数xy 1=的图象分别交于点A 和点B ,又有定点P(2,0).(1)若a >0,且91tan =∠POB ,求线段AB 的长; (2)在过A ,B 两点且顶点在直线y =x 上的抛物线中,已知线段38=AB ,且在它的对称轴左边时,y 随着x 的增大而增大,求满足条件的抛物线的解析式;(3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离.例3. 已知:关于x 的一元二次方程:22240x mx m -+-=. (1)求证:这个方程有两个不相等的实数根;(2)当抛物线2224y x mx m =-+-与x 轴的交点位于原点的两侧,且到原点的距离相等时,求此抛物线的解析式;(3)将(2)中的抛物线在x 轴下方的部分沿x 轴翻折,其余部分保持不变,得到图形C 1,将图形C 1向右平移一个单位,得到图形C 2,当直线y=x b +(b<0)与图形C 2恰有两个公共点时,写出b 的取值范围.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)【答案】C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.2.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.0725【答案】B【解析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.3.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是 A .120100x x 10=- B .120100x x 10=+ C .120100x 10x =- D .120100x 10x=+ 【答案】A【解析】分析:甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100x x 10=-。
代数几何综合问题一、选择题1.如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为【】A.0 B.1 C.2 D.32.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为【】A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=13.若a,b为实数,且a1b10++-=,则(ab)2013的值是【】A、0B、1C、﹣1D、±14.一个三角形的两边长分别为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是【】A.11 B.11或13 C.13 D.以上选项都不正确5.若平行四边形的一边长为2,面积为46】A .3与4之间B .4与5之间C .5与6之间D .6与7之间6.已知()2x y 32x y 0-+++=,则x +y 的值为【 】A .0B .﹣1C .1D .57.一条直线y =kx +b ,其中k +b =﹣5、kb =6,那么该直线经过【 】A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限 8.已知实数x ,y ,m 满足x 2|3x y m |0++++=,且y 为负数,则m 的取值范围是【 】A .m >6B .m <6C .m >﹣6D .m <﹣6二、填空题9.若a 2b 30-+-=,则a b = ▲ .10.如图,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是 ▲ .11.若实数a 、b 满足a 2b 40++-=,则2a b= ▲ . 12.无论x 2x 6x m -+都有意义,则m 的取值范围为 ▲ .13a 1a b 10-+++=,则a b = ▲ .14.已知点P (3,﹣1)关于y 轴的对称点Q 的坐标是(a +b ,1﹣b ),则a b 的值为 ▲ .15.函数3x y -=x 的取值范围是 ▲ . 16.函数y x 3=-x 的取值范围是 ▲ ;若分式2x 3x 1-+的值为0,则x = ▲ . 17.若直角三角形的两直角边长为a 、b 2a 6a 9b 40-+-=,则该直角三角形的斜边长为 ▲ .1822a 3a 1b 2b 10-+++=,则221a b a +-= ▲ 。
全国联赛代数问题选1. 已 知 实 数 a, b, c 满 足 a b c 1,111 1 , 则b cb cac a baabc____.【答】 0.由题意知111 1,所以2c 1 2a1 2b1(1 2a)(12b) (1 2b)(1 2c) (1 2a)(1 2c) (1 2a)(1 2b)(12c)整理得 22(a b c) 8abc ,所以 abc0.2. 使得不等式9 n k8对唯一的整数 k 成立的最大正整数n为.17 n 15【答 】 144.由 条 件 得7 k8 , 由 k 的 唯 一 性 , 得 k 17 且 k 1 8 , 所 以8 n 9 n8 n 92 k 1 k18 7 1 144 .nnn9 8 ,所以 n7 2当 n144 时,由7k8 可得 126 k 128 , k 可取唯一整数值127.8n 9故满足条件的正整数n 的最大值为 144.3. 已知 x, y 为整数,且满足 (11)( 1212 )2(1414 ) ,则 xy 的可能的值x y xy3 xy有 _________ 个【答】 由已知等式得xy x 2 y 22 x 4 y 4 ,显然 x, y 均不为 0,所以 xy = 0xyx 2 y 2 3 x 4 y 4或 3xy2( x y) .若, 则又 x, y 为整数,可求得 x ,3xy 2( x y)( 3x2 ) (y32 ). 4y2,x,y 1或 xy1.所以 xy 1.因此, xy 的可能的值有 3 个 .4.已知非负实数 x, y, z 满足 x y z 1,则 t2xyyz 2zx 的最大值为 _________【答】471( y t 2 xy yz 2zx 2x( y z) yz 2x( y z)z)242x(1 x)1 (1 x) 27 x 23 x 17(x 3) 2 4 ,442 44 7 7易知:当 x32 时, t2xyyz 2zx 取得最大值 4, yz.777 5. 张不同的卡片上分别写有数字2, 2, 4, 4, 6, 6,从中取出 3 张,则这 3 张卡片上 所写的数字可以作为三角形的三边长的概率是 【 】【答】25若取出的 3 张卡片上的数字互不相同,有2× 2×2= 8 种取法;若取出的 3 张卡片上的数字有相同的,有 3× 4= 12 种取法 . 所以,从 6 张不同的卡片中取出3 张,共有 8+12= 20种取法 .要使得三个数字可以构成三角形的三边长,只可能是:( 2,4,4),( 4,4, 6),( 2, 6,6),( 4, 6, 6),由于不同的卡片上所写数字有重复,所以,取出的 3 张卡片上所写的数字可以作为三角形的三边长的情况共有4×2= 8 种 .82因此,所求概率为.2056. 设 [t ] 表示不超过实数t 的最大整数,令 {t } t [ t] . 已知实数 x 满足 x 3118 ,3{ 1}x则 { x} _________x【答】 1设 x1 a ,则 x31(x1)( x21 1) ( x1)[( x 1 ) 2 3] a( a 2 3) ,xx 3xx 2x x所以 a( a 2 3) 18,因式分解得 ( a3)(a 2 3a6) 0 ,所以 a3.由 x1 3解得 x1(35) ,显然 0{ x} 1,0 {1} 1,所以 { x} { 1} 1.x2xx7.小明某天在文具店做志愿者卖笔,铅笔每支售 4 元,圆珠笔每支售 7 元.开始时他有铅笔和圆珠笔共 350 支,当天虽然笔没有全部卖完,但是他的销售收入恰好是 2013 元.则他至少卖出了支圆珠笔.【答案】 207【解答】 设 x , y 分别表示已经卖出的铅笔和圆珠笔的支数,则4x 7 y 2013,x y 350,所以 x2013 7 y(503 2 y)y 14 4,于是y1是整数.又 20134( xy) 3 y4 350 3y ,4所以 y204 ,故 y 的最小值为 207,此时 x 141 .8. 实数 a , b , c , d 满足:一元二次方程x 2 cx d0 的两根为 a , b ,一元二次方程x 2 ax b 0 的 两 根 为 c , d , 则 所 有 满 足 条 件 的 数 组 ( a ,b ,,c d )为.【答案】 (1, 2,1,2) , (t,0, t,0) (t为任意实数)a b c,【解答】由韦达定理得ab d,c d a,cd b.由上式,可知 b a c d .若 b d0 ,则a d1,cb1,进而 b d a c 2 .b d若 b d0 ,则c a ,有(a,b,,c d )(t,0, t,0) (t为任意实数).经检验,数组(1, 2,1,2) 与 (t,0, t,0) (t为任意实数)满足条件9. 已知正整数a, b , c满足 a b2 2 c 2 0, 3a28b c0,则 abc 的最大值为.【答案】 2013【解答】由已知 a b22c 2 0 , 3a28b c0 消去c,并整理得b826a2a66.由a 为正整数及6a2a≤,可得≤ ≤ .661 a 3若 a 1 ,则 b8259,无正整数解;若 a 2 ,则 b8240,无正整数解;若 a 3 ,则 b829 ,于是可解得 b11 , b5.( i)若b11 ,则 c61 ,从而可得 abc311612013 ;( ii )若b 5,则c13 ,从而可得 abc3513195.综上知 abc 的最大值为2013.10.对于任意实数 x,y, z,定义运算“ * ”为:x y 3x3 y3x2 y2xy345,x3y36011且 x y z x y z ,则201320123 2 的值为().【答案】5463967【解答】设 20132012 4 m ,则20132012 4 3m33m333m29m2745,m33m23m164960于是2013 20123 2 92 3 932 3 92 22 92345 5463 .103 33 6096711. 设非零实数 a , b , c 满足a 2b 3c 0, 则 ab bc ca 的值为().2a 3b 4c 0, a 2 b 2 c 2【答案】12【解答】 由已知得 a b c (2 a 3b 4c)( a2b 3c) 0 ,故 ( a b c) 2 0 .于是 ab bcca1 (a2 b2c 2) ,所以abbc ca 1 .2a 2b 2c 2212. 