关于桥梁结构抗震设计探讨
- 格式:docx
- 大小:30.20 KB
- 文档页数:4
对桥梁抗震设计的探讨【摘要】本文在此主要探讨了桥梁工程抗震设计相关问题,为今后桥梁设计起到借鉴作用。
【关键词】桥梁;抗震;问题国家防震减灾规划(2006-2020年)指出,我国是世界上地震活动最强烈和地震灾害最严重的国家之一,我国大陆大部分地区位于地震烈度ⅵ度以上区域;50%的国土面积位于ⅶ度以上的地震高烈度区域。
桥梁是公路工程的关键部位及控制性工程。
在我国各级公路桥梁中,预制装配式桥梁(指空心板、t梁及组合箱梁)通常占全线桥梁的70%以上,因此,运用合理抗震设防理念,对装配式桥梁进行抗震设计,采取适当的抗震措施具有重要的意义。
一、桥梁破坏形式及震害原因分析1.1合理选址桥梁工程在建设施工的前期规划中需要对桥梁主体场地选择问题加以关注。
首先,合理的桥梁建设场地应以坚硬地质结构为首选,避免松软场地在地震时发生地基失效的现象。
其次,当交通运输发展实际要求桥梁工程不得不在松软场地区域建设的时候,桥梁的整体结构设计需要尽可能的提高基建整体性能,将地震造成地质结构不均匀变形的可能性降到最低。
1.2桥梁破坏形式对国内外桥梁震害的调查表明,上部结构震害主要表现为落梁移位,局部碰撞。
下部结构存在桥墩折断,混凝土剥落,系梁开裂,挡块普遍失效,桥台翼挤开裂、倾斜等震害现象。
另外,桥梁附属支座移位与变形,伸缩缝张开和挤压,护栏开裂的现象也非常普遍。
1.3桥梁震害原因分析桥梁震害是多种因素综合作用的结果,主要有:(1)地震作用对桥台和桥墩等薄弱部位的破坏.桥台是桥梁两侧岸边的支撑部分,一般是在岸边的原域填土上,用钢筋混凝土修建三角形或矩形的支台,这是地震作用的薄弱部位,因为桥台的路基高且三面临空,振动大,桥台和下面土的刚度不同,有相互作用,土体本身在地震中会产生液化,震陷破坏,桥台受地震的振动或场地砂土液化影响,填土滑移,滑移土体对桥台产生巨大推力,致使桥台发生破坏。
桥墩是支撑桥身的主要构件,其震害主要包括桥墩的断裂,剪断和裂缝,另外还有因桩柱埋入深度不够等原因遭受破坏。
桥梁工程抗震设计相关问题探讨摘要:目前桥梁工程抗震的研究问题是当今热点问题,本文在分析桥梁结构地震破坏的主要形式基础上,阐述了桥梁抗震设计原则,最后对于桥梁抗震设计方法进行分析,重点探讨了桥梁抗震概念设计、桥梁延性抗震设计、地震响应分析及设计方法的改变以及多阶段设计方法等内容。
本文主要探讨了桥梁工程抗震设计相关问题,为今后桥梁设计起到借鉴作用。
关键词:桥梁工程;抗震破坏;抗震设计1.桥梁结构根据桥梁过去的地震破坏情况,除了如液化、断层等凼地基失效引起的破坏以外,混凝上桥梁最常见的破坏形式有以下四种:1.1 弯曲破坏。
结构在水平地震荷载作用下由于过大的变形导致混凝土保护层脱落、钢筋压屈和内部混凝土压碎、崩裂,结构失去承载能力。
整个过程可以用以下四个阶段来描述:①当弯矩达到开裂强度时,截面出现水平弯曲裂缝;②随着裂缝的发展和荷载强度的提高,受拉侧的纵筋达到屈服强度;③随着变形量的增大,混凝土保护层脱落、塑性铰范围扩大;④钢筋压屈(或拉断)和内部混凝土压碎、崩裂。
1.2 剪切破坏。
在水平地震倚戟作用下,当结构受到的剪切力超过截而剪切强度时发生剪切破坏,整个破坏过程可以用以下四个阶段来描述:①截血弯矩达到开裂强度时,截面出现水平弯曲裂缝;②随着裂缝的发展和荷载强度的提高,柱内出现斜方向的剪切裂缝;③局部剪切裂缝增大,箍筋屈服导致剪切裂缝进一步增长;④发生脆性的剪切破坏。
1.3 落梁破坏。
当梁体的水平位移超过梁端支撑长度时发生落梁破坏。
落梁破坏是由于梁与桥墩(台)的相对位移过大,支座丧失约束能力后引起的一种破坏形式。
发生在桥墩之间地震相对位移过大、梁的支撑长度不够、支座破坏、梁间地震碰撞等情况。
1.4 支座损伤。
上部结构的地震惯性力通过支座传到下部结构,当传递荷载超过支座设计强度时支座发生损伤、破坏。
支座损伤也是引起落梁破坏的主要原因。
对于下部结构而言,支座损伤可以避免上部结构的地震荷载传到桥墩,避免桥梁发生破坏。
地震作用下桥梁结构的抗震设计地震,作为一种破坏力极强的自然灾害,常常给人类社会带来巨大的损失。
桥梁作为交通网络的重要组成部分,其在地震中的安全性至关重要。
因此,对桥梁结构进行科学合理的抗震设计,是保障人民生命财产安全、确保交通生命线畅通的关键。
一、地震对桥梁结构的破坏形式地震作用下,桥梁结构可能会遭受多种形式的破坏。
首先是桥梁上部结构的位移和落梁。
强烈的地震波会导致桥梁上部结构产生过大的水平位移,如果相邻梁体之间的连接不够牢固,就可能发生落梁现象,使桥梁彻底失去通行能力。
其次,桥墩的损坏也是常见的破坏形式。
桥墩可能会因为承受不住地震力而出现弯曲、剪切破坏,甚至发生倒塌。
另外,基础的破坏也不容忽视。
地震可能导致地基土的液化,使基础失去承载能力,从而引起桥梁的整体下沉或倾斜。
二、桥梁抗震设计的基本原则在进行桥梁抗震设计时,需要遵循以下几个基本原则。
一是“小震不坏”。
即在较小强度的地震作用下,桥梁结构应保持完好,不出现任何损坏,能够正常使用。
二是“中震可修”。
当遭遇中等强度的地震时,桥梁结构可能会出现一定程度的损坏,但经过修复后仍能继续使用。
三是“大震不倒”。
在强烈地震作用下,虽然桥梁结构可能遭受严重破坏,但应保证不发生整体倒塌,以避免造成更大的灾难。
三、桥梁抗震设计的方法1、静力法静力法是最早用于桥梁抗震设计的方法之一。
它将地震作用简化为一个等效的静力荷载,通过计算结构在这个静力荷载作用下的内力和变形来进行设计。
这种方法简单直观,但由于没有考虑地震的动力特性,其设计结果往往偏于保守。
