《名师同步导学》2014高考物理一轮复习单元卷_人教版选修3-2_第4章_第5节_电磁感应现象的两类情况
- 格式:doc
- 大小:150.00 KB
- 文档页数:3
高中同步测试卷(四)第四单元电磁波、相对论(时间:90分钟,满分:100分)一、选择题(本题共12小题,每小题5分,共60分.在每小题所给的四个选项中,至少有一个选项符合题意)1.在狭义相对论中,下列说法正确的有()A.一切运动物体相对于观察者的速度都不能大于真空中的光速B.时间、长度的测量结果都与物体相对观察者的相对运动状态有关C.时间的测量结果与物体相对观察者的运动状态无关D.在某一惯性系中发生于同一时刻、不同地点的两个事件,在其他一切惯性系中也是同时发生的2.雷达测速仪是交通警察维护交通的一个很重要的手段.关于雷达测速仪发射的电磁波下列说法正确的是()A.雷达测速仪发射的电磁波波长很长,因此可以传播到很远的地方B.雷达测速仪发射的电磁波波长很短,短波可以以天波的方式传播C.雷达测速仪发射的是波长极短的微波,微波直线性好,定位准确D.雷达测速仪发射的电磁波包含所有的波长,因此可以测所有汽车的速度3.手机A拨叫手机B时,手机B发出铃声,屏上显示A的号码.若将手机A置于一真空玻璃罩中,用手机B拨叫手机A,则()A.能听到A发出的铃声,并看到A显示的B的号码B.不能听到A发出的铃声,但能看到A显示的B的号码C.能听到A发出的铃声,但不能看到A显示的号码D.既不能听到A发出的铃声,也不能看到A显示的号码4.电磁波已广泛运用于很多领域.下列关于电磁波的说法符合实际的是()A.电磁波不能产生衍射现象B.常用的遥控器通过发出紫外线脉冲信号来遥控电视机C.根据多普勒效应可以判断遥远天体相对于地球的运动速度D.光在真空中运动的速度在不同惯性系中测得的数值可能不同5.下列关于紫外线的几种说法中,正确的是()A.紫外线是一种紫色的可见光B.紫外线的频率比红外线的频率低C.紫外线可使钞票上的荧光物质发光D.利用紫外线可以进行空调等电器的遥控6.关于爱因斯坦的相对论,下列说法正确的是()A .光速不变原理是狭义相对论的两个基本假设之一B .根据相对论可知空间和时间与物质的运动状态有关C .一个均匀的引力场与一个做匀速运动的参考系等价,这就是著名的等效原理D .在任何参考系中,物理规律都是相同的,这就是广义相对性原理7.如图所示,LC 振荡电路中,已知某时刻电流i 的方向指向A 板,且正在增大,则( )A .A 板带正电B .A 、B 两板间的电压在增大C .电容器C 正在充电D .电场能正在转化为磁场能8.根据气体吸收谱线的红移现象推算,有的类星体远离我们的速度竟达光速c 的80%,即每秒24万千米.下列结论正确的是( )A .在类星体上测得它发出的光的速度是(1+80%)cB .在地球上接收到它发出的光的速度是(1-80%)cC .在类星体上测得它发出的光的速度是cD .在地球上测得它发出的光的速度是c9.一台收音机可接收中波、短波两个波段的无线电波.打开收音机后盖,在磁棒上能看到两组线圈,其中一组是细线密绕匝数多的线圈,另一组是粗线疏绕匝数少的线圈,收音机中的调谐电路为LC 电路,由此可以判断( )A .匝数多的电感较大,使调谐回路的固有频率较小,故用于接收中波B .匝数少的电感较小,使调谐回路的固有频率较小,故用于接收短波C .匝数少的电感较小,使调谐回路的固有频率较大,故用于接收短波D .匝数多的电感较大,使调谐回路的固有频率较大,故用于接收中波 10.当物体以很大速度运动时,它的质量与静止质量m 0的关系是m =m 01-⎝⎛⎭⎫v c 2,此时它的动能应该是( )A.12m v 2 B.12m 0v 2 C .mc 2-m 0c 2D .以上说法都不对11.A 、B 两架飞机沿地面上一足球场的长轴方向在其上空高速飞过,且v A >v B ,关于在飞机上的人观察的结果,下列说法正确的是( )A .A 飞机上的人观察到足球场的长度比B 飞机上的人观察到的大 B .A 飞机上的人观察到足球场的长度比B 飞机上的人观察到的小C .两飞机上的人观察到足球场的长度相同D .两飞机上的人观察到足球场的宽度相同12.电子钟是利用LC振荡电路来工作计时的,现发现某电子钟每天慢30 s,造成这一现象的原因可能是()A.电池用久了B.振荡电路的周期变小了C.振荡电路中电容器的电容变大了D.振荡电路中线圈的电感变大了的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)13.(8分)某收音机接收电磁波的波长范围在577 m到182 m之间,该收音机LC回路的可变电容器的动片全部旋出时,回路总电容为39 pF.求该收音机接收到的电磁波的频率范围.14.(10分)某雷达工作时,发射电磁波的波长λ=20 cm,每秒钟脉冲数n=5 000,每个脉冲持续时间t=0.02 μs,问电磁波的振荡频率为多少?最大的侦察距离是多少?15.(10分)如图所示,车厢长为L,正以速度v匀速向右运动,车厢底面光滑,现有两只完全相同的光球,从车厢中点以相同的速度v0分别向前后匀速运动(相对于车厢),问:(1)在车厢内的观察者看来,光球是否同时到达两壁?