如果关于 的方程有两个有理根,那么所有满足条件的正整数的个数是 _________个答案: 2解: 由于方程的两根均为有理数,所以根的判别式≥0,且为完全平方数.≥0,又 2≥,所以,当时,解得;当时,解得.13. 设 a n =( n 为正整数),则 a 1+a 2+, +a 2012 的值 1.(填“>”,“=”或“<” )【答案】 <解: 由 a n == , 得a 1+a 2+, +a 2012==< 1.14. 红、黑、白三种颜色的球各10 个.把它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色的球都有,且甲、乙两个袋子中三种颜色的球数之积相等, 那么共有法.种放【答案】25解: 设甲袋中红、黑、白三种颜色的球数分别为,则有1≤≤9,且,(1)即, ( 2)于是.因此中必有一个取 5.不妨设,代入( 1)式,得到.此时, y 可取 1,2, , , 8,9(相应地 z 取 9,8, , , 2,1),共 9 种放法.同理可得y=5,或者 z=5 时,也各有 9 种放法.但时,两种放法重复.因此共有9× 3- 2 = 25 种放法.15.5 32)( x 3) 的值为 ( ).设 x,则代数式 x( x 1)( x2【答】﹣ 1解: 由已知得 x 23x 1 0,于是x( x 1)(x 2)( x 3) ( x 2 3x)( x 2 3x2)( x 2 3x 1)211.16. 已知 x , y ,z 为实数,且满足 x 2y5z 3 , x 2 y z 5,则 x 2y 2z 2 的最小值为 _____________【答】5411,x 3z,x 2 y 5z 31解: 由x2 y 可得 y z 2.,z 5于是x 2 y 2 z 2 11z 2 2z5 .因此,当 z1 时, x 2y2z 2的最小值为54.111117. 若 x 1 , y0 ,且满足 xyx y , xx 3 y ,则 x y 的值为 ().y【答】92解:由题设可知 yx y 1,于是x yx 3 yx4y 11 1 .,所以 4 y故 y1 4.于是 x y9 ,从而 x2 .218.设S1 111 4S 的整数部分等于 ().32 333 ,则132011【答】 4解: 当 k2,3, ,2011 ,因为111 1 1 ,k 3k k 2 1 2 k 1 k k k 1 所以 1 S11 1 1 11 1 152333201132 22011 2012.4于是有 4 4S 5 ,故 4S 的整数部分等于4.19. 一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1, 3, 4,5, 6, 8. 同时掷这两枚骰子,则其朝上的面两数之和为7 的概率是 .【答】 1.6解: 在 36 对可能出现的结果中,有6 对:(1, 6), ( 2, 5), ( 2,5), (3, 4),(3, 4),(4, 3)的和为7,所以朝上的面两数字之和为 7 的概率是6 1 .36 620. 若 y1 xx 1 的最大值为 a ,最小值为 b ,则 a 2b 2 的值为.2【答】 3.21≥ 0,得 1≤ x ≤ 1.解:由 1 x ≥ 0,且 x22y 21 2 x 2 3 x 1 1 2 ( x3 )2 1 .22 2 2 4 16由于1<3<1 ,所以当 x = 3 时, y 2 取到最大值 1,故 a = 1.2 4 4当 x = 1 或 1 时, y 2取到最小值1,故 b =2 .所以, a 2 b 23 .222221. 若方程 x 2 3x 1 0 的两根也是方程 x 4 ax 2 bx c 0 的根,则 a b 2c 的值为___________答案:﹣ 1122.对于自然数n ,将其各位数字之和记为 a n,如 a2009200911,a2010 2 0 1 0 3 ,则 a1a2a3a2009 a2010_________【答案】 28068.23.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5 个或 10 个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放___ 个球 .【答案】 1524.已知 t 是实数,若a, b是关于 x 的一元二次方程x22x t 10的两个非负实根,则( a21)(b2 1)的最小值是___________.【答案】﹣ 325.如果实数 a, b 满足条件 a2b21,|12a b |2a 1b2a2,则 a b ______.【答案】﹣ 126.已知 a, b 是正整数,且满足2(1515 ) 是整数,则这样的有序数对(a, b) 共有_____ a b对.【答案】 7 对27.设n是大于 1909 的正整数,使得n 1909为完全平方数的n的个数是 ______个2009n【答案】 4 个28.设 a7 1,则3a312 a26a 12__________【答案】 2429.用 [ x] 表示不大于x的最大整数,则方程x22[ x]30 的解为_________【答案】﹣ 3,1,或根号 530.已知实数 x, y 满足423, y4y23,则4y4的值为________x4x2x4【答】 7解:因为 x20 ,y2≥0,由已知条件得1 2 4 4 4 3 1 13 ,y21 1 4 3 1 13,x28422所以4y42 3 3 y22y2 6 7.x4x2x2(22 (222另解:由已知得:2 )x 2)302,以2为根的一元x ,显然x 2 y x 2 , y( y 2 ) y 23 0二次方程为 t 2t 30 ,所以( 2 ) y 21,( 2 )y 23x 2x 24422 2 2 (2 222(3)7故 x4y = [( x 2)y ]x 2 ) y( 1)31. 将 1,2,3,4,5 这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有_______种【答】5种解:设 a 1, a 2,a 3,a 4,a 5 是 1,2, 3, 4, 5 的一个满足要求的排列.首先,对于 a 1,a 2,a 3,a 4 ,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果 a ( 1≤ i ≤ 3)是偶数, a i 1 是奇数,则 a2是奇数,这说明一个偶数后面一定ii要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以 a 1, a 2, a 3,a 4,a 5 只能是:偶,奇,奇,偶,奇,有如下5 种情形满足条件:2, 1, 3,4, 5;2, 3,5, 4, 1;2, 5, 1, 4, 3;4, 3, 1, 2, 5; 4, 5,3, 2, 1.32. 对于实数 u v* ”为: u v uvv .若关于 x的方程 x (a x), ,定义一种运算 “14有两个不同的实数根,则满足条件的实数a 的取值范围是.【答】 a 0 ,或 a 1 .解:由 x ( a x)1,得 ( a 1)x 2(a 1)x1 0 ,44a 1,依题意有( a2(a 1),1) 0解得, a 0 ,或 a 1 .33. 关于 x , y 的方程 x 2y 2 208( xy) 的所有正整数解为.x 48, x 160, 【答】y 32, y32.解:因为 208 是 4 的倍数,偶数的平方数除以4 所得的余数为 0,奇数的平方数除以4所得的余数为 1,所以 x , y 都是偶数.设 x2a, y 2b ,则a 2b 2 104( a b) ,同上可知, a , b 都是偶数.设 a2c, b 2d ,则c 2d 2 52( c d ) ,所以, c , d 都是偶数.设 c2s, d2t ,则s 2 t 226( s t) ,于是( s 13)2 (t 13)2 = 2 132 ,其中 s , t 都是偶数.所以(s 13)2 2 132 (t 13)2 ≤ 2 132 152 112 .所以 s13 可能为 1,3,5, 7, 9,进而 (t 13)2 为 337, 329,313,289, 257,故只s ,s,能是 (t13)2=289,从而 s13 = 7.于是620t;t,44x ,x,因此48 160y , y 32.3222 1) b(b 2a)40 , a(b 1) b8 ,求 1 1的值.34.设实数 a,b 满足 a (ba2b 2解 由已知条件可得 a 2b 2 (a b)240, ab ( a b)8 .设 ab x , aby ,则有 x 2y 2 40 , x y 8 ,,,,, 5 分 联立解得 ( x, y) (2,6) 或 ( x, y)(6,2) .,,,10 分若 ( x, y)(2,6) ,即 ab2 , ab 6 ,则 a, b 是一元二次方程 t 22t 6 0的两根,但这个方程的判别式( 2)224200,没有实数根;,,,, ,15 分若 ( x, y) (6,2) ,即 ab 6 ,ab 2 ,则 a, b 是一元二次方程 t 2 6t2 0 的两根,这个方程的判别式( 6)2 8 28 0 ,它有实数根 . 所以11a2b2( a b) 22ab 62 2 28 .,,,20 分a2b2a2b2a2 b22235. 已知 c≤ b≤ a,且,求的最小值.解:已知,又,且,所以 b, c 是关于 x 的一元二次方程的两个根 .故≥0,≥ 0,即≥0,所以≥20.于是≤-10,≥ 10,从而≥≥ 10,故≥ 30,当时,等号成立.36.求关于 a, b, c,d 的方程组的所有正整数解.解:将 abc=d 代入 10ab+10bc+10ca=9d 得10ab+10bc+10ca=9 abc.因为 abc≠ 0,所以,.不妨设 a≤ b≤ c,则≥≥>0.于是,<≤,即<≤,<a≤.从而, a=2,或 3.若 a=2,则.因为<≤,所以,<≤,<b≤ 5.从而, b=3 , 4,5. 相应地,可得c=15,(舍去 ), 5.当a=2, b=3, c=15 时, d=90 ;当a=2, b=5, c=5 时, d=50.若 a=3,则.因为<≤,所以,<≤,<b≤.从而, b=2(舍去), 3.当 b=3 时, c=(舍去 ).因此,所有正整数解为(a, b, c,d)=(2 ,3, 15, 90), (2, 15,3, 90), (3, 2,15, 90),(3, 15, 2, 90), (15, 2, 3, 90), (15,3, 2, 90),(2, 5, 5,50), (5, 2,5, 50), (5, 5,2, 50).37. 已知关于x 的一元二次方程x2cx a 0 的两个整数根恰好比方程x2ax b0 的两个根都大 1,求a b c 的值.