2、反应谱法反应谱法是目前桥梁抗震设计中应用较为广泛的一种方法。
它基于大量地震动记录的统计分析,得到不同周期结构的地震反应谱。
通过将桥梁结构的自振周期代入反应谱,计算出结构的地震响应。
反应谱法能够较好地考虑地震的频谱特性,但对于长周期结构和非线性结构的分析存在一定的局限性。
3、时程分析法时程分析法是一种直接动力分析方法,通过输入实际的地震动加速度时程,对桥梁结构进行动力分析,得到结构在整个地震过程中的响应。
有关桥梁抗震设计及加固技术的探讨摘要:由于地震灾害的发生,给国家和人民带来了巨大的经济损失,因此,有必要对桥梁的抗震设计进行研究。
本文结合笔者几年的工作经验,探讨分析了桥梁抗震设计及加固技术,以提高桥梁结构的防震和抗震效果。
关键词:桥梁加固抗震设计由于我国处于地震多发地带,在地震发生时,不仅会有大量的地面建筑物及各种设施遭到破坏或倒塌,大量人员伤亡,而且还会严重造成交通中断。
作为抗震救灾生命线工程之一的公路交通(尤其是铁路桥梁、城市高架、公路桥梁等公路工程的咽喉要道)若受到较大损坏,将会给后续救助工作造成极大的困难。
笔者就桥梁抗震设计及加固技术做以下探讨。
1、桥梁的震害类型分析根据地震时各个作用力的特点(见图1所示)。
大部分桥梁都会受到不同程度的破坏,分析其震害主要有以下几点:图1 地震时位移与剪力示意图(1)桥台震害:其主要表现为桥台与路基一起滑动并移向河心,桩柱式桥台的桩柱不同程度沉降、开裂、倾斜和折断等,具体见图2所示。
另外,桥头的沉降会导致翼墙损坏并开裂。
(2)桥墩震害:在地震力作用下桥墩会不同程度的倾斜、沉降、滑移、开裂、剪断和钢筋裸露扭曲。
(3)支座震害:根据以往工作经验,图2 桥台后护坡垮塌图会发现某些桥梁的支座设计并未充分考虑抗震的需求,如某些支座形式和材料上存在缺陷、在构造上连接与支挡等构造措施不足等,以致支座在地震力作用下会发生较大的变形和位移。
(4)地基与基础震害:在地震力作用下地基中的砂土会被液化,以致地基失效,基础沉降或不均匀沉降,从而导致地面较大变形,地层发生水平滑移、下层、断裂等。
地基与基础震害会使桥梁发生坍塌,给震后修复工作带来困难。
(5)梁的震害:梁的震害主要是因桥台震害、桥墩震害、支座震害等引起的,其主要表现为主梁坠落,这也是最严重的震害现象。
2、桥梁的抗震设计针对以上震害类型,特提出以下桥梁抗震设计理念见图3。
图3 桥梁抗震设计理念2.1 抗震概念设计由于地震的发生存在不确定因素和复杂因素,同时结构计算模型需要假定结果且与实际情况存在较大差异,以致“计算设计”在一定程度上较难控制结构的抗震性能。
桥梁工程中的抗震设计抗震是桥梁工程设计的重要环节之一,它直接关系到桥梁的耐久性和安全性。
在地震频发的地区,桥梁的抗震设计更加重要。
本文将探讨桥梁工程中的抗震设计原理和方法。
一、地震力的分析和计算抗震设计首先需要对地震力进行分析和计算。
地震力的大小和方向是影响桥梁抗震性能的重要因素。
地震力的计算需要考虑到地震烈度、震源距离、土壤条件等多个因素,并结合地震学和土木工程学的理论进行分析。
通过合理的计算方法,能够准确预测桥梁在地震作用下的响应。
二、桥梁结构的抗震设计1. 抗震设计的目标桥梁结构的抗震设计目标是在地震波作用下,保证桥梁的整体稳定性和结构安全性。
一般来说,桥梁的主要抗震性能指标包括位移限值、加速度限值和应力限值等。
在设计过程中,需要根据桥梁的特点和使用环境确定相应的指标,以确保桥梁在地震中具有足够的抗震能力。
2. 结构抗震设计的方法结构抗震设计的方法有很多,其中常用的包括弹性设计、弹塑性设计和减震设计等。
弹性设计是指在地震荷载下,结构仍然处于弹性状态,通过控制应力、位移等参数,确保结构的安全性。
弹塑性设计考虑了结构的塑性变形能力,在超出弹性阶段后,通过合理的塑性形变控制,提高结构的耗能能力。
减震设计是通过设置减震装置,将地震力转化为其他形式消耗,从而减小结构的震动反应。
三、桥梁基础的抗震设计桥梁基础是支撑整个桥梁结构的关键组成部分,其抗震设计至关重要。
抗震基础设计需要考虑到地震力传递、土壤的动力特性等因素。
一般来说,桥梁基础的抗震设计可以采用加固和加深基础、选用合适的基础形式等方法,以提高基础的抗震性能。
四、监测与维护桥梁工程的抗震设计不仅仅局限于初始设计阶段,还需要在桥梁运行的全生命周期内进行监测和维护。
通过实时监测桥梁的工作状态和结构响应,能够及时发现和处理可能存在的问题,保证桥梁的安全稳定运行。
综上所述,桥梁工程中的抗震设计是确保桥梁安全的重要环节。
通过合理的地震力分析和计算、结构和基础的抗震设计,以及监测和维护工作,可以提高桥梁的抗震能力,保障桥梁的安全性和耐久性。
市政桥梁设计的防震设计全文共四篇示例,供读者参考第一篇示例:市政工程是指由政府主导和管理的城市基础设施建设工程,其中桥梁设计是市政工程中的一个重要领域。
随着地震频率的增加,对于市政桥梁设计的防震设计也越来越受到重视。
设计人员需要充分考虑桥梁的抗震能力,确保在地震发生时可以有效抵御震荡力,保障桥梁的安全性和稳定性。
本文将就市政桥梁设计的防震设计进行探讨。
一、抗震设计原则市政桥梁设计的抗震设计必须遵循一定的原则,以确保桥梁在地震发生时能够发挥出最大的抗震能力。
是结构的合理布局。
桥梁结构要合理布局,考虑到桥梁在地震中可能受到的横向和纵向振动力,确保结构的稳固性和抗震能力。
是材料的选择。
抗震设计需要选择抗震性能好的建筑材料,如高强度混凝土、钢结构等,以确保结构在地震中不会轻易受损。
还需要考虑桥梁的整体性能、变形能力和破坏机制等方面的问题,从而确保抗震设计能够真正发挥作用。
二、防震设计方案市政桥梁的防震设计方案是保证桥梁在地震中安全性和稳定性的关键。