(2)在地面上的观察者看来两光球是否同时到达两壁?16.(12分)某人测得一静止棒长为l 、质量为m ,于是求得此棒的线密度为ρ=ml ,(1)假定此棒以速度v 在棒长方向上运动,此人再测棒的线密度应为多少? (2)若棒在垂直长度方向上运动,它的线密度又为多少?参考答案与解析1.[导学号07420049] 【解析】选AB. 根据狭义相对论,光速是速度的极限值,所以A 正确;根据狭义相对论,长度、时间间隔都与运动状态有关,且都给出了具体的速度公式,所以B 对,C 错;同时是相对的,D 错.正确选项为A 、B.2.[导学号07420050] 【解析】选C.雷达测速仪是利用电磁波的多普勒效应测汽车速度的,所发射电磁波为微波,C 正确.3.[导学号07420051] 【解析】选B.声音不能在真空中传播,电磁波可以在真空中传播,故B 正确.4.[导学号07420052] 【解析】选C.干涉、衍射是波所特有的现象,所以电磁波能产生衍射现象,选项A 错误;常用的遥控器是通过发出红外线来遥控电视机的,选项B 错误;利用多普勒效应可以判断遥远天体相对地球的速度,选项C 正确;根据光速不变原理,在不同的惯性系中,光速是相同的,选项D 错误.5.[导学号07420053] 【解析】选C.紫外线波长比可见光中紫光的波长还短,不能引起视觉,是不可见光,其频率比可见光及红外线都要高;紫外线有荧光作用,钞票上的荧光物质受到紫外线照射时,能发出荧光.故A 、B 选项错误,而C 选项正确.空调等电器都是利用红外线遥控的,故D 选项错误.6.[导学号07420054] 【解析】选ABD.狭义相对论的两个基本假设是:光速不变原理及狭义相对性原理.空间和时间与物质的运动状态有关,选项A 、B 正确;一个均匀的引力场与一个做匀加速运动的参考系等价,选项C 错误;广义相对性原理是:在任何参考系中,物理规律都是相同的,选项D 正确.7.[导学号07420055] 【解析】选D.电流i 正在增大,磁场能增大,电容器在放电,电场能减小,电场能转化为磁场能,选项C 错误,D 正确;由图中i 方向可知B 板带正电,选项A 错误;由于电容器放电,带电量减少,两板间的电压在减小,选项B 错误.8.[导学号07420056] 【解析】选CD.据光速不变原理可以判定选项C 、D 正确. 9.[导学号07420057] 【解析】选AC.线圈的自感系数L 与匝数有关,匝数越多,L越大.由λ=vf=v T =v ×2πLC 知L 越大,λ越大,选项A 、C 正确.10.[导学号07420058] 【解析】选C.对于高速运动的物体,公式E k =12m v 2不再成立.只有当v ≪c 时,E k =12m v 2才成立.11.[导学号07420059] 【解析】选BD.由l =l 01-⎝⎛⎭⎫vc 2(其中l 0是足球场长轴的长度),可以看出,速度越大,长度越短,选项B 正确,A 、C 错误;足球场的短轴与飞机速度方向垂直,所以两飞机上的人观察到足球场的宽度相同,D 正确.12.[导学号07420060] 【解析】选CD.由LC 振荡电路的周期公式T =2πLC ,其中可能L 或C 变大了,导致周期变大了,C 、D 正确.13.[导学号07420061] 【解析】根据c =λff 1=c λ1=3×108577 Hz =5.20×105 Hzf 2=c λ2=3×108182Hz =1.65×106 Hz所以,接收到电磁波的频率范围为5.20×105~1.65×106 Hz. 【答案】5.20×105~1.65×106 Hz14.[导学号07420062] 【解析】一般在空气中传播,电磁波的传播速度就认为等于光速c =3.0×108 m/s.由公式c =λf 得:f =cλ=1.5×109 Hz.雷达工作时发射电磁脉冲,每个脉冲持续时间t =0.02 μs ,在两个脉冲时间间隔内,雷达必须接收反射回来的电磁脉冲,否则会与后面的电磁脉冲重叠而影响测量.设最大侦察距离为s ,则2s =c ·Δt ,而Δt =15 000s =200 μs ≫0.02 μs(脉冲持续时间可以略去不计),所以s =c ·Δt 2=3×104 m.【答案】1.5×109 Hz 3×104 m15.[导学号07420063] 【解析】在车上的观察者看来,A 球所用时间t A =L 2v 0=L2v 0,B球所用时间t B =L 2v 0=L2v 0,因此两球同时分别到达前后壁.而在地面上的观察者看来,球A先到达后壁.因为地面观察者认为球A 向后位移小,而速度相同,所以,向后运动的球A 需要较短的时间到达后壁.【答案】(1)同时到达 (2)不同时到达16.[导学号07420064] 【解析】(1)棒(K 系)以速度v 相对观察者(K ′系)沿棒长方向运动,静止棒长l 是固有长度,所以,运动时长度为l ′=l 1-v 2c2①运动质量m ′=m1-v 2c 2② 则线密度ρ′=m ′l ′=m l ⎝⎛⎭⎫1-v 2c 2=ρ1-v 2c 2. (2)棒在垂直长度方向上运动时,长度不变,即l ″=l ,运动质量仍为②式所示,则线密度:ρ″=m ′l ″=m l1-v 2c2=ρ1-v 2c 2.【答案】(1)ρ1-v 2c 2(2)ρ1-v 2c2。