解:设方程 x2ax b 0 的两个根为,,其中,为整数,且≤ ,则方程 x2cx a0 的两根为1, 1 ,由题意得a,1 1 a ,,,,,,,,,,,,, 5 分两式相加,得221 0,即 (2)(2)3,2 ,2 ,所以,1或 3,,,,,,,,,,,,10 分2 ;21.3解得 , 或,15; 3.1又因为 a (),b , c ([ 1)( 1)],所以 a 0, b 1, c2 ;或者 a8, b 15, c 6 ,故 a b c 3 ,或 29.,,,,,,,,,,,,,,,,,,20 分38. 设整数 a,b, c ( a b c )为三角形的三边长,满足a 2b 2c 2 abac bc 13 ,求符合条件且周长不超过30的三角形的个数 .解 由已知等式可得(a b)2 (b c)2(a c)226①令 a b m, b cn ,则 a c m n ,其中 m,n 均为自然数 .于是,等式①变为m 2 n 2 (m n)226,即m 2 n 2 mn 13②由于 m, n 均为自然数, 判断易知,使得等式②成立的 m, n 只有两组:m 3, m 1,n和n3.1( 1)当 m 3, n 1 时, b c 1, ab 3c 4 .又 a, b, c 为三角形的三边长,所以 b c a , 即 (c 1) c c 4, 解 得 c 3.又因为三角形的周长不超过 30,即a b c( c4) ( c 1)c25 3 c25 ,所以 c 可以取值 4, 5,30,解得 c.因此 336, 7, 8,对应可得到5 个符合条件的三角形 .( 2)当 m 1,n 3 时, b c 3 , ab 1c 4. 又 a,b, c 为三角形的三边长,所以 b c a , 即 (c 3) c c 4, 解 得 c 1.又因为三角形的周长不超过 30,即a b c( c4) ( c 3)c23 1 c23 ,所以 c 可以取值 2, 3,30,解得 c.因此 334, 5, 6, 7,对应可得到 6 个符合条件的三角形 .综合可知:符合条件且周长不超过30 的三角形的个数为 5+ 6= 11.39. 已知 a, b, c 为正数,满足如下两个条件:a b c 32① b c a c a ba b c1②bccaab4是否存在以 a, b, c 为三边长的三角形?如果存在,求出三角形的最大内角.解法 1将①②两式相乘,得 (bc a c a ba bc)( a b c)8 ,bccaab即(b c)2a 2(c a)2 b 2( a b) 2 c 28 ,bccaab即 (b c)2a 24 (c a) 2 b 24 (a b)2c 2 0,bccaab即 (b c)2a 2(c a)2 b 2 (a b) 2 c 20 ,bccaab即 (bc a)(b c a)(c a b)(c ab) ( a b c)( a b c)0 ,bccaab即 (bca) [ a(b c a)b(c a b) c( a bc)]0 ,abc即 (b c a)[2 ab a2b2c 2] 0 ,即(b ca) [ c 2( a b)2 ] 0 ,abcabc即 (bc a) (c a b)(c a b) 0 ,abc所以 b c a 0 或 c a b 0 或 c ab 0 ,即 b ac 或 ca b 或 c b a .因此,以a ,b ,c 为三边长可构成一个直角三角形,它的最大内角为90°. 解法 2结合①式,由②式可得32 2a32 2b32 2c1bccaab,4变形,得 10242(a2b2c 2)1abc③4又由①式得 (ab c) 2 1024 ,即 a 2 b 2c 2 1024 2(ab bcca) ,代入③式,得 10242[1024 2( ab bcca)]1abc ,4即 abc 16( ab bc ca) 4096 .(a 16)(b 16)(c 16) abc16(ab bc ca) 256(ab c) 1634096256 32 163 0 ,所以 a16 或 b 16 或 c 16 .结合①式可得 b a c 或 c a b 或 c b a .因此,以a ,b ,c 为三边长可构成一个直角三角形,它的最大内角为90°.40. 已知 a,b 为正整数,关于x 的方程 x 2 2ax b 0 的两个实数根为 x 1,x 2 ,关 于 y的 方 程 y 22ay b 0的 两 个 实 数 根 为 y 1,y 2,且满足x 1 y 1 x 2 y 2 2008.求 b 的最小值 .解:由韦达定理,得x 1 x 2 2a,x 1 x 2b ; y 1 y 22a,y 1 y 2b即y 1 y 2 2a (x 1x 2)( x 1) ( x 2),y 1 y 2 b ( x 1 ) ( x 2 )解得:y 1 x1或y1x 2y 2x 2y 2x 1把y 1 , y 2的值分别代 入x 1 y 1 x 2 y 2 2008得x 1 ( x 1 ) x 2 ( x 2 )2008或 x 1 ( x 2 ) x 2 ( x 1 ) 2008 (不成立)即x 2 2 x 12 2008 , ( x 2 x 1 )( x 2 x 1 ) 2008因为x 1x 2 2a 0, x 1 x 2b 0所以 x 1 0, x 2 0于是有 2a 4a 2 4b2008即 a a 2b502 1 5022 251因为a,b都是正整数, 所以a 1或a 505或a 22或a 251a 2b2a 2a 2ba 2b 4502 b 1251a 1a 502 a 2 a 251分别解得:b 1 2 或 b 2 或 b 2 2 或24502 502 1 251 b 251经检验只有: a 502 , a 251 符合题意 .b 5022 b 2512 41所以 b 的最小值为:b 最小值2512 4=62997。
全国联赛代数问题选1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =____. 【答】 0. 由题意知1111121212c a b++=---,所以 (12)(12)(12)(12)(12)(12)(12)(12)(12)a b b c a c a b c --+--+--=---整理得22()8a b c abc -++=,所以abc =0. 2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 . 【答】144.由条件得7889k n <<,由k 的唯一性,得178k n -≤且189k n +≥,所以2118719872k k n n n +-=-≥-=,所以144n ≤. 当144n =时,由7889k n <<可得126128k <<,k 可取唯一整数值127.故满足条件的正整数n 的最大值为144.3.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有_________个【答】 由已知等式得2244224423x y x y x y xy x y x y++-⋅=⋅,显然,x y 均不为0,所以x y +=0或32()xy x y =-.若32()xy x y =-,则(32)(32)4x y +-=-.又,x y 为整数,可求得12,x y =-⎧⎨=⎩,或21.x y =-⎧⎨=⎩,所以1x y +=或1x y +=-. 因此,x y +的可能的值有3个.4.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为_________ 【答】4721222()2()()4t xy yz zx x y z yz x y z y z =++=++≤+++212(1)(1)4x x x =-+-2731424x x =-++2734()477x =--+,易知:当37x =,27y z ==时,22t xy yz zx =++取得最大值47.5. 张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 【 】【答】25若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205=. 6.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x+=,则1{}{}x x+=_________【答】 1 设1x a x +=,则32223211111()(1)()[()3](3)x x x x x a a x x x x x+=++-=++-=-,所以2(3)18a a -=,因式分解得2(3)(36)0a a a -++=,所以3a =.由13x x +=解得1(32x =±,显然10{}1,0{}1x x <<<<,所以1{}{}x x+=1. 7.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.8. 实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件9. 已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=;(ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.10. 对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ). 【答案】5463967【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-,于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-. 11. 设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc ca a b c ++++的值为( ). 【答案】12-【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 12. 如果关于的方程有两个有理根,那么所有满足条件的正整数的个数是_________个答案:2解:由于方程的两根均为有理数,所以根的判别式≥0,且为完全平方数.≥0,又2≥,所以,当时,解得 ; 当时,解得.13. 设a n =(n 为正整数),则a 1+a 2+…+a 2012的值 1.(填“>”,“=”或“<”)【答案】 <解:由a n ==, 得a 1+a 2+…+a 2012==<1.14. 红、黑、白三种颜色的球各10个.把它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色的球都有,且甲、乙两个袋子中三种颜色的球数之积相等, 那么共有 种放法.