针对不同类型的桥梁,设计人员需要选择合适的防震设计方案。
一般而言,包括增加结构强度、设置局部防震措施、提高桥墩和桥台的抗震能力等。
增加结构强度是一种常见的抗震设计方案,通过提高桥梁结构的强度和刚度,来抵御地震力的作用。
设置局部防震措施是指在桥梁的结构关键部位设置专门的抗震构件或装置,以增强结构的抗震性能。
而提高桥墩和桥台的抗震能力则是通过加固和加固构件来提高桥梁桥墩和桥台的抗震性能。
这些抗震设计方案的采用将有效提高桥梁抗震性能,保障其在地震中的安全性。
三、抗震设计实施市政桥梁的抗震设计实施是指设计方案从理论到实际的一系列操作。
在抗震设计实施中需要进行多方面的工作,包括抗震设计的模拟分析、实验验证、结构设计和施工监管等。
需要进行抗震设计的模拟分析,通过现代工程软件对桥梁进行模拟分析,计算结构在地震作用下的受力情况,确定合理的抗震设计方案。
需要进行实验验证,通过对抗震构件的试验和检测,验证抗震设计方案的有效性和可靠性。
桥梁抗震与抗风设计理念及设计方法探讨桥梁在地震和强风等极端天气条件下的抗震和抗风设计是非常重要的,因为这些天气条件可能给桥梁结构带来巨大的破坏风险。
在进行桥梁抗震和抗风设计时,需要考虑桥梁材料的强度、结构的刚度以及桥梁的几何形状等多个因素。
本文将探讨桥梁抗震和抗风设计的理念和方法。
首先,桥梁抗震设计是为了使桥梁能够在地震中保持其完整性和稳定性。
在进行抗震设计时,应考虑到地震引起的地震力和动力效应。
地震力是指地震引起的作用力,而动力效应是指地震波所产生的动力荷载对桥梁结构的作用。
为了抵抗这些力量和效应,可以采取多种措施,如增加桥墩的承受能力、加固桥梁结构内部的连接部分、采用一些减震设备等。
此外,还应根据地震水平和桥梁的重要性确定设计参数,以确保桥梁在地震中能够承受相应的力量。
其次,桥梁抗风设计是为了使桥梁能够在强风条件下保持其稳定性和安全性。
强风可能产生强大的风载荷,在桥梁表面、顶部和侧面产生巨大的压力。
为了抵抗这些风载荷,可以采用一些措施,如增加桥墩的宽度和高度、采用空气动力学构件以减少风阻力、使用减压通风口等。
此外,还应考虑到桥梁在不同风向下的稳定性以及风应力对桥梁材料和连接部件的影响,以确保桥梁在强风中能够承受相应的力量。
在进行桥梁的抗震和抗风设计时,可以应用一些设计方法来评估桥梁结构的性能。
其中一个常用的方法是地震和风载荷的时间历程分析。
通过对地震波和风速的变化进行模拟计算,可以得到桥梁结构在地震和强风条件下的动态响应。
另一个常用的方法是使用有限元分析软件来建模和分析桥梁结构的行为。
通过将桥梁结构划分为多个小元素,并对每个小元素进行力学分析,可以得到桥梁结构在地震和强风作用下的应力、应变和位移等参数。
此外,还可以使用试验来评估桥梁结构的性能,例如通过对小样品进行抗震和抗风试验来研究桥梁的破坏机制和受力特点,以制定相应的设计规范。
综上所述,桥梁的抗震和抗风设计是非常重要的。
在进行抗震和抗风设计时,需要考虑地震和风载荷的作用,并采取一些措施来增加桥梁结构的稳定性。
桥梁工程中的抗震与防震设计桥梁工程在现代社会中扮演着重要的角色,连接着交通运输网络,促进着经济的发展。
然而,地震是一个可能给桥梁带来严重破坏的自然灾害。
因此,在桥梁的设计与建设中,抗震与防震设计显得尤为重要。
本文将探讨桥梁工程中的抗震与防震设计的一些关键点。
首先,了解地震特性是进行抗震设计的基础。
地震是地球内部的板块运动引起的地壳震动,具有短时间、高能量的特点。
地震的产生与地震带、板块运动等因素密切相关。
因此,在进行桥梁工程的抗震设计时,需要对该地区的地震特性进行详细的研究和分析,包括地震频率、地震波形等参数。
只有了解了地震的特性,才能设计出具有良好抗震性能的桥梁结构。
其次,采用适当的结构措施来增强桥梁的抗震性能。
桥梁结构的抗震性能是由桥梁的整体刚度和阻尼特性决定的。
为了增强桥梁的刚度,可以采用增加横向刚度的措施,如加大横向梁的剖面积分、增加横向联络梁等。
此外,还可以采用增加纵向刚度的措施,如设置纵向墩柱、加深桥墩基础等。
通过增加桥梁的刚度,可以使其在地震荷载作用下保持相对稳定的形态,从而减小破坏的可能性。
另外,在桥墩的设计中,也需要考虑到地震的影响。
桥墩是桥梁结构中的承重单元,地震作用下易受到破坏。
为了增强桥墩的抗震性能,可以采用加固措施,如设置抗震支撑、加固基础等。
此外,在选择桥墩的材料时,也需要考虑其抗震性能。
一些具有良好抗震性能的材料,如纤维增强复合材料,可以在一定程度上增强桥墩的承载能力。
在桥梁的设计与施工中,还需要充分考虑到震后维修与重建的可能性。
即使采用了先进的抗震设计措施,桥梁在地震作用下仍然有可能受损。
因此,在进行桥梁工程的规划与设计时,需要考虑到震后维修与重建的可能性。
在设计过程中,可以采用模块化设计的方式,使得桥梁的部分结构可以快速更换与维修。
此外,在施工过程中,可以采用可拆卸连接的方式,使得桥梁的部分结构更容易拆卸与更换。
这样一来,即使发生地震破坏,桥梁的维修与重建也可以更加迅速有效地进行。
桥梁抗震设计研究论文桥梁抗震设计研究论文桥梁抗震设计研究论文主要针对桥梁抗震设计要点、破坏的类型、桥梁的防震措施进行了研究。
桥梁抗震设计研究论文【1】[摘要]我国地震时常发生,震害强烈,破坏力大。
因此,对于我国的公路桥梁工程建筑来说,必须要加强防震措施,减少地震带来的损失。
我国安全防灾等相关部门要不断加强公路桥梁质量规范和设计,推进抗震措施的理论发展和实践技术,来保障人民财产在地震灾害中不受较大的损失,促进社会的和谐发展。