1.(2011年高考北京卷)介质中有一列简谐机械波传播,对于其中某个振动质点()A.它的振动速度等于波的传播速度B.它的振动方向一定垂直于波的传播方向C.它在一个周期内走过的路程等于一个波长D.它的振动频率等于波源的振动频率解析:机械波在传播过程中,振动质点并不随波迁移,只是在各自的平衡位置附近做简谐运动,质点振动速度与波的传播速度是两个不同概念,选项A、C 错误.机械波可能是横波,也可能是纵波,故振动质点的振动方向不一定垂直于波的传播方向,选项B错误.振动质点的振动是由波源的振动引起的受迫振动,故质点的振动频率等于波源的振动频率,选项D正确.答案:D2.(2012年高考浙江卷)用手握住较长软绳的一端连续上下抖动,形成一列简谐横波.某一时刻的波形如图所示,绳上a、b两质点均处于波峰位置.下列说法正确的是()A.a、b两点之间的距离为半个波长B.a、b两点振动开始时刻相差半个周期C.b点完成全振动次数比a点多一次D.b点完成全振动次数比a点少一次解析:相邻的两个波峰之间的距离为一个波长,A错误.波在一个周期内向前传播的距离为一个波长,a点比b点早振动一个周期,完成全振动的次数也比b点多一次,故B、C错误,D正确.答案:D3.(2012年高考福建理综)一列简谐横波沿x轴传播,t=0时刻的波形如图甲所示,此时质点P正沿y轴负方向运动,其振动图象如图乙所示,则该波的传播方向和波速分别是()A.沿x轴负方向,60 m/sB.沿x轴正方向,60 m/sC.沿x轴负方向,30 m/sD.沿x轴正方向,30 m/s解析:因t=0时质点P向下振动,而由波形图甲可以看出与质点P相邻的右侧质点位于质点P下方,故质点P的振动是由其右侧质点引起的,波沿x轴负方向传播,B、D皆错误.由图甲可得该波波长λ=24 m,由图乙可得周期T=0.4 s,故波速v=λT=60 m/s,A正确,C错误.答案:A4.某时刻的波形图如图所示,波沿x轴正方向传播,质点p的坐标x=0.32 m.从此时刻开始计时,(1)若每间隔最小时间0.4 s重复出现波形图,求波速.(2)若p点经0.4 s第一次达到正向最大位移,求波速.(3)若p点经0.4 s到达平衡位置,求波速.解析:(1)依题意,周期T=0.4 s,波速v=λT=0.80.4m/s=2 m/s.(2)波向右传播Δx=0.32 m-0.2 m=0.12 m时,p点恰好第一次达到正向最大位移.波速v=ΔxΔt=0.120.4m/s=0.3 m/s.(3)波向右传播Δx=0.32 m时,p点第一次到达平衡位置,由周期性可知波传播的可能距离Δx=0.32+λ2n(n=0,1,2,3,…)波速v=ΔxΔt=0.32+0.82n0.4m/s=(0.8+n) m/s(n=0,1,2,3,…).答案:(1)2 m/s(2)0.3 m/s(3)(0.8+n) m/s(n=0,1,2,3,…)(时间:45分钟,满分:100分)[命题报告·教师用书独具]项正确,把正确选项前的字母填在题后的括号内)1.(2013年北京西城检测)下列关于简谐运动和简谐机械波的说法正确的是()A.弹簧振子的周期与振幅有关B.横波在介质中的传播速度由波源决定C.在波传播方向上的某个质点的振动速度就是波的传播速度D.单位时间内经过介质中一点的完全波的个数就是这列简谐波的频率解析:弹簧振子的周期由振子质量和弹簧的劲度系数决定,与振幅无关,A 项错误;波的传播速度由介质决定,与波源无关,B项错误;质点的振动速度与波速无关,C项错误;波传播时介质中一点每完成一次全振动,则向前传播一个完整的波形,D项正确.答案:D2.(2013年潍坊调研)假如一辆汽车在静止时喇叭发出声音的频率是300 Hz,在汽车向你驶来又擦身而过的过程中,下列说法正确的是()A.当汽车向你驶来时,听到喇叭声音的频率大于300 HzB.当汽车向你驶来时,听到喇叭声音的频率小于300 HzC.当汽车和你擦身而过后,听到喇叭声音的频率大于300 HzD.当汽车和你擦身而过后,听到喇叭声音的频率小于300 Hz解析:由多普勒效应可知,声源与观察者相对靠近过程中,观察者接收到的频率增大;相对观察者远离过程中,观察者接收到的频率减小.答案:AD3.如图所示为观察水面波衍射的实验装置,AC和BD是两块挡板,AB是一个孔,O是波源,图中已画出波源所在区域波的传播情况,每两条相邻波纹(图中曲线)之间距离表示一个波长,则对波经过孔后的传播情况,下列描述不正确的是()A.此时能明显地观察到波的衍射现象B.挡板前后波纹间距离相等C.如果将孔AB扩大,有可能观察不到明显的衍射现象D.如果孔的大小不变,波源频率增大,能更明显地观察到衍射现象解析:从图可以看出,孔AB尺寸与波长相差不大,衍射现象的明显程度与波长及障碍物线度相对比较有关:当两者较接近时,衍射现象明显,否则不明显,故选项A、C正确;由λ=vf知,v不变,f增大,只能使λ减小,故选项D错;既然衍射是指“波绕过障碍物而传播的现象”,那么经过孔后的波长自然不变,故选项B是正确的.