【答案】25解:设甲袋中红、黑、白三种颜色的球数分别为,则有1≤≤9, 且, (1)即 ,(2)于是.因此中必有一个取5.不妨设,代入(1)式,得到.此时,y 可取1,2,…,8,9(相应地z 取 9,8,…,2,1),共9种放法.同理可得y =5,或者z =5时,也各有9种放法.但时,两种放法重复.因此共有9×3-2 = 25种放法. 15. 设532x =,则代数式(1)(2)(3)x x x x +++的值为( ). 【答】﹣1 解:由已知得2310x x ++=, 于是2222(1)(2)(3)(3)(32)(31)1 1.x x x x x x x x x x +++=+++=++-=-16. 已知x y z ,,为实数,且满足253x y z +-=,25x y z --=-,则222x y z ++的最小值为_____________【答】5411解:由 25325x y z x y z +-=⎧⎨--=-⎩,, 可得 312.x z y z =-⎧⎨=+⎩,于是 22221125xy z z z ++=-+.因此,当111z =时,222x y z ++的最小值为5411. 17. 若1x >,0y >,且满足3yy xxy x x y==,,则x y +的值为( ). 【答】92解:由题设可知1y y x -=,于是 341y y x yx x -==,所以411y -=.故12y =,从而4=x .于是92x y +=.18. 设333311111232011S =++++,则4S 的整数部分等于( ). 【答】4解:当2 3 2011k =,,,,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以333111111511123201122201120124S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.19. 一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数之和为7的概率是 .【答】16. 解: 在36对可能出现的结果中,有6对:(1,6), (2,5), (2,5), (3,4),(3,4),(4,3)的和为7,所以朝上的面两数字之和为7的概率是61366=.20. 若y =a ,最小值为b ,则22a b +的值为 . 【答】32. 解:由1x -≥0,且12x -≥0,得12≤x ≤1.21122y =+=+ 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =.当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=.21. 若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ___________答案:﹣1122. 对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则12320092010a a a a a +++++= _________【答案】28068.23. 将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放___个球.【答案】1524. 已知t 是实数,若,a b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则22(1)(1)a b --的最小值是___________.【答案】﹣325. 如果实数,a b 满足条件221a b +=,22|12|21a b a b a -+++=-,则a b +=______.【答案】﹣126. 已知,a b 是正整数,且满足是整数,则这样的有序数对(,)a b 共有_____对.【答案】7对27. 设n 是大于1909的正整数,使得19092009n n--为完全平方数的n 的个数是______个【答案】4个28. 设1a =,则32312612a a a +--=__________【答案】2429. 用[]x 表示不大于x 的最大整数,则方程22[]30x x --=的解为_________ 【答案】﹣3,1,或根号5 30. 已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为________ 【答】 7解:因为20x >,2y ≥0,由已知条件得212184x ++==, 21122y -+-+==, 所以444y x +=22233y x ++- 2226y x=-+=7.另解:由已知得:2222222()()30()30x xy y ⎧-+--=⎪⎨⎪+-=⎩,显然222y x -≠,以222,y x -为根的一元二次方程为230t t +-=,所以 222222()1,()3y y x x-+=--⨯=- 故444y x +=22222222[()]2()(1)2(3)7y y x x-+-⨯-⨯=--⨯-= 31. 将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有_______种【答】5种解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1.32. 对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-. 解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=, 依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,,解得,0a >,或1a <-.33. 关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯,其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,34.设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b+的值. 解 由已知条件可得222()40a b a b ++=,()8ab a b ++=.设a b x +=,ab y =,则有2240x y +=,8x y +=, …………5分 联立解得(,)(2,6)x y =或(,)(6,2)x y =. ………10分若(,)(2,6)x y =,即2a b +=,6ab =,则,a b 是一元二次方程2260t t -+=的两根,但这个方程的判别式2(2)24200∆=--=-<,没有实数根; ………… … 15分若(,)(6,2)x y =,即6a b +=,2ab =,则,a b 是一元二次方程2620t t -+=的两根,这个方程的判别式2(6)8280∆=--=>,它有实数根.所以2222222222211()262282a b a b ab a b a b a b ++--⨯+====. ………20分35. 已知c ≤b ≤a ,且,求的最小值.解:已知,又,且,所以b ,c 是关于x 的一元二次方程的两个根.故≥0,≥0,即 ≥0,所以≥20. 于是≤-10,≥10,从而≥≥10,故≥30,当时,等号成立.36. 求关于a ,b ,c ,d 的方程组的所有正整数解.解:将abc =d 代入10ab +10bc +10ca =9d 得10ab +10bc +10ca =9abc .因为abc ≠0,所以,.不妨设a ≤b ≤c ,则≥≥>0.于是, <≤,即 <≤,<a ≤.从而,a =2,或3.若a =2,则.因为<≤,所以,<≤,<b ≤5.从而,b =3,4,5. 相应地,可得 c =15,(舍去),5.当a =2,b =3,c =15时,d =90; 当a =2,b =5,c =5时,d =50.若a =3,则.因为<≤,所以,<≤,<b ≤.从而,b =2(舍去),3.当b =3时,c =(舍去).因此,所有正整数解为(a ,b ,c ,d )=(2,3,15,90),(2,15,3,90),(3,2,15,90),(3,15,2,90),(15,2,3,90),(15,3,2,90),(2,5,5,50),(5,2,5,50),(5,5,2,50).37. 已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,, ………………………………5分两式相加,得2210αβαβ+++=,即 (2)(2)3αβ++=,所以,2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩, ………………………………10分解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(), 所以012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29. ………………………………………………20分38. 设整数,,a b c (a b c ≥≥)为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数.解 由已知等式可得222()()()26a b b c a c -+-+-=①令,a b m b c n -=-=,则a c m n -=+,其中,m n 均为自然数. 于是,等式①变为222()26m n m n +++=,即2213m n mn ++=②由于,m n 均为自然数,判断易知,使得等式②成立的,m n 只有两组:3,1m n =⎧⎨=⎩和1,3.m n =⎧⎨=⎩(1)当3,1m n ==时,1b c =+,34a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤.因此2533c <≤,所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形.(2)当1,3m n ==时,3b c =+,14a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤.因此2313c <≤,所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形.综合可知:符合条件且周长不超过30的三角形的个数为5+6=11.39. 已知,,a b c 为正数,满足如下两个条件:32a b c ++= ① 14b c a c a b a b c bc ca ab +-+-+-++= ②. 