[关键词]桥梁抗震设计、破坏的类型、措施一、地震给桥梁带来的破坏类型(一)支座破坏根据我国对地震灾害中桥梁的调查显示112座桥梁中有53座桥梁约占47%发生了支座破坏,综合国内外十次大地震的调查报告,支座的破坏现象属于普遍现象。
支座的地震灾害主要表现为支座倾斜和剪断、自动支座的脱落和支座自身建造组成的破坏。
支座垫块被重力压碎,使得桥板不稳定,甚至造成落梁。
落梁的发生与支座破坏密切相关,支承破坏使得桥梁上部失去支撑,造成落梁事故。
当支座破坏时会使得墩-梁之间产生位移,当墩梁间的相对位移大于主梁搁置长度后,主梁将从桥墩脱落从而使得发生落梁。
(二)梁体移位造成的破坏上部梁体的移位是震害中常见的破坏,根据地震的震向而发生纵向移位、横向移位以及扭转移位。
其中伸缩缝处发生移位成为主要灾害。
地震时地势的扭曲,桥梁的梁体移位是绝对的。
如果震幅较小不会发生太大的移位,震后将换掉不能正常工作的的支座,把梁体加固后恢复原位,桥梁就还可以正常工作。
但是,如果震幅过大,造成较大移位就会导致落梁。
所以采取抗震措施减小梁体位移就显得十分重要。
就如云南地震时的有些桥梁上部结构没有落梁,发生了比较大的移位。
虽然没有出现塌落事故,但是已经成为废桥不再能够正常使用了。
(三)地基与基础破坏地基与基础的严重破坏是导致桥梁倒塌的重要原因,而且倒塌后基本无法修理。
基础与地基的紧密相连,基础的好坏直接影响着地基的稳定程度。
基础的破坏势必会引起地基的破坏,使得出现移位、倾斜、下沉、折断和屈曲失稳等现象。
探讨桥梁结构抗震设计摘要:本文介绍了地震给桥梁带来的危害,详细阐述了桥梁结构抗震设计的理念和原则,并结合桥梁结构抗震设计的现状对桥梁结构抗震设计的重点进行了科学合理的探究,给探讨桥梁结构抗震设计带来了积极的指导意义。
关键词:桥梁结构;抗震设计;设计原则;设计重点1前言地震是因为地球内部局部区域发生剧烈变化,从而引起地面强烈振动的现象。
其主要是由横波和纵波双重作用下引发的,其中纵波主要造成地面上下晃动,而横波则引起地面左右摇晃。
我国是一个地震多发区国家,因此在所有建筑抗震设计上都应该给予足够的重视,桥梁结构也不例外。
在地震发生的时候,桥梁的整个场地与地基会在第一时间受到严重的破坏,从而引发整个桥梁发生大范围的破坏;其次地震带来的场地振动也会使桥梁受到大范围的破坏,其主要是因为强烈的地面振动会带动桥梁振动,从而引发桥梁发生各种地震破坏,比如地基失效等。
下面主要结合桥梁结构抗震设计的理念和原则,谈一谈桥梁结构抗震的设计。
2桥梁结构抗震设计的理念和原则2.1 桥梁结构抗震设计的理念目前桥梁结构抗震设计的理念为小震不坏、中震可修和大震不倒,也就是说在实际桥梁结构抗震设计中,应该根据桥梁所在区域地震发生的频率,并结合罕见地震对整个桥梁进行多标准的设计。
具体来说,设计出来的桥梁在遇到小规模地震的时候,其桥梁结构应该处于弹性阶段,即内部结构不能出现损害或者仅仅出现很轻微的损害,从而保证桥梁在小规模地震时能够正常使用;当设计出来的桥梁遇到中规模的地震时,其桥梁结构将会进入非弹性阶段,即桥梁可能发生部分损害,但应该保证这些损害区域都处于可修复的程度,同时应该在地震后尽快的对桥梁进行修复工作,从而使桥梁尽快的实现其职能;当设计出来的桥梁遇到大规模的地震时,其桥梁结构将会进入弹塑性阶段,即桥梁很可能会发生严重的破坏,但应该保证桥梁不会发生整体的坍塌现象,同时经过快速的维修以后可保证桥梁能够安全的通车。
一般情况下,桥梁结构的抗震设计都应该满足以上理念,并根据抗震设防烈度进行相应的抗震措施。
桥梁抗震设计探讨随着现代交通运输的发展,桥梁作为重要的交通基础设施,承担着极其重要的角色。
然而,地震是威胁桥梁安全的一大因素。
因此,桥梁抗震设计成为了工程师们关注的焦点之一。
本文将探讨桥梁抗震设计中的一些重要因素以及应对策略。
首先,桥梁的结构材料是设计中的一个重要考虑因素。
传统的树木或石头建造的桥梁相对较不稳定,抗震能力较差。
现代桥梁常使用钢和混凝土等材料,这些材料在受力时能够更好地抵抗震动力。
在桥梁抗震设计中,结构材料的选择需要结合桥梁的实际情况,考虑地震的潜在威胁以及社会经济因素。
其次,桥梁的设计架构也对其抗震能力有重要影响。
传统的桥梁多为刚性结构,刚度较高,一旦发生地震可能会受到较大的冲击力。
现代桥梁设计倾向于采用可变刚度结构,即在桥梁的某些部分设置延性结构,使其在地震时能够有一定的变形能力,减轻地震对桥梁的冲击。
此外,地震时的液状化问题也是桥梁抗震设计中需要解决的难题之一。
液状化是指在地震时土壤失去原有的强度和刚性,变为流体状态。
在桥梁的基础设计中,需要考虑到液状化现象对桥梁的影响,采取相应的措施来提高桥梁的抗震能力,例如加固基础、使用抗液化材料等。
此外,桥梁抗震设计还需要考虑到不同地区的地震特点。
世界各地地震的性质各异,引起地震的地质构造、震源深度等都不尽相同。
因此,在设计中需要根据实际情况进行地震研究,确定设计参数。
不同地区的桥梁抗震设计需要有差异化的策略,不能一概而论。
此外,随着科技的不断发展,桥梁抗震设计也受到了一些新技术的影响。
例如,结构减震技术是近年来兴起的一项新技术,通过在桥梁结构中加入减震装置,可以在地震时减小桥梁的震动响应,提高桥梁的抗震能力。
此外,地震预警系统的应用也能够在地震发生前提供一定的预警时间,以减小地震对桥梁的影响。
综上所述,桥梁抗震设计是一项复杂而重要的工作。
在桥梁设计中,结构材料的选择、设计架构、地区地震特点以及新技术的应用都是需要考虑的因素。
通过合理的设计和科学的技术手段,我们能够提高桥梁的抗震能力,保障交通运输的安全和顺畅。
桥梁抗震设计与施工措施桥梁是连接两岸的重要交通枢纽,在日常生活中扮演着重要的角色。