答案:D4.如图所示,S1、S2是振动情况完全相同的两个机械波波源,振幅为A,a、b、c三点分别位于S1、S2连线的中垂线上,且ab=bc.某时刻a是两列波的波峰相遇点,c是两列波的波谷相遇点,则()A.a处质点的位移始终为2AB.c处质点的位移始终为-2AC.b处质点的振幅为2AD.c处质点的振幅为2A解析:因为a、b、c三点均在S1、S2中垂线上,则各点到S1、S2的距离相等,则S1与S2到各点的波程差为零,S1与S2振动情况相同,在a、b、c各点振动加强,振动加强并不是位移不变,而是振幅为2A,则C、D正确,A、B错误.答案:CD5.(2013年泉州质检)沿x轴正方向传播的一列简谐横波在某时刻的波形图如图所示,其波速为200 m/s,下列说法中正确的是()A.图示时刻质点b的速度方向沿y轴正方向B.图示时刻质点a的加速度为零C.若此波遇到另一简谐波并发生稳定干涉现象,则该波所遇到的波的频率为50 HzD.若该波发生明显的衍射现象,该波所遇到的障碍物或孔的尺寸一定比4 m 大得多解析:因波向x轴正方向传播,故图示时刻质点b向y轴负方向振动,A错;图示时刻质点a的加速度最大,B错;因该波的频率f=vλ=2004Hz=50 Hz,故C 对;因该波的波长为4 m ,故D 错.答案:C6.(2012年高考安徽理综)一列简谐波沿x 轴正方向传播,在t =0时波形如右图所示,已知波速为10 m/s.则t =0.1 s 时正确的波形应是下图中的( )解析:由题图知,波长λ=4.0 m ,得周期T =λv =0.4 s ;由波的传播方向与质点振动方向的关系可判断,经过t =0.1 s =T 4,x =0处的质点振动到平衡位置,且振动方向向下,x =1.0 m 处的质点振动到位移正向最大处,所以C 项正确.答案:C7.(2012年高考天津理综)沿x 轴正向传播的一列简谐横波在t =0时刻的波形如图所示,M 为介质中的一个质点,该波的传播速度为40 m/s ,则t =140 s 时( )A.质点M对平衡位置的位移一定为负值B.质点M的速度方向与对平衡位置的位移方向相同C.质点M的加速度方向与速度方向一定相同D.质点M的加速度方向与对平衡位置的位移方向相反解析:由波形图及传播方向可知,t=0时质点M的振动方向向上,由T=λv=440s=110s知t=140s=T4,质点M经过T4后处在从正向最大位移回到平衡位置的过程中,所以对平衡位置的位移方向为正,速度方向为负,加速度方向为负,所以A、B错误,C、D正确.答案:CD8.如图所示,实线是沿x轴传播的一列简谐横波在t=0时刻的波形图,虚线是这列波在t=0.05 s时刻的波形图.已知该波的波速是80 cm/s,则下列说法中正确的是()A.这列波有可能沿x轴正方向传播B.这列波的波长是10 cmC.t=0.05 s时刻x=6 cm处的质点正在向下运动D.这列波的周期一定是0.15 s解析:由波的图象可看出,这列波的波长λ=12 cm,选项B错误;根据v=λT,可求出这列波的周期为T=λv=1280s=0.15 s,选项D正确;根据x=v t=80×0.05 cm=4 cm可判断,波应沿x轴负方向传播,根据波的“微平移”法可判断t=0.05 s时刻x=6 cm处的质点正在向上运动,选项A、C错误.答案:D9.一列简谐横波沿直线传播,已知介质中a、b两质点平衡位置间的距离为2 m,a、b两质点的振动情况如图所示,则下列说法中错误的是()A .波长可能为85 mB .波长一定小于83 mC .波速可能为247 m/sD .波速可能大于23 m/s解析:波的传播具有双向性,若波从a 向b 传播,由题图可知,质点b 比a落后34T ,因此波长满足2 m =(n +34)λ,即λ=2×44n +3m(n =0,1,2,…);波速v =λT =2×44(4n +3)m/s(n =0,1,2,…).若波由b 向a 传播,则波长满足2 m =(n +14)λ,即λ=2×44n +1 m(n =0,1,2,…);波速v =λT =2×44(4n +1)m/s(n =0,1,2,…);综上所述可知错误的只有B.答案:B10.在O 点有一波源,t =0时刻开始向上振动,形成向右传播的一列横波.t 1=4 s 时,距离O 点为3 m 的A 点第一次达到波峰;t 2=7 s 时,距离O 点为4 m 的B 点第一次达到波谷.则以下说法正确的是( )A .该横波的波长为2 mB .该横波的周期为4 sC .该横波的波速为1 m/sD .距离O 点为5 m 的质点第一次开始向上振动的时刻为6 s 末解析:由题意可知,A 点从开始振动到第一次到达波峰的时间为T 4,故波传到A 点的时间为t 1-T 4=4 s -T 4,由波的传播公式x =v t 得3 m =v ×(4 s -T 4);同理,B 点从开始振动到第一次到达波谷的时间为3T 4,故波传到B 点的时间为t 2-3T 4=7 s -3T 4,由波的传播公式x =v t 得4 m =v ×(7 s -3T 4);联立解得:T =4 s ,v =1 m/s ,故选项B 、C 正确;波长λ=v T =1 m/s ×4 s =4 m ,距离O 点为5 m的质点第一次向上振动的时刻为5 m 1 m/s =5 s ,选项A 、D 错误.