解法1 将①②两式相乘,得()()8b c a c a b a b ca b c bc ca ab+-+-+-++++=, 即222222()()()8b c a c a b a b c bc ca ab +-+-+-++=, 即222222()()()440b c a c a b a b c bc ca ab +-+-+--+-+=, 即222222()()()0b c a c a b a b c bc ca ab----+-++=, 即()()()()()()0b c a b c a c a b c a b a b c a b c bc ca ab-+---+--+++-++=,即()[()()()]0b c a a b c a b c a b c a b c abc -+----++++=,即222()[2]0b c a ab a b c abc -+--+=,即22()[()]0b c a c a b abc -+--=,即()()()0b c a c a b c a b abc-++--+=,所以0b c a -+=或0c a b +-=或0c a b -+=,即b a c +=或c a b +=或c b a +=.90°.解法2 结合①式,由②式可得32232232214a b c bc ca ab ---++=, 变形,得222110242()4a b c abc -++= ③又由①式得2()1024a b c ++=,即22210242()a b c ab bc ca ++=-++, 代入③式,得110242[10242()]4ab bc ca abc --++=,即16()4096abc ab bc ca =++-.3(16)(16)(16)16()256()16a b c abc ab bc ca a b c ---=-+++++-3409625632160=-+⨯-=,所以16a =或16b =或16c =.结合①式可得b a c +=或c a b +=或c b a +=.90°. 40. 已知,a b 为正整数,关于x 的方程220x ax b -+=的两个实数根为12x x ,,关于y的方程220y ay b ++=的两个实数根为12y ,y ,且满足11222008x y x y -=.求b 的最小值. 解:由韦达定理,得12122,x x a x x b +== ;12122,y y a y y b +=-= 即12121212122()()(),()()y y a x x x x y y b x x +=-=-+=-+-⎧⎨==--⎩ 解得:11122221y x y x y x y x =-=-⎧⎧⎨⎨=-=-⎩⎩或 把12,y y 的值分别代入11222008x y x y -= 得1122()()2008x x x x ---=或1221()()2008x x x x ---=(不成立)即22212008x x -=,2121()()2008x x x x +-=因为121220,0x x a x x b +=>=> 所以120,0x x >> 于是有 22442008aa b -=即250215022251aa b -==⨯=⨯因为a,b都是正整数,所以2222221505225150212514a a a a ab a b a b a b ====⎧⎧⎧⎧⎨⎨⎨⎨-=-=-=-=⎩⎩⎩⎩或或或 分别解得:2222150222511502502122512514a a a ab b b b ====⎧⎧⎧⎧⎨⎨⎨⎨=-=-=-=-⎩⎩⎩⎩或或或经检验只有:2250225150212514a ab b ==⎧⎧⎨⎨=-=-⎩⎩, 符合题意. 所以b 的最小值为:2251462997b =-最小值=。
24. 如图,已知抛物线2y ax bx c =++与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3).
(1)求抛物线的解析式及顶点M 坐标;新课标第一网
(2)在抛物线的对称轴上找到点P ,使得△P AC 的周长最小,并求出点P 的坐标;
(3)若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点D 作DE ∥PC 交x 轴于
点E .设CD 的长为m ,问当m 取何值时,S △PDE =
19S 四边形ABMC .
25.如图,在平面直角坐标系xOy
中,点,1)A 关于x 轴的对称点为C ,AC 与x 轴
交于点B ,将△OCB 沿OC 翻折后,点B 落在点D 处.
(1)求点C 、D 的坐标;
(2)求经过O 、D 、B 三点的抛物线的解析式;
(3)若抛物线的对称轴与OC 交于点E ,点P 为
线段OC 上一点,过点P 作y 轴的平行线,
交抛物线于点Q .
① 当四边形EDQP 为等腰梯形时,求出点 P 的坐标;
② 当四边形
EDQP 为平行四边形时,直接写出点P 的坐标.
25.如图,抛物线y =ax 2+bx +c 过点A (-1,0),且经过直线y =x -3与x 轴的交点B 及与y
轴的交点C .
(1)求点B 、C 的坐标;
(2)求抛物线的解析式;
(3)求抛物线的顶点M 的坐标;
(4)在直线y =x -3上是否存在点P ,使△CMP 是等腰三角形?若存在,求出满足条件的
P 点坐标;若不存在,说明理由.。
含未知数的代数式综合练习题题目1:求解方程已知方程2x - 3 = 9 - x,求解x的值。
解题步骤:1. 将方程中的x项移到方程左边,常数项移到方程右边,得到3x = 12。
2. 通过除以3的方式,将x的系数变为1,得到x = 4。
答案:x = 4。
题目2:方程转换将方程3a + 2b = 5a - b转换为b的表达式。
解题步骤:1. 将方程中的b项移到方程右边,得到3a + 3b = 5a。
2. 通过移项的方式,将3a移到方程右边,得到3b = 5a - 3a。
3. 合并同类项,得到3b = 2a。
4. 除以3,得到b = (2/3)a。
答案:b = (2/3)a。
题目3:方程组求解已知方程组:2x + y = 73x - 2y = 4求解方程组的解。
解题步骤:1. 利用消元法,将第二个方程的系数变为2,得到:2x + y = 76x - 4y = 82. 将第二个方程中的整体乘以(-1/2),得到:2x + y = 7-3x + 2y = -43. 两个方程相加,消去y的项,得到5x = 3,即x = 3/5。
4. 将x的值代入第一个方程,解出y的值,得到2x + y = 7,即2 * (3/5) + y = 7,化简得到y = 17/5。
答案:方程组的解为x = 3/5,y = 17/5。
题目4:代数式简化将代数式4x - (2x - 3) - 5(x + 1)简化。
解题步骤:1. 先根据括号内的运算进行计算,得到4x - 2x + 3 - 5x - 5。
2. 合并同类项,得到-3x - 2。
答案:-3x - 2。
题目5:代数式展开将代数式(x + 2)(3x - 4)展开。
解题步骤:1. 使用分配律,将每一项相乘并合并同类项,得到3x^2 + 2x - 8。
答案:3x^2 + 2x - 8。
题目6:代数式因式分解将代数式2x^2 + 6x + 4因式分解。
解题步骤:1. 将2作为公因数提取,得到2(x^2 + 3x + 2)。
代数综合题(一)与一元二次方程有关的综合题:1. 关于x 的方程(a –c )(x+1)(x –1)=2(bx+c )有两个相等实根,其中a,b,c 为ABC ∆中∠A ,∠B ,∠C 的对边,若的值和,求A B c b ac a tan sin 042222=+-+.*2. 当k 是什么整数时, 方程(k 2–1)x 2–6(3k –1)x +72=0有两个不相等的正整数根*3. 关于x 的一元二次方程()011222=-+--m x m x 与0544422=--+-m m mx x 的根都是整数,求m 的整数值, 并求出两方程的整数根. *4. 已知一次函数b x k y +-=)2(与反比例函数xay =图象的交点坐标为(m , n ),且m , n 是关于x 的一元二次方程0)3()3(22=-+-+k x k kx 的两个不相等的实数根,其中k 是非负整数,(1) 求k 的值 (2) 求一次函数以及反比例函数解析式 5. 已知:关于x 的一元二次方程01)2(2=+++-m x m x(1)求证:方程有两个实数根;(2)设m <0,且方程的两个实数根分别为1x ,2x (其中1x <2x ),若y 是关于m 的函数,且1214x x y -=,求这个函数的解析式;(3)在(2)的条件下,利用函数图象求关于m 的 方程03=-+m y 的解.*6. 已知关于x 的一元二次方程x c bx x =++2有两个实数根21,x x ,且满足01>x ,112>-x x . (1)试证明0>c ; (2)证明)2(22c b b +>;(3)对于二次函数c bx x y ++=2,若自变量取值为0x ,其对应的函数值为0y ,则当100x x <<时,试比较0y 与1x 的大小.7. 已知x 1,x 2 是关于x 的方程(x –2)(x –m )=(p –2)(p –m )的两个实数根. (1)求x 1,x 2 的值;(2)若x 1,x 2 是某直角三角形的两直角边的长,问当实数m ,p 满足什么条件时,此直角三角形的面积最大?并求出其最大值.yxP 1P 2P 3A 3A 2A 1O *8. 关于x 的方程07142=--x mx 有两实根x 1和x 2,关于y 的方程02)1(222=-+--n n y n y 有两实根y 1和y 2,且4221≤<≤-y y ,当014)2(2622212121=+-+-+y y x x x x 时,求m 取值范围.9. 已知关于x 的方程0222=+--b a ax x ,其中a 、b (1)若此方程有一个根为2a (a <0),判断a 与b 的大小关系,并说明理由; (2)若对于任何实数a ,此方程都有实根,求b 的取值范围.(二)探究型综合题:1. 如图,()111P ,x y ,()222P ,x y ,……()P ,n n n x y 在函数()40y x x=>的图象上,11P OA ∆,212P A A ∆,323P A A ∆,……1P A A n n n -∆都是等腰直角三角形,斜边1OA 、12A A 、23A A ,……1A A n n -都在x 轴上⑴ 求1P 的坐标 ⑵ 求12310y y y y ++++L L 的值. 2.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等, 试判断 AB 与CD 的位置关系,并说明理由. (2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F . 