然而,面对地震等自然灾害,桥梁的抗震设计和施工措施显得尤为重要。
本文将着重探讨桥梁抗震设计与施工措施,以确保桥梁在面对地震时能够安全可靠地运行。
一、抗震设计1. 设计要素桥梁的抗震设计首先需要考虑周边地质情况,选择适合的基础结构形式,以确保桥梁在地震发生时不会因地基沉降或滑动而受损。
同时,结构设计应尽可能减小桥梁的振动幅度,采用减震措施来降低地震对桥梁的冲击。
2. 建设材料在桥梁的抗震设计中,建设材料的选择非常关键。
高强度的混凝土、钢材等材料可以有效提高桥梁的抗震性能,同时在设计中考虑结构的柔韧度,以增加桥梁在地震发生时的变形能力。
3. 结构形式桥梁的结构形式也是抗震设计的重要考虑因素。
多跨悬索桥、斜拉桥等结构形式相对于梁桥、板桥等传统结构形式在抗震性能上更具优势,可以有效减小桥梁结构在地震中的应力和变形,提高桥梁的整体承载能力。
二、施工措施1. 施工工艺在桥梁的施工过程中,要严格按照设计要求进行施工,合理控制建设材料的质量,避免在施工过程中产生质量缺陷。
同时,施工过程中要注意减小地震对桥梁的影响,避免因施工不当导致桥梁结构弱化,影响桥梁的整体抗震性能。
2. 合理安排施工周期在桥梁的建设过程中,合理安排施工周期也是确保桥梁抗震性能的重要措施。
通过合理安排施工计划,避免在地震多发期进行大规模施工,减小地震对桥梁的影响,确保桥梁在建设过程中具有足够的抗震性能。
3. 施工质量监督在桥梁施工过程中,质量监督也是确保桥梁抗震性能的重要保障。
加强施工现场监督,及时发现和处理施工中的质量问题,以确保桥梁在施工完成后具有良好的抗震性能,保障桥梁在地震中的安全运行。
综上所述,桥梁的抗震设计与施工措施对于确保桥梁在地震中的安全运行具有至关重要的作用。
设计人员和施工人员应加强技术研究和实践经验积累,不断提升桥梁的抗震性能,为人们在生活中提供更加安全、高效的交通运输服务。
桥梁抗震设计若干方面的探讨为了有效提高桥梁的质量、避免桥梁在地震等灾害中造成一定程度的损失,必须加强桥梁的抗震设计、这就需要桥梁设计工作者首先加强桥梁抗震设计的重要性,其次要积极探索桥梁抗震设计的方法、通过不断完善自己的设计作品,更好地服务于公路建设,为人们更好的生活提供保证。
一、明确桥梁抗震设计的重要性如今,世界范围内的地震次数越来越多,很多国家为了使地震灾害降到最低程度,都在不断探索桥梁的抗震设计,不断普及桥梁抗震设计的重要性。
当然,在了解桥梁抗震设计的重要性的同时,我们更要清楚的了解桥梁震害的主要原因。
只有找到原因,才能找到解决问题的方法。
1、桥梁结构缺乏防震设计现在的桥梁一般都是梁式的,这种形式的桥梁通过地震产生位移之后,便会形成桥梁上部活动节点地方因盖梁宽度设置不当而造成落梁或者梁体相互磁撞引起的破坏。
对于拱式结构的桥梁,如果没有进行抗震设计,那么主要破坏的是拱上建筑和腹拱。
位于拱顶和拱脚部分的拱圈会产生裂缝,也可能是整个拱隆起变形。
2、桥梁地基缺乏抗震设计如果桥梁地基土受到地震的影响,那么不仅会加大地震的位移,也会放大桥梁结构的振动反应,从而造成落桥。
有些桥梁在建设过程中会采用排架桩基础,这会造成桩基的承载力降低,进而导致桥梁横向或者竖向移动。
除此之外,如果在建设桥梁时没有修建稳定的地基,地震时便会因部分地基液化失效而引起结构物的整体倾斜,从而造成落桥。
3、桥梁支座缺乏抗震设计在地震力的作用下,如果桥梁支座没有进行抗震设计,必然会导致桥梁构造上连接的不足。
或者在进行桥梁支座施工时,没有按照实际情况配置合理的支座型式、没有采用质量合格的建筑材料,也会导致桥梁支座发生过大的位移和变形,甚至会造成支座的螺栓拔出、剪短等各种形式的破坏。
二、地震对桥梁的破坏原因分析1、桥台往往在地震发生后,桥台与路基会发生滑移的情况,从而导致桩柱式桥台的桩柱出现倾斜、拆断和开裂的现象。
而一些重力式桥台,在地震发生时,往往会出现胸墙开裂及台体移动等情况,同时桥头引道也会发生沉降,施工缝错开等。
桥梁抗震设计桥梁作为城市交通的重要组成部分,承担着连接两岸的重要任务。
然而,在地震频发的地区,桥梁的抗震性能显得尤为重要。
本文将探讨桥梁抗震设计的关键要素,以及现代技术在提升桥梁抗震性能方面的应用。
一、地震对桥梁的影响地震是自然界中一种不可预知的自然灾害,它给桥梁结构带来了巨大的挑战。
地震力的作用下,桥梁结构可能发生严重的破坏,甚至导致垮塌,给交通运输带来严重影响。
因此,桥梁抗震设计显得尤为重要。
二、桥梁抗震设计要素1. 结构设计:桥梁结构设计是抗震设计的基础,其中包括桥梁的布局、材料选择和连接方式等。
合理的结构设计能够提升桥梁的抗震性能,降低破坏风险。
2. 地震动力学参数:在桥梁抗震设计中,需要考虑到地震动力学参数,如地震波的峰值加速度、频谱特征等。
这些参数可以通过历史地震数据和地震模拟计算获得。
3. 桥墩设计:桥墩是桥梁结构中承受地震荷载的重要部分。
在桥墩设计中,需要考虑墩身的尺寸、形状和材料等因素,以提高桥梁的抗震性能。
4. 受力分析:通过受力分析,可以确定桥梁各部分在地震作用下的应力分布情况。
合理的受力分析可以指导桥梁设计过程中的结构优化。
5. 抗震设计指标:抗震设计指标是评估桥梁抗震性能的重要依据,常用的指标包括破坏概率、损伤指标和位移响应等。
通过合理选择抗震设计指标,可以有效提升桥梁的安全性能。
三、现代技术在桥梁抗震设计中的应用1. 桥梁模型试验:桥梁模型试验是评估桥梁抗震性能的有效手段。
通过搭建桥梁模型,并对其进行地震模拟测试,可以获取桥梁在地震作用下的响应情况,从而指导实际工程中的设计与施工。
2. 数值模拟分析:借助计算机技术,可以对桥梁结构进行数值模拟分析。
通过建立桥梁的有限元模型,结合地震动力学参数,可以模拟桥梁在地震中的响应情况,并对其进行优化设计。