答案:BC二、非选择题(本题共2小题,共30分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)11.(15分)(2012年高考山东理综)一列简谐横波沿x 轴正方向传播,t =0时刻的波形如图所示,介质中质点P 、Q 分别位于x =2 m ,x =4 m 处.从t =0时刻开始计时,当t =15 s 时质点Q 刚好第4次到达波峰.(1)求波速.(2)写出质点P 做简谐运动的表达式(不要求推导过程).解析:(1)设简谐横波的波速为v ,波长为λ,周期为T ,由图象知,λ=4 m .由题意知t =3T +34Tv =λT联立以上两式,代入数据得v =1 m/s(2)质点P 做简谐运动的表达式为y =0.2sin (0.5πt ) m答案:(1)1 m/s (2)y =0.2sin (0.5πt ) m12.(15分)一列简谐波沿x 轴方向传播,已知x 轴上x 1=0和x 2=1 m 两处质点的振动图线分别如图甲、乙所示,求此波的传播速度.解析:由所给出的振动图象可知周期T =4×10-3s. 由题图可知,t =0时刻,x 1=0的质点P (其振动图象即为图甲)在正最大位移处,x 2=1 m 的质点Q (其振动图象即为图乙)在平衡位置向y 轴负方向运动,所以当简谐波沿x 轴正向传播时,PQ 间距离为(n +34)λ1,当波沿x 轴负方向传播时,PQ 间距离为(n +14)λ2,其中n =0,1,2…因为(n +34)λ1=1 m ,所以λ1=43+4n m 因为(n +14)λ2=1 m ,所以λ2=41+4n m 波沿x 轴正向传播时的波速v 1=λ1T =1033+4nm/s(n =0,1,2…) 波沿x 轴负向传播时的波速v 2=λ2T =1031+4nm/s(n =0,1,2…) 答案:波沿x 轴正向传播时v 1=1033+4nm/s(n =0,1,2…) 波沿x 轴负向传播时v 2=1031+4nm/s(n =0,1,2…)。
高中物理选修3-2全册复习学案+模块测试第四章电磁感应知识网络电磁感应划时代的发现奥斯特梦圆“电生磁”,法拉第心系“磁生电”专题归纳专题一楞次定律的理解和应用1.楞次定律解决的是感应电流的方向问题,它涉及两个磁场——感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场),前者和后者的关系不是“同向”和“反向”的简单关系,而是前者“阻碍”后者“变化”的关系。
2.对“阻碍意义的理解”(1)阻碍原磁场的变化。
“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓或者说被迟滞了,原磁场的变化趋势不会改变,不会发生逆转。
(2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流。
(3)阻碍不是相反,当原磁通量减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动方向将和磁体运动同向,以阻碍其相对运动。
(4)由于“阻碍”,为了维持原磁场的变化,必须有外力克服这一“阻碍”而做功,从而导致其他形式的能转化为电能,因而楞次定律是能量转化和守恒定律在电磁感应中的体现。
3.运用楞次定律处理问题的思路(1)判定感应电流方向问题的思路运用楞次定律判定感应电流方向的基本思路可以总结为“一原、二感、三电流”。
①明确原磁场:弄清原磁场的方向以及磁通量的变化情况。
②确定感应磁场:即根据楞次定律中的“阻碍”原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向。
③判定电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流方向。
(2)判断闭合电路(或电路中可动部分导体)相对运动类问题的分析策略在电磁感应问题中,有一类综合性较强的分析判断类问题,主要是磁场中的闭合电路在一定条件下产生了感应电流,而此电流又处于磁场中,受到安培力作用,从而使闭合电路或电路中可动部分的导体发生了运动。
【例题1】(多选)在光滑水平面上固定一个通电线圈,如图所示,一铝块正由左向右滑动穿过线圈,不考虑任何摩擦,那么下面正确的判断是()A.接近线圈时做加速运动,离开时做减速运动B.接近和离开线圈时都做减速运动C.一直在做匀速运动D.在线圈中运动时是匀速的解析:当铝块接近或离开通电线圈时,由于穿过铝块的磁通量发生变化,所以在铝块内要产生感应电流。