试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与EF 是否平行.3. 已知等腰△OAB在直角坐标系中位置如图,点A 坐标为(33,3-),点B 坐标为(-6,0).(1)若三角形OAB 关于y 轴的轴对称图形是三角形O A B '', 请直接写出A 、B 的对称点A 'B '、的坐标;(2)若将三角形OAB 沿x 轴向右平移a 个单位,此时点A 恰好落在反比例函数63y =的图象上,求a 的值; (3)若三角形OAB 绕点O 按逆时针方向旋转α度(090α<<).O yNM图 2 E Fx NxOyD M图 3NABDC图 1图24-2图24-1xyA B CD OP yxP ODCB A 图1 图2① 当α=30o 时点B 恰好落在反比例函数ky x=的图象上,求k 的值. ② 点A 、B 能否同时落在①中反比例函数图象上,若能,求出α的值;若不能,请说明理由.4. 如图1,抛物线2y x =的顶点为P ,A 、B 是抛物线上两点, AB ∥x 轴,四边形ABCD 为矩形,CD 边经过点P ,AB = 2AD . ⑴ 求矩形ABCD 的面积;⑵ 如图24-2,若将抛物线“2y x =”,改为抛物线“2y x bx c =++”, 其他条件不变,请猜想矩形ABCD 的面积;⑶ 若将抛物线“2y x bx c =++”改为抛物线“2y ax bx c =++”, 其他条件不变,请猜想矩形ABCD 的面积. (用a 、b 、c 表示,并直接写出答案) 5. 阅读以下材料:对于三个数a b c ,,,用{}M a b c ,,表示这三个数的平均数,用{}min a b c ,,表示这三个数中最小的数.例如:{}123412333M -++-==,,,{}min 1231-=-,,,1{min -=,)1()1(1}2->-≤⎩⎨⎧-=a a a a ,.解决下列问题:(1)填空:=︒︒︒}30tan 45cos 30min{sin ,,________;如果,2{min =,22+x 2}24=-x ,则x 的取值范围为________≤≤x .(2)① 如果,1,2{+x M ,1,2min{}2+=x x }2x ,那么x =________;② 根据①,你发现了结论“如果{}{}min M a b c a b c =,,,,,那么____________” (填a b c ,,的大小关系) ③ 运用②的结论,填空:若,22{++y x M ,y x 2+,22min{}2++=-y x y x ,y x 2+}2y x -,则x y +=________. (3)在同一直角坐标系中作出函数1y x =+, 2(1)y x =-,2y x =-的图象(不需列表描点).xOPN MBAyy =xx =m 通过观察图象,得出,1min{+x ,2)1(-x }2x -的最大值为________.(三)二次函数与一次函数1. 如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB ,把AB 所的直线沿y 轴向上平移,使它经过原点O ,得到直线l ,设P 是直线l 上一动点. (1) 求点A 的坐标;(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、 直角梯形, 请分别直接写出这些特殊四边形的顶点P 的坐标; (3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S, 点P 的横坐标为x , 当462682S +≤≤+,求x 的取值范围. 2. 如图,已知抛物线2y x bx c =++经过点(1,-5)和(-2,4) (1)求这条抛物线的解析式.(2)设此抛物线与直线y x =相交于点A ,B (点B 在 点A 的右侧),平行于y 轴的直线()051x m m =<< 与抛物线交于点M ,与直线y x =交于点N ,交x 轴于点P , 求线段MN 的长(用含m 的代数式表示).(3)在条件(2)的情况下,连接OM 、BM ,是否存在m 的值,使△BOM 的面积S 最大?若存在,请求出m 的值,若不存在,请说明理由.3. 在平面直角坐标系xOy 内,抛物线c bx x y ++-=2与x 轴交于A 、B 两点,与y 轴交于点C .把直线3--=x y 沿y 轴翻折后恰好经过B 、C 两点. (1)求抛物线的解析式;(2)设抛物线的顶点为D ,在坐标轴上是否存在这样的点F ,使得∠DFB =∠DCB ?若存在,求出点F 的坐标;若不存在,请说明理由.(四)用函数思想解决实际问题:1. 5月12日,我国四川省汶川县等地发生强烈地震,在抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要25台,乙地需要23台;A 、B 两省获知情况后慷慨相助,分别捐赠该型号挖掘机26台和22台并将其全部调往灾区.如果从A 省调运一台挖掘机到(第28题)lyx-1-2-4-3-1-2-4-312435123ABy xADM CB N甲地要耗资0.4万元,到乙地要耗资0.3万元;从B 省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元.设从A 省调往甲地x 台挖掘机,A 、B 两省将捐赠的挖掘机全部调往灾区共耗资y 万元.⑴请直接写出y 与x 之间的函数关系式及自变量x 的取值范围; ⑵若要使总耗资不超过15万元,有哪几种调运方案? ⑶怎样设计调运方案能使总耗资最少?最少耗资是多少万元?2. 某公司专销产品A ,第一批产品A 上市后40天内全部售完,该公司对第一批产品A 上市后的市场销售情况进行了了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系:图11中的折线表示的是每件产品A 的销售利润与上市时间的关系。
二次函数代数综合题1.已知直线m x y +=和抛物线c bx x y ++=2都经过点A (1,0),B (3,2). (1)求m 的值和抛物线的解析式;(2) 结合函数图象,求不等式m x c bx x +>++2的解集(直接写出答案).2.如图,二次函数的图象经过点D (0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. (1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P ,使P A +PD 最小,求出点P 的坐标.3.已知抛物线2442y ax ax a=-+-,其中a是常数.(1)求抛物线的顶点坐标;(2)若25a>,且抛物线与x轴交于整数点(坐标为整数的点),求此抛物线的解析式.4.在平面直角坐标系xOy中,抛物线2y mx n=++经过P,A(0,2)两点.(1)求此抛物线的解析式;(2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式;(3)在(2)的条件下,求到直线OB、OC、BC距离相等的点的坐标.5.一次函数y=2x+3与二次函数y=ax2+bx+c的图象交于A(m,5)和B(3,n)两点,且当x=3时,抛物线取得最值为9.(1)求二次函数的表达式;(2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大.(4)当x为何值时,一次函数值大于二次函数值?6.已知二次函数y=x2-(2m+4)x+m2-4(x为自变量)的图象与y轴的交点在原点下方,与x轴交于A,B两点,点A在点B的左边,且A,B两点到原点的距离AO、OB•满足3(•OB-AO)=2AO·OB,直线y=kx+k与这个二次函数图象的一个交点为P,且锐角∠POB•的正切值4.(1)求m的取值范围;(2)求这个二次函数的解析式;(3)确定直线y=kx+k的解析式.7.已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次 函数2241y x x k =++-的图象向下平移8个单位,求平移 后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线1(2y x b b k =+<)与此图象有两个公共点时,b 的取值范围.8.已知:二次函数y =2(32)220(0)mx m x m m -+++=>. (1)求证:此二次函数的图象与x 轴有两个交点;(2)设函数图象与x 轴的两个交点方程的分别为(1x ,0),(2x ,0)(其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 满足什么条件时,2y m ≤.9.已知二次函数y=x2-x+c.(1)若点A(-1,n)、B(2,2n-1)在二次函数y=x2-x+c的图象上,求此二次函数的最小值;(2)若点D(x1,y1)、E(x2,y2)、P(m,m)(m>n)在二次函数y=x2-x+c的图象上,且D、E两点关于坐标原点成中心对称,连接OP.当22≤OP≤2+2时,试求直线DE的解析式,并判断直线DE与抛物线y=x2-x+c+38的交点个数,并说明理由.10.已知抛物线y=x²—4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.(1)求平移后的抛物线解析式;=,即为过点(m,0)平行于y (2)由抛物线对称轴知识我们已经知道:直线x m轴的直线,类似地,直线y m=,即为过点(0,m)平行于x轴的直线.请结合图象回答:当直线y=m与这两条抛物线有且只有四个交点,实数m的取值范围;(3)若将已知的抛物线解析式改为y=x²+bx+c(b<0),并将此抛物线沿x轴向左平移-b个单位长度,试回答(2)中的问题.11.已知关于x 的一元二次方程022=++x ax(1)求证:当0<a 时,方程022=++x ax 一定有两个不等的实数根; (2)若代数式22++-x x 的值为正整数,且x 为整数时,求x 的值;(3)当1a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点)0,(m M ;当2a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点)0,(n N ;若点M 在点N 的左边,试比较1a 与2a 的大小.12.已知:关于x 的一元二次方程063)2(22=-+-+m x m x . (1)求证:x 无论为任何实数,方程总有实数根;(2)抛物线m x m x y 63)2(22-+-+=与x 轴交于A 、B 两点,A 在原点左侧,B 在原点右侧,且OA =3OB ,请确定抛物线的解析式;(3)将(2)中的抛物线沿x 轴方向向右平移2个单位长度,得到一个新的抛物线,请结合函数图象回答:当直线y =m 与这两条抛物线有且只有四个交点时,实数m 的取值范围.13.