3. 新材料应用:新材料的应用对桥梁抗震性能具有重要影响。
例如,高性能混凝土、钢材以及纤维增强复合材料等,都可以提升桥梁的抗震能力。
地震作用下桥梁结构的抗震设计桥梁作为交通运输的重要枢纽,在地震作用下的安全性至关重要。
地震可能导致桥梁结构的损坏甚至倒塌,严重影响救援和灾后重建工作。
因此,对桥梁结构进行科学合理的抗震设计是保障桥梁安全的关键。
一、地震对桥梁结构的影响地震是一种突发的自然灾害,其释放的能量以地震波的形式传播。
当地震波到达桥梁所在地时,会对桥梁结构产生多种影响。
首先是水平地震力的作用。
水平地震力会使桥梁产生水平位移和加速度,导致桥墩、桥台等构件承受较大的弯矩和剪力。
如果这些构件的强度和刚度不足,就可能发生开裂、屈服甚至破坏。
其次是竖向地震力的影响。
虽然竖向地震力通常比水平地震力小,但在某些情况下,如近断层地震或大跨径桥梁中,竖向地震力也不可忽视。
它可能导致桥梁支座脱空、梁体与墩台的碰撞等问题。
此外,地震还可能引起地基土的液化、滑坡等现象,削弱桥梁基础的承载能力,导致桥梁整体失稳。
二、桥梁结构抗震设计的原则为了确保桥梁在地震作用下的安全性,抗震设计应遵循以下原则:1、多道防线原则在桥梁结构中设置多个抗震防线,当第一道防线失效后,后续的防线能够继续发挥作用,从而提高桥梁的抗震能力。
例如,墩柱可以作为第一道防线,当墩柱破坏后,支座、伸缩缝等构件能够起到一定的耗能作用。
2、能力设计原则通过合理的设计,使桥梁结构的各个构件在地震作用下能够按照预定的方式屈服和破坏,避免出现脆性破坏和不合理的破坏模式。
例如,应确保桥墩的塑性铰出现在预期的位置,并且具有足够的变形能力。
3、整体性原则注重桥梁结构的整体性,使各个构件之间能够协同工作,共同抵抗地震作用。
例如,通过合理设置系梁、盖梁等构件,增强桥墩之间的连接,提高桥梁的整体刚度和稳定性。
三、桥梁结构抗震设计的方法1、静力法静力法是一种简单的抗震设计方法,它将地震作用等效为一个静态的水平力,作用在桥梁结构上。
这种方法适用于规则、简单的桥梁结构,但对于复杂的桥梁结构,其计算结果可能不够准确。
桥梁设计中的抗震技术与应用研究桥梁作为交通基础设施的重要组成部分,在保障人员和物资的流通方面发挥着关键作用。
然而,地震作为一种不可预测且破坏力巨大的自然灾害,对桥梁的安全构成了严重威胁。
因此,在桥梁设计中充分考虑抗震因素,采用先进的抗震技术,对于提高桥梁在地震中的稳定性和安全性至关重要。
一、桥梁在地震中的破坏形式要有效地设计桥梁的抗震性能,首先需要了解桥梁在地震中可能出现的破坏形式。
常见的有以下几种:1、桥墩破坏桥墩是桥梁的主要支撑结构,在地震中容易受到水平力和弯矩的作用。
可能出现的破坏形式包括混凝土开裂、钢筋屈服、墩身倾斜甚至折断。
2、桥台破坏桥台与路堤的连接部位在地震中容易产生不均匀沉降和位移,导致桥台开裂、倾斜或坍塌。
3、支座破坏支座是连接桥梁上部结构和下部结构的重要部件,在地震中可能会发生移位、脱落或损坏,从而影响桥梁的整体受力性能。
4、梁体破坏梁体在地震作用下可能会出现裂缝、断裂或移位,严重影响桥梁的通行能力。
二、桥梁抗震设计的基本原则为了提高桥梁的抗震性能,在设计过程中需要遵循以下基本原则:1、场地选择应尽量选择地质条件良好、地势平坦的场地建设桥梁,避免在地震断层、软弱土层等不利地段建造。
2、合理的结构体系选择具有良好抗震性能的结构形式,如连续梁桥、刚构桥等,避免采用抗震性能较差的结构。
3、强度和延性设计既要保证桥梁结构在地震作用下具有足够的强度,能够承受地震力的作用,又要具备一定的延性,能够通过塑性变形来消耗地震能量。
4、多道抗震防线通过设置多个抗震构件和体系,形成多道抗震防线,当一道防线失效时,其他防线能够继续发挥作用,保证桥梁的整体稳定性。
三、桥梁抗震技术1、基础隔震技术基础隔震是通过在桥梁基础和上部结构之间设置隔震装置,如橡胶支座、摩擦摆支座等,来延长结构的自振周期,减少地震能量的输入。
隔震装置能够有效地隔离水平地震作用,降低上部结构的地震响应。
2、耗能减震技术耗能减震技术是在桥梁结构中设置耗能装置,如金属阻尼器、粘滞阻尼器等,在地震作用下,耗能装置通过自身的变形和摩擦来消耗地震能量,从而减轻结构的破坏。
关键词:桥梁结构;抗震设计;设防措施当前的桥梁结构抗震设计存在诸多的问题影响了桥梁结构的稳定性和安全性,因此在实际工作中需要适当的借鉴其他地区在桥梁结构抗震设计方面的经验,根据本地区的桥梁结构特点设置相对应的抗震设计方案,从而使得桥梁本身的抗震系数能够得到全面提高。
在实际工作中需要了解桥梁抗震设计的要点以及设防的措施,从而使得桥梁设计效果能够得到全面提高。
1桥梁抗震结构概述在进行桥梁抗震结构设计之前,需要了解桥梁抗震结构本身的特点,从而为后续的设计工作提供重要的支撑。
桥梁工程属于当前时代下重要的建设工程,抗震系数的提高影响了桥梁工程本身的稳定性,在抗震设计中,主要是根据地震灾害和工程经验等相关内容来进行日常的设计,选择正确的设计思想,从整体性角度构建完整结构总方案,细致性地进行结构设计,从而达到抗震效果,合理性的抗震设计要在刚度和强度上满足相关标准,并且实现强度和刚度的最佳组合,使得桥梁的抗震效果能够得到全面提高[1]。
桥梁属于交通中的重要组成部分,桥梁如果被破坏不仅会影响人们正常出行,还会带来较为严重的安全问题,因此在实际工作中需要更加科学而有序地进行桥梁抗震结构设计,从以往的设计经验来看,一些桥梁经常会出现开裂和混凝土剥落等问题,严重时内部钢筋也会出现裸露情况,因此在实际工作中需要更加科学而有序地开展桥梁抗震设计,为后续的使用提供重要基础。