第四章电磁感应一、单选题1.如图所示,一个有弹性的金属圆环被一根橡皮绳吊于通电直导线的正下方,直导线与圆环在同一竖直面内,当通电直导线中电流增大时,弹性圆环的面积S和橡皮绳的长度l将()A.S增大,l变长B.S减小,l变短C.S增大,l变短D.S减小,l变长2.关于涡流,下列说法中不正确的是()A.真空冶炼炉是利用涡流来熔化金属的装置B.家用电磁灶锅体中的涡流是由恒定磁场产生的C.阻尼摆摆动时产生的涡流总是阻碍其运动D.铁芯用相互绝缘的硅钢片叠成能减小涡流3.如图中画出的是穿过一个闭合线圈的磁通量随时间的变化规律,以下哪些认识是正确的()A.第0.6 s末线圈中的感应电动势是4 VB.第0.9 s末线圈中的瞬时电动势比0.2 s末的小C.第1 s末线圈的瞬时电动势为零D.第0.2 s末和0.4 s末的瞬时电动势的方向相同4.如图所示,一个由导体做成的矩形线圈,以恒定速率v运动,从无场区进入匀强磁场区,磁场宽度大于矩形线圈的宽度da,然后出来,若取逆时针方向的电流为正方向,那么下列图中的哪一个图能正确地表示回路中的电流与时间的函数关系()A.B.C.D.5.如图所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将()A.不变B.增大C.减少D.以上情况都有可能6.如图所示,一沿水平方向的匀强磁场分布在宽度为2L的某矩形区域内(长度足够大),该区域的上、下边界MN、PS是水平的.有一边长为L的正方形导线框abcd从距离磁场上边界MN的某高处由静止释放下落并穿过该磁场区域,已知当线框的ab边到达MN时线框刚好做匀速直线运动(以此时开始计时),以MN处为坐标原点,取如图坐标轴x,并规定逆时针方向为感应电流的正方向,则关于线框中的感应电流与ab边的位置坐标x间的以下图线中,可能正确的是()A.B.C.D.7.如下图所示,一个闭合三角形导线框ABC位于竖直平面内,其下方(略靠前)固定一根与导线框平面平行的水平直导线,导线中通以图示方向的恒定电流.释放导线框,它由实线位置下落到虚线位置未发生转动,在此过程中()A.导线框中感应电流的方向依次为ACBA→ABCA→ACBAB.导线框的磁通量为零时,感应电流也为零C.导线框所受安培力的合力方向依次为向上→向下→向上D.导线框所受安培力的合力为零,做自由落体运动8.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直.先保持线框的面积不变,将磁感应强度在1 s时间内均匀地增大到原来的两倍.接着保持增大后的磁感应强度不变,在1 s时间内,再将线框的面积均匀地减小到原来的一半.先后两个过程中,线框中感应电动势的比值为()A.B. 1C. 2D. 49.法拉第电磁感应定律可以这样表述:闭合电路中感应电动势的大小()A.跟穿过这一闭合电路的磁通量成正比B.跟穿过这一闭合电路的磁感应强度成正比C.跟穿过这一闭合电路的磁通量的变化率成正比D.跟穿过这一闭合电路的磁通量的变化量成正比10.某线圈中产生了恒定不变的感应电流,关于穿过该线圈的磁通量Φ随时间t变化的规律,可能是下面四幅图中的()A.B.C.D.二、多选题11.(多选)如图,足够长的U型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN与PQ平行且间距为l,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计,其上端所接定值电阻为R.给金属棒ab一沿斜面向上的初速度v0,并与两导轨始终保持垂直且接触良好,ab棒接入电路的电阻为r,当ab棒沿导轨上滑距离x时,速度减小为零.则下列说法不正确的是()A.在该过程中,导体棒所受合外力做功为mvB.在该过程中,通过电阻R的电荷量为C.在该过程中,电阻R产生的焦耳热为D.在导体棒获得初速度时,整个电路消耗的电功率为v012.(多选)在如图所示的各图中,闭合线框中能产生感应电流的是()A.B.C.D.13.如图所示,在匀强磁场中放有平行铜导轨,它与大线圈M相连接,要使小导线圈N获得顺时针方向的感应电流,则放在导轨上的金属棒ab的运动情况(两线圈共面放置)是()A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动三、实验题14.如图是做探究电磁感应的产生条件实验的器材.(1)在图中用实线代替导线把它们连成实验电路.(2)由哪些操作可以使灵敏电流计的指针发生偏转()A.闭合开关B.断开开关C.保持开关一直闭合D.将线圈A从B中拔出(3)假设在开关闭合的瞬间,灵敏电流计的指针向左偏转,则当螺线管A向上拔出的过程中,灵敏电流计的指针向______(填“左”或“右”)偏转.15.英国物理学家法拉第在1831年发现了“磁生电”现象.现在某一课外活动小组的同学想模仿一下法拉第实验,于是他们从实验室里找来了两个线圈A、B,两节干电池、电键、电流计、滑动变阻器等器材,如图所示.请同学们帮助该活动小组,用笔画线代替导线,将图中的器材连接成实验电路.四、计算题16.如图所示,长为L=0.2 m、电阻为r=0.3 Ω、质量为m=0.1 kg的金属棒CD垂直放在位于水平面上的两条平行光滑金属导轨上,两导轨间距也为L,棒与导轨接触良好,导轨电阻不计,导轨左端接有R =0.5 Ω的电阻,量程为0~3.0 A的电流表串联在一条导轨上,量程为0~1.0 V的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定的外力F使金属棒右移,当金属棒以v=2 m/s的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一电表未满偏.