阅读:对于二次函数2y ax bx c=++,如果当x取任意整数时,函数值y都是整数,那么我们把该函数的图象叫做整点抛物线(例如:222y x x=++).回答问题:(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式:.(2)请探索:是否存在二次项系数的绝对值小于12的整点抛物线?若存在,请写出其中一条抛物线的解析式;若不存在,请说明理由.14.已知抛物线c bx ax y ++=232,(1)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(2)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(3)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.15.已知抛物线C1:22=-的图象如图所示,把C1的图象沿y轴翻折,得y x x到抛物线C2的图象,抛物线C1与抛物线C2 Array C3.(1)求抛物线C1的顶点A坐标,并画出抛物线C2图象;(2)若直线y kx b =+与抛物线2(0)y ax bx c a =++≠有且只有一个交点时,称直线与抛物线相切. 若直线y x b =+与抛物线C 1相切,求b 的值;(3)结合图象回答,当直线y x b =+与图象C 3 有两个交点时,b 的取值范围.16.已知关于x 的方程032)1(32=-+--m x m mx .(1)求证:无论m 取任何实数时,方程总有实数根;(2)若关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称.①求这个二次函数的解析式;②已知一次函数222-=x y ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值y 1≥y 2均成立;(3)在(2)的条件下,若二次函数y 3=ax 2+bx +c 的图象经过点(-5,0),且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值y 1≥y 3≥y 2均成立.求二次函数y 3=ax 2+bx +c 的解析式.17.已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.18.已知直线y =kx -3与x 轴交于点A (4,0),与y 轴交于点C ,抛物线234y x mx n =-++经过点A 和点C ,动点P 在x 轴上以每秒1个长度单位的速度由抛物线与x 轴的另一个交点B 向点A 运动,点Q 由点C 沿线段CA 向点A 运动且速度是点P 运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P 和点Q 同时出发,运动时间为t (秒),试问当t 为何值时,△PQA 是直角三角形;(3)在直线CA 上方的抛物线上是否存在一点D ,使得△ACD 的面积最大,若 存在,求出点D 坐标;若不存在,请说明理由.。
代数综合问题(基础)【方法点拨】(1)对“数学概念”的深刻理解是解综合题的基础;(2)认识综合题的结构是解综合题的前提;(3)灵活运用数学思想方法是解综合题的关键;(4)帮助学生建立思维程序是解综合题的核心.* 审题(读题、断句、找关键);* 先宏观(题型、知识块、方法); 后微观(具体条件,具体定理、公式)* 由已知,想可知(联想知识); 由未知,想须知(应具备的条件),注意知识的结合;* 观察——挖掘题目结构特征; 联想——联系相关知识网络;突破——抓往关键实现突破; 寻求——学会寻求解题思路.(5)准确计算,严密推理是解综合题的保证.【典型例题】类型一、方程与不等式综合例1.已知方程组2323,342 1.x y a x y a -=-⎧⎨-=+⎩的解满足0,0.x y >⎧⎨<⎩ 求a 的取值范围.例2.m 为何值时,222(2)21x m x m m --+++是完全平方式?类型二、方程与函数综合例3.请你根据下图中图象所提供的信息,解答下面问题:(1)分别写出1l ,2l 中变量y 随x 变化而变化的情况;(2)写出一个二元一次方程组,使它满足图象中的条件.【变式】已知:如图,平行于x 轴的直线y =a(a ≠0)与函数y =x 和函数xy 1=的图象分别交于点A 和点B ,又有定点P(2,0).(1)若a >0,且91tan =∠POB ,求线段AB 的长; (2)在过A ,B 两点且顶点在直线y =x 上的抛物线中,已知线段38=AB ,且在它的对称轴左边时,y 随着x 的增大而增大,求满足条件的抛物线的解析式;(3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离.例4. 已知关于x 的方程 03)13(2=+++x m mx .(1)求证: 不论m 为任何实数, 此方程总有实数根; (2)若抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式;(3)若点P ),(11y x 与Q ),(21y n x +在(2)中抛物线上 (点P 、Q 不重合), 且y 1=y 2, 求代数式81651242121++++n n n x x 的值.【变式】已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若x 1、x 2是原方程的两根,且|x 1-x 2|=22,求m 的值和此时方程的两根.类型三、以代数为主的综合题例5.如图所示,已知二次函数图象的顶点坐标为C(1,0),直线y =x+m 与该二次函数的图象交于A ,B 两点,其中A 点的坐标为(3,4),B 点在y 轴上.(1)求m的值及这个二次函数的解析式;(2)P为线段AB上的一个动点(点P与A,B不重合),过P作x轴的垂线与这个二次函数的图象交于E点,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.【变式】如图,已知二次函数24y ax x c=-+的图象与坐标轴交于点A(-1, 0)和点B(0,-5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.【巩固练习】1. 如图所示,已知函数(0)y ax b a =+≠和y =kx(k ≠0)的图象交于点P ,则根据图象可得,关于,.y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是( )A .42x y =⎧⎨=⎩ B .42x y =-⎧⎨=⎩ C .42x y =-⎧⎨=-⎩ D .42x y =⎧⎨=-⎩ 2. 如图,双曲线y =x m 与直线y =kx +b 交于点M 、N ,并且点M 的坐标为(1,3),点N 的纵坐标为-1.根据图象信息可得关于x 的方程x m =kx +b 的解为( ) A .-3,1 B .-3,3 C .-1,1 D .-1,33.下列说法中 ①若式子1x -有意义,则x >1.②已知∠α=27°,则∠α的补角是153°.③已知x=2 是方程x 2-6x+c=0 的一个实数根,则c 的值为8.④在反比例函数2k y x-=中,若x >0 时,y 随x 的增大而增大,则k 的取值范围是k >2. 其中正确的命题有( )A. 1 个 B. 2 个 C. 3 个 D. 4 个第1题图 第2题图 第4题图 第7题图 4.如图所示,是二次函数21y ax bx c =++(a ≠0)和一次函数2y mx n =+(n ≠0)的图象,观察图象写出y 2≥y 1时,x 的取值范围____ ____.5.已知二次函数22(1)2(1)y x m x m =-++-.若此函数图象的顶点在直线y =-4上,则此函数解析式为 .6. 已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的是 (填序号) .7.如图所示,抛物线2323333y x x =--+交x 轴于A ,B 两点,交y 轴于点C ,顶点为D . (1)求点A ,B ,C 的坐标; (2)把△ABC 绕AB 的中点M 旋转180°,得到四边形AEBC ,①求E 点的坐标; ②试判断四边形AEBC 的形状,并说明理由;(3) 试探求:在直线BC 上是否存在一点P ,使得△PAD 的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.8. 善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y 的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y 与用于解题的时间x 之间的函数关系式;(2)求小迪回顾反思的学习收益量y 与用于回顾反思的时间x 的函数关系式;(3) 问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?9. 已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.10. 已知:关于x 的一元二次方程04)4(2=-++-m x m x ,其中40<<m .(1)求此方程的两个实数根(用含m 的代数式表示);(2)设抛物线c bx x y ++-=2与x 轴交于A 、B 两点(A 在B 的左侧),若点D 的坐标为(0,-2),且AD ·BD=10,求抛物线的解析式;(3)已知点E (a ,1y )、F (2a ,y 2)、G (3a ,y 3)都在(2)中的抛物线上,是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由.。
代数综合型问题
经典例题:
例1. (2013山东莱芜)以下说法正确的有:
①正八边形的每个内角都是135° ②27与3
1是同类二次根式 ③长度等于半径的弦所对的圆周角为30° ④反比例函数x
y 2-=,当x<0时,y 随的x 增大而增大 A . 1个 B . 2个 C . 3个 D .4个
【解析】正八边形的每个内角度数:180°︒=︒-︒=︒-135451808
360,①正确 27=33,31=33,27与3
1是同类二次根式,②正确 一条非直径的弦对两个圆周角,分别是一个锐角和一个钝角,长度等于半径的弦所对的圆周角为30°错误 反比例函数x
y 2-
=,当x<0时,y 随的x 增大而增大,④正确 【答案】C .