2桥梁结构的震害研究2.1原因地震对于桥梁结构的影响是比较大的,很容易导致桥梁结构出现损坏的问题,使得桥梁安全性和质量无法满足相关的标准,在实际工作中需要加强对桥梁结构抗震设计和设防的重视程度,并且还需要了解桥梁结构出现震害的原因。
桥梁结构震害包括桥梁振动和场地相对位移变化,产生了强制性的变形,在场地运动的引力下,惯性会将地震作用于加载强硬结构中,而出现桥梁结构振动问题。
其次还会由于场地的位移而引起,在场地位移下不通过强制性变形,形成了超静定内力使得桥梁结构出现变形情况,在地震作用下,桥梁结构会受到不同程度的破坏问题,使得安全性很难得到有效保障,比如桥墩的开裂和倾斜等等,由于地震对于桥梁结构的破坏程度存在一定差异性,所以其中的表现形式也存在着一定差异性,在地震发生后会使桥梁出现位移,对各个节点造成严重影响,节点的承载力和角度发生一定变化,那么会使桥梁本身出现相互碰撞问题,一部分桥梁会出现整体隆起。
关于桥梁结构抗震设计探讨摘要:我国属于多地震国家,强烈地震会给人民生命财产和国家经济建设带来巨大的损失,公路、桥梁也同样遭到不同程度的损坏。
桥梁是交通生命线工程中一个重要的组成部分,震区桥梁的破坏不但给救灾行动带来阻碍,次生灾害也加重了,导致生命财产和间接经济损失惨重,而且给灾后的恢复和重建带来很大的困难。
桥梁抗震设计关系到桥梁结构的使用寿命。
本文针对桥梁抗震设计中的一些要点进行分析,以便更好地掌握桥梁设计的要点。
关键词:桥梁抗震;设计;要点桥梁设计是决定桥梁工程质量的灵魂,随着国家经济的快速发展,急切要求修建更多的桥梁,这就对桥梁设计提出了更高的要求。
桥梁工程的抗震设计是非常重要的,要在满足抗震设防目标的前提下选择精确合理的桥跨、桥式结构方法。
桥梁抗震设计要综合考虑安全可靠性、经济合理、技术先进和环保美观等问题。
1.地震给桥梁带来的破坏类型1.1支座破坏根据我国对地震灾害中桥梁的调查显示112座桥梁中有53座桥梁约占47%发生了支座破坏,综合国内外十次大地震的调查报告,支座的破坏现象属于普遍现象。
支座的地震灾害主要表现为支座倾斜和剪断、自动支座的脱落和支座自身建造组成的破坏。
支座垫块被重力压碎,使得桥板不稳定,甚至造成落梁。
落梁的发生与支座破坏密切相关,支承破坏使得桥梁上部失去支撑,造成落梁事故。
当支座破坏时会使得墩-梁之间产生位移,当墩梁间的相对位移大于主梁搁置长度后,主梁将从桥墩脱落从而使得发生落梁。
1.2梁体移位造成的破坏上部梁体的移位是震害中常见的破坏,根据地震的震向而发生纵向移位、横向移位以及扭转移位。
其中伸缩缝处发生移位成为主要灾害。
地震时地势的扭曲,桥梁的梁体移位是绝对的。
如果震幅较小不会发生太大的移位,震后换掉不能正常工作的的支座,把梁体加固后恢复原位,桥梁就还可以正常工作。
但是,如果震幅过大,造成较大移位就会导致落梁。
所以采取抗震措施减小梁体位移就显得十分重要。
就如云南地震时的有些桥梁上部结构没有落梁,发生了比较大的移位。
虽然没有出现塌落事故,但是已经成为废桥不再能够正常使用了。
1.3地基与基础破坏地基与基础的严重破坏是导致桥梁倒塌的重要原因,而且倒塌后基本无法修理。
基础与地基的紧密相连,基础的好坏直接影响着地基的稳定程度。
基础的破坏势必会引起地基的破坏,使得出现移位、倾斜、下沉、折断和屈曲失稳等现象。
扩大基础的震害一般由砂土液化、地基失效的不均匀沉降、土承载力和稳定性较差、地面变形较大等导致地层发生水平滑移、下沉、断裂而造成的基础破坏。
常见基础破坏除了上面的原因外,还有上部结构传导下来的惯性力所引起的桩基剪切、弯曲破坏,更有桩基础设计不当所引起的。
桥墩在地震中会出现桥墩倾斜、沉降、移位、墩身剪断、开裂,受压缘的混凝土崩坏,钢筋屈曲、裸露,桥墩与基础连接处折断、开裂等现象。
2.桥梁结构抗震设计的理念和原则2.1 桥梁结构抗震设计的理念目前桥梁结构抗震设计的理念为小震不坏、中震可修和大震不倒,也就是说在实际桥梁结构抗震设计中,应该根据桥梁所在区域地震发生的频率,并结合罕见地震对整个桥梁进行多标准的设计。
具体来说,设计出来的桥梁在遇到小规模地震的时候,其桥梁结构应该处于弹性阶段,即内部结构不能出现损害或者仅仅出现很轻微的损害,从而保证桥梁在小规模地震时能够正常使用;当设计出来的桥梁遇到中规模的地震时,其桥梁结构将会进入非弹性阶段,即桥梁可能发生部分损害,但应该保证这些损害区域都处于可修复的程度,同时应该在地震后尽快的对桥梁进行修复工作,从而使桥梁尽快的实现其职能;当设计出来的桥梁遇到大规模的地震时,其桥梁结构将会进入弹塑性阶段,即桥梁很可能会发生严重的破坏,但应该保证桥梁不会发生整体的坍塌现象,同时经过快速的维修以后可保证桥梁能够安全的通车。
一般情况下,桥梁结构的抗震设计都应该满足以上理念,并根据抗震设防烈度进行相应的抗震措施。
2.2 桥梁结构抗震设计的原则在进行桥梁结构抗震设计时,应该遵守七个原则。
第一是桥梁结构的抗震设计应该和桥梁施工区域的地质地形、地震灾害情况等各种情况结合在一起,从而选择出最合理的桥型等桥梁外在参数;第二是为了增强桥梁的抗震性能,在同一个桥梁设计中应该尽可能的避免使用高墩和大跨的组合,并且应该适量的减轻桥梁上部的重量,从而进一步增强桥梁的抗震性能;第三在进行桥梁结构设计时,应该尽量的使桥梁形体简单,质量均匀、有利于施工作业等,同时还应该尽可能的防止截面突变等现象出现;第四在桥梁结构的抗震设计中,应该采取能够增强桥梁整体性的连接模式,并在各个连接点应该采用相应的减震措施和减震装置,从而提高桥梁在地震发生时的稳定性;第五设计出来的桥梁应该满足经济合理、便于修复等多方面的要求;第六是对于桥梁的抗震,应该在减震和隔震支座方面进行集中探究,同时还应该增强对钢筋混凝土桥墩的计算与分析,从而增强钢筋混凝土桥墩的可靠性;第七是对于一些高墩和大跨的桥梁结构抗震设计,应该进行专门的抗震设计专题探讨。