问:(1)此时满偏的电表是什么表?说明理由.(2)拉动金属棒的外力F多大?(3)导轨处的磁感应强度多大?17.如图所示,ef、gh为水平放置的足够长的平行光滑导轨,导轨间距为L=1 m,导轨左端连接一个R =3 Ω的电阻,一根电阻为1 Ω的金属棒cd垂直地放置在导轨上,与导轨接触良好,导轨的电阻不计,整个装置放在磁感应强度为B=2 T的匀强磁场中,磁场方向垂直于导轨平面向上.现对金属棒施加4 N的水平向右的拉力F,使棒从静止开始向右运动,试解答以下问题:(1)金属棒达到的最大速度v是多少?(2)金属棒达到最大速度后,R上的发热功率为多大?18.如图所示,两根足够长的光滑金属导轨ab、cd竖直放置,导轨间距离为L,电阻不计.在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放.金属棒下落过程中保持水平,且与导轨接触良好.已知某时刻后两灯泡保持正常发光.重力加速度为g.求:(1)磁感应强度的大小;(2)灯泡正常发光时金属棒的运动速率.五、填空题19.如图所示,线圈ABCO面积为0.4 m2,匀强磁场的磁感应强度B=0.1 T,方向为x轴正方向,通过线圈的磁通量为________Wb.在线圈由图示位置绕z轴向下转过60°的过程中,通过线圈的磁通量改变了________Wb.(可以用根式表示)20.图甲为“探究电磁感应现象”实验中所用器材的示意图.现将电池组、滑动变阻器、带铁芯的线圈A、B、电流计及开关连接成如图所示的电路.(1)开关闭合后,下列说法中正确的是________.A.只要将线圈A放在线圈B中就会引起电流计指针偏转B.线圈A插入或拔出线圈B的速度越大,电流计指针偏转的角度越大C.滑动变阻器的滑片P滑动越快,电流计指针偏转的角度越大D.滑动变阻器的滑片P匀速滑动时,电流计指针不会发生偏转(2)在实验中,如果线圈A置于线圈B中不动,因某种原因,电流计指针发生了偏转.这时,线圈B相当于产生感应电流的“电源”.这个“电源”内的非静电力是________.如果是因为线圈A插入或拔出线圈B,导致电流计指针发生了偏转.这时,是________转化为电能.(3)上述实验中,线圈A可等效为一个条形磁铁,将线圈B和灵敏电流计简化如图乙所示.当电流从正接线柱流入灵敏电流计时,指针向正接线柱一侧偏转.则乙图中灵敏电流计指针向其________接线柱方向偏转(填“正”或“负”).21.如下图所示,半径为r的金属圆环绕通过直径的轴OO′以角速度ω匀速转动,匀强磁场的磁感应强度为B,以金属环的环面与磁场方向重合时开始计时,求在转动30°角的过程中,环中产生的平均感应电动势为________.22.如图所示,金属环直径为d、总电阻为2R,匀强磁场磁感应强度为B,垂直穿过环所在平面.电阻为的导体杆AB沿环表面以速度v向右滑至环中央时,杆两端的电压为________.23.如下图甲所示,环形线圈的匝数n=1000,它的两个端点a和b间接有一理想电压表,线圈内磁感应强度B的变化规律如图乙所示,线圈面积S=100 cm2,则Uab=________,电压表示数为________V.答案解析1.【答案】D【解析】当通电直导线中电流增大时,穿过金属圆环的磁通量增大,金属圆环中产生感应电流,根据楞次定律,感应电流要阻碍磁通量的增大:一是用缩小面积的方式进行阻碍;二是用远离直导线的方法进行阻碍,故D正确.2.【答案】B【解析】高频感应炉是用涡流来熔化金属对其进行冶炼的,炉内放入被冶炼的金属,线圈内通入高频交变电流,这时被冶炼的金属中产生涡流就能被熔化.故A正确;电磁炉利用高频电流在电磁炉内部线圈中产生磁场,当含铁质锅具放置炉面时,铁磁性锅体被磁化,锅具即切割交变磁感线而在锅具底部产生交变的涡流,恒定磁场不会产生涡流,故B错误;阻尼摆摆动时产生的涡流总是阻碍其运动,当金属板从磁场中穿过时,金属板板内感应出的涡流会对金属板的运动产生阻碍作用.故C正确;在整块导体内部发生电磁感应而产生感应电流的现象称为涡流现象,要损耗能量,不用整块的硅钢铁芯,其目的是为了减小涡流,故D正确.本题选择错误的,故选B.3.【答案】A【解析】由法拉第电磁感应定律知:感应电动势E=可知:0.3~0.8 s:E===-4 V,负号表示方向与正方向相反,A正确;图象的斜率表示电动势的大小,由图象知第0.9 s末线圈中的瞬时电动势比0.2 s末的大,B错误;第1 s末线圈的磁感强度为零,但磁通量的变化率不为零,电动势不为零,C错误;第0.2 s末和0.4 s末的图象斜率一正一负,瞬时电动势的方向相反,D错误.4.【答案】C【解析】根据楞次定律,线圈进入磁场的过程,穿过线圈的磁通量向里的增加,产生逆时针方向的感应电流,因为速度恒定,所以电流恒定,故A、D错误;离开磁场时,穿过线圈的向里的磁通量减少,所以产生顺时针方向的电流,B错误,C正确.5.