【点评】掌握基础知识,记住当用的结论如正多边形的各个内角的计算、同类二次根式的识别判断、反比例函数的图象的性质。
对于一些多解问题,要做到思考问题全面.
例2.(2013山东东营)如图,一次函数3+=x y 的图象与x 轴,y 轴交于A ,B 两点,与反比例函数x y 4=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:
①△CEF 与△DEF 的面积相等;
②△AOB ∽△FOE ;
③△DCE ≌△CDF ;
④AC BD =.
其中正确的结论是( )
A .①②
B . ①②③
C .①②③④
D . ②③④
(第12题图)
【解析】根据题意可求得D (1,4 ),C (-4,-1),则F (1,0),∴△DEF 的面积是:14122⨯⨯=, △CEF 的面积是:14122
⨯⨯=,∴△CEF 的面积=△DEF 的面积,故①正确;②即△CEF 和△DEF 以EF 为底,则两三角形EF 边上的高相等,故EF ∥CD ,△AOB ∽△FOE ,故②正确;DF=CE ,四边形CEFD 是等腰梯形,所以△DCE ≌△CDF ,③正确;⑤∵BD ∥EF ,DF ∥BE ,∴四边形BDFE 是平行四边形,∴BD=EF ,同理EF=AC ,∴AC=BD ,故④正确;正确的有4个.
【答案】C
【点评】本题考查了平行四边形的性质和判定,三角形的面积,全等三角形的判定,相似三角形的判定,检查同学们综合运用定理进行推理的能力,关键是需要同学们牢固掌握课本知识并能综合运用.
跟踪训练:
1. (2013山东日照)下列命题错误..
的是 ( ) A.若 a <1,则(a -1)a
-11=-a -1 B. 若2)3(a -=a -3 ,则a ≥3
C.依次连接菱形各边中点得到的四边形是矩形
D.81的算术平方根是9
2、(2013深圳市 )下列命题:
① 方程x x =2
的解是x =1
② 4的平方根是2
③ 有两边和一角相等的两个三角形全等
④ 连接任意四边形各边中点的四边形是平行四边形
其中是真命题的有( )个
A . 4个
B . 3个
C 2个
D . 1个
3. (2013湖北黄冈,7,3)下列说法中
有意义,则x >1.
②已知∠α=27°,则∠α的补角是153°.
③已知x=2 是方程x 2-6x+c=0 的一个实数根,则c 的值为8. ④在反比例函数2k y x
-=中,若x >0 时,y 随x 的增大而增大,则k 的取值范围是k >2. 其中正确命题有( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
4.(2013河北省)如图12,四边形ABCD 是平行四边形,点A (1,0),B (3,1),C (3,3),反比例函数()0>=x x
m y 的图像过点D ,点P 是一次函数y=kx+3-3k ()0≠k 的图象与该反比例函数的一个公共点。
(1)求反比例函数的解析式;
(2)通过计算,说明一次函数y=kx+3-3k ()0≠k 的图象一定过点C;
(3)对于一次函数y=kx+3-3k ()0≠k ,当y 随x 的增大而增大时,确定点P 横坐标的取值范围(不必写出过程)。
5.(2013贵州省毕节市)近年来,地震、泥石流等自然灾害频繁发生,造成极大的生命和财产损失。
为了更好地做好“防震减灾”工作,我市相关部门对某中学学生“防震减灾”的知晓率采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”、“比较了解”、“基本连接”和“不了解”四个等级。
小明根据调查结果绘制了如下统计图,请根据提供的信息回答问题:
第24题图
(1)本次参与问卷调查的学生有 人;扇形统计图中“基本连接”部分所对应的
扇形圆心角是度;在该校2000名学生中随机提问一名学生,对“防震减灾”不了
..解.的概率为 .
(2)请补全频数分布直方图。
6.(2013·哈尔滨)如图,在平面直角坐标系中,点0为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABC0是平行四边形,直线y=_x+m经过点C,交x轴于点D.
(1)求m的值;
(2)点P(0,t)是线段OB上的一个动点(点P不与0,B两点重合),过点P作x轴的平行线,分别交AB,0c,DC于点E,F,G.设线段EG的长为d,求d与t之间的函数关系式 (直接写出自变量t的取值范围);
(3)在(2)的条件下,点H是线段OB上一点,连接BG交OC于点M,当以OG为直径的圆经过点M时,恰好使∠BFH=∠AB0.求此时t的值及点H的坐标.
7.(2013湖北荆州)已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.
(1)求k的取值范围;
(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2=4x1x2.
①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最大值.
8.(2013北海)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,
0)、B(0,1)、C(d,2)。
(1)求d的值;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图像上。
请求出这个反比例函数和此时的直线B′C′的解析式;
(3)在(2)的条件下,直线B′C′交y轴于点G。
问是否存在x轴上的点M和反比例函数图像上的点P,使得四边形PGMC是平行四边形。
如果存在,请求出点M和点P的坐标;如果不存在,请说明理由。
9.(2013贵州六盘水)假期,六盘水市教育局组织部分教师分别到A、B、C、D四个地方进行新课程培训,教育局按定额购买了前往四地的车票,图9是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:
(1)若去C地的车票占全部车票的30%,则去C地的车票数量是▲张,补全统计图9 (2)若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?
(3)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定,其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘被分成三等份且标有数字7、8、9,如图10 所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”
的方法分析这个规定对双方是否公平.
10.(2013山东省荷泽市)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c
和反比例函数
a
y
x
在同一平面直角坐标系中的图象大致是()
11.(2013重庆)甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4一k )张,乙每次取6张或(6一k 张(k 是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有____________张
12、(2013重庆)先化简,再求值:1
221214322+-+÷⎪⎭⎫ ⎝⎛---+x x x x x x ,其中x 是不等式组⎩
⎨⎧<+>+15204x x 的整数解。
13.(2013湖北黄石)已知抛物线C 1的函数解析式为y =ax 2+bx -3a (b <0),若抛物线C 1经过点(0,-3),方程ax 2+bx -3a =0的两根为x 1,x 2,且|x 1-x 2|=4.
⑴求抛物线C 1的顶点坐标.
⑵已知实数x >0,请证明x +≥2,并说明x 为何值时才会有x +=2.
⑶若将抛物线C 1先向上平移4个单位,再向左平移1个单位后得到抛物线C 2,设A (m ,y 1),B (n ,y 2)是C 2上的两个不同点,且满足:∠AOB =90°,m >0,n <0.请你用含m 的表达式表示出△AOB 的面积S ,并求出S 最小值及S 取最小值时直线OA 的函数解析式. (参考公式:在平面直角坐标系中,若P (x 1,y 1),Q (x 2,y 2),则P 、Q 两点间的距离为
)。