3抗震概念设计地震的发生存在多种偶然的复杂性因素,使得结构计算模型需要的假定结果与实际情况存在较大差异,以致计算机在一定程度上难以预测抗震性能。
所以,在桥梁结构抗震设计中,不一定要完全信赖计算,概念设计其实比计算设计更加准确可信。
优秀的概念设计使得桥梁结构的抗震性能更加出色。
优秀的概念设计需要根据桥梁的功能和结构作出相应的力学分析,设计出独特的防震结构体系。
抗震桥梁设计时,应对动力特征进行简单分析和对震力进行预测,找到桥梁结构设计的薄弱部位进行加固;然后对上、下部结构连接部位和过渡孔处连接部位及塑性铰预期部位和桥墩形式的选取、构造设计等进行分析同时作出相应的补救措施,防治桥梁出现坍塌,来保证桥梁结构的经济性、抗震安全性和选择结构体系正确性。
最后,应根据分析结果对抗震性能的好坏进行综合性评定,根据分析结果再对设计方案进行不断的修改和完善,力求达到最佳。
3.1柱式桥墩的合理设计在桥梁设计中,柱式墩是较为常见的结构形式。
在抗震设计中,推荐采用抗震性能较强的矩形墩;同时,应注重桥墩间的横梁设置,其刚度最好不要过大,防止弱柱强梁的现象。
结构刚度的均衡时设计的总原则,能力保护是另一个设计原则。
为使结构体系中的延性构件同能力保护构件产生强度等级差异,保证结构构件不形成脆性破坏,在延性细部构造的设计过程,我们要确保墩柱纵筋与箍筋形成整体性骨架,在混凝土横向膨胀与纵向受压的情况下,箍筋对纵筋的约束作用至关重要,纵筋给与混凝土的约束延性作用同样很大,因此各国规范对纵筋配筋率的要求均有所提高。
桥墩是支撑桥梁主体的重要构件,鉴于桥梁结构下柔上刚,致使桥墩很容易产生破坏,主要表现在墩身开裂、剪断。
我们要按照抗剪计算对箍筋进行配置,采取合理的箍筋间距,考虑箍筋的搭接构造细节。
3.2 延性和位移设计延性抗震设计主要是利用结构、构件自带的延性耗能能力来抵抗地震作用,设计时是通过增加结构、构件延性来得到实现,允许结构出现塑性铰的部分进行指定的延性设计。
在该方法中,允许强大的地震力和能量从地面传递给结构,而抗震设计时要着重考虑的问题是怎么为结构提供抵抗这种地震力的能力。
传统的桥梁抗震设计使用强度设计方法,即使考虑到延性和位移,也是通过强度指标间接地实现。
位移在桥梁结构抗震设计中的重要性得到普遍的认识,很多研究者和工程师建议在抗震设计中直接使用位移为设计参数,在这方面将形成多参数抗震设计方法。
一些建筑结构抗震设计指南和准则已经应用了位移设计的概念和方法。
直接基于位移的抗震设计根据一定水准地震作用F预期的位移计算地震作用,进行结构设计,以使构件达到预期的变形,结构达到预期的位移。
该方法采用结构位移作为结构性能指标,设计时假定位移是结构杭震性能的控制因素,通过设计位移谱得到有效周期,求出此时结构的基底剪力,进行结构分析,同时进行具体配筋设计。
设计后用应力验算,不够的时候用增大刚度而不是强度的方法来改进,以位移目标为基准来配置结构构件。
这个方法考虑了位移在抗震性能中的重要地位,可以在设计开始时明确设计的结构性能水平,并且使设计的结构性刚好达到目标性能水平。
传统的桥梁抗震设计采用强度设计方法,即使考虑到延性和位移,也是通过强度指标间接地实现。
现在人们越来越认识到了位移在桥梁结构抗震设计中的重要性,很多研究者和工程师建议在抗震设计中直接使用位移为设计参数,这样就将形成多参数抗震设计方法。
在这方面,各种非弹性反应谱的研究和应用工作一直在进行。
一些建筑结构抗震设计指南和准则已经引人了位移设计的概念和方法。
3.3多阶段抗震设计方法随着近些年科学水平的不断提高,抗震设计研究人员对在地震作用下,抗震结构的破坏机理以及构建能力的研究等方面的理解及认识也越来越深,同时在不同概率的地震作用下,结构的预期性能目标也是不同的,因此抗震结构设计的设防水准及设计原则都有了显著的提高。
设计方法也从单一设防水准一阶段逐渐改善为多水准多阶段的设计方法。
3.4多道抗震设计所谓多道抗震设防,是指在一个抗震结构体系中,一部分延性好的构件在地震作用下,首先达到屈服,充分发挥其吸收和耗散地震能量的作用,即负担起第一道抗震防线的作用,其他构件则在第一道抗震设防屈服后才依次屈服,从而形成第二道、第三道或更多道抗震防线,这样的结构体系对保证结构的抗震安全性是非常有效的。
3.5桥梁减、隔震设计进行桥梁减震和隔震设计可以较好地提高桥梁抗震能力,并且具有简便、先进、经济等优点。
减隔震支座的设计装置使得结构消耗的能量较少同时增大结构的振型周期,降低了地震时的震波频率,良好的自我复位能力结合了结构特点选取适当的建设方案,建立相应的建造参数,合理有效的使得结构地震的反应程度降低,使地震后桥梁上部结构基本能够恢复到原来的位置,最大程度的减少了桥梁建筑损失程度。
3.6场地的选择在场地选择的过程中,应该选择有利于桥梁抗震的地势基础。
其中有利于抗震的地段主要指一些土壤条件好和比较坚实的地段。
不利于桥梁抗震的地段主要是指在地震的过程中可能发生陷落的松软地段以及土壤成因、岩石状态和性质都不明显的地段。
结论总而言之,桥梁结构抗震设计是桥梁设计中的重要环节,在当前我国的高速公路、铁路正处在大规模建设之际,桥梁结构的安全问题更不容忽视。
在桥梁设计中需采取一系列有效的抗震措施,进一步提高和完善桥梁的安全性、适用性、耐久性和社会效应性。
参考文献:[1]宋妍.桥梁抗震设计的研究与新技术的应用[J].交通世界.2011(01).[2]刘青兰.基于性能桥梁抗震设计研究[J].内蒙古公路与运输.2011(01).。