【答案】B【解析】当垂直纸面向里的磁场增强时,产生逆时针的涡旋电场,带正电的粒子将受到这个电场对它的电场力作用,而使动能增加,故B正确.6.【答案】D【解析】在第一个L内,线框匀速运动,电动势恒定,电流恒定;在第二个L内,线框只在重力作用下加速,速度增大;在第三个L内,安培力大于重力,线框减速运动,电动势减小,电流减小.这个过程加速度逐渐减小,速度是非线性变化的,电动势和电流都是非线性减小的,选项A、B均错误.安培力再减小,也不至于减小到小于第一段时的值,因为当安培力等于重力时,线框做匀速运动,选项C错误,D正确.7.【答案】A【解析】根据右手螺旋定则可知导线上方的磁场方向垂直于纸面向外,下方的磁场方向垂直于纸面向里,而且越靠近导线磁场越强.所以闭合导线框ABC在下降过程中,导线框内垂直于纸面向外的磁通量先增大,当增大到BC边与导线重合时,达到最大,再向下运动,导线框内垂直于纸面向外的磁通量逐渐减小至零,然后随导线框的下降,导线框内垂直于纸面向里的磁通量增大,当增大到A点与导线重合时,达到最大,继续下降时由于导线框逐渐远离导线,使导线框内垂直于纸面向里的磁通量再逐渐减小,所以根据楞次定律可知,感应电流的磁场总是阻碍内部磁通量的变化,所以感应电流的磁场先向内,再向外,最后向内,所以导线框中感应电流的方向依次为ACBA→ABCA→ACBA,A正确;当导线框内的磁通量为零时,内部的磁通量仍然在变化,有感应电动势产生,所以感应电流不为零,B错误;根据对楞次定律的理解,感应电流的效果总是阻碍导体间的相对运动,由于导线框一直向下运动,所以导线框所受安培力的合力方向一直向上,不为零.C、D错误.8.【答案】B【解析】设原磁感应强度是B,线框面积是S.第1 s内ΔΦ1=2BS-BS=BS,第2 s内ΔΦ2=2B·-2B·S=-BS.因为E=n,所以两次电动势大小相等,B正确.9.【答案】C【解析】由法拉第电磁感应定律可知,闭合电路中产生的感应电动势的大小与磁通量的变化率成正比,与磁通量及磁通量的变化量无关.故A、B、D错误,C正确.10.【答案】B【解析】要想该线圈中产生恒定不变的感应电流,则要求该线圈中产生的感应电动势是恒定不变的,要想线圈中产生恒定不变的感应电动势,由法拉第电磁感应定律可知,穿过线圈的磁通量的变化率应是恒定的,即在Φ-t图象中,其图线是一条倾斜的直线.11.【答案】ABC【解析】在该过程中,导体棒和金属导轨组成的系统所受合外力做功为mv,A错误;由q=IΔt,I=,E==,通过电阻R的电荷量为q=,B错误;由于不知摩擦力是否存在,所以C错误;在导体棒获得初速度时,电路中电动势为E=Blv0,I=,P=I2(r+R)=v0,D正确.12.【答案】AB【解析】感应电流产生的条件是:只要穿过闭合线框的磁通量变化,闭合线框中就有感应电流产生.A图中,线框转动过程中,通过线框的磁通量发生变化,线框中有感应电流产生;B图中离直导线越远磁场越弱,所以当线框远离导线时,线框中磁通量不断变小,所以B图中有感应电流产生;C图中一定要把条形磁铁周围的磁感线空间分布图弄清楚,在图示位置,线框中的磁通量为零,在向下移动过程中,线框的磁通量一直为零,磁通量不变,线框中无感应电流产生;D图中,线框中的磁通量一直不变,无感应电流产生.故选A、B.13.【答案】BC【解析】14.【答案】(1)见解析(2)ABD(3)右【解析】(1)将灵敏电流计与大线圈B组成闭合回路,电源、开关、小线圈A组成闭合回路,电路图如图所示.(2)将开关闭合或断开,导致穿过线圈的磁通量变化,产生感应电流,灵敏电流计指针偏转,故A、B正确;保持开关一直闭合,则穿过线圈B的磁通量不变,没有感应电流产生,灵敏电流计指针偏转,故C错误;将螺线管A插入(或拔出)螺线管B时穿过线圈B的磁通量发生变化,线圈B中产生感应电流,灵敏电流计指针偏转,故D正确.(3)在开关闭合的瞬间,穿过线圈B的磁通量增大,灵敏电流计的指针向左偏转,则当螺线管A向上拔出的过程中,穿过线圈B的磁通量减小,灵敏电流计的指针向右偏转.15.【答案】【解析】线圈A与带电池的电路相连,线圈B与电流计相连,当滑动滑动变阻器时,线圈A中的电流变化,从而引起B中产生感应电流,也可以保持滑动器划片不动,线圈A插入或者拔出时,都可以引起B中产生感应电流.16.【答案】(1)见解析(2)1.6 N(3)4 T【解析】(1)假设电流表满偏,则I=3.0 A,R两端电压U=IR=3.0×0.5 V=1.5 V,将大于电压表的量程,不符合题意,故满偏电表应该是电压表.(2)由能量关系知,电路中的电能是外力做功转化来的,所以有Fv=I2(R+r),I=,两式联立得F==1.6 N.(3)磁场是恒定的,且不发生变化,由于CD运动而产生感应电动势,因此是动生电动势.根据法拉第电磁感应定律有E=BLv,根据闭合电路欧姆定律得E=U+Ir以及I=,联立三式得B=+=4 T.17.【答案】(1)4 m/s(2)12 W【解析】(1)当金属棒速度最大时,拉力与安培力相等.=F,v m==4 m/s(2)回路中电流为I==2 A,电阻上的发热功率为P=I2R=12 W.18.【答案】(1)(2)【解析】(1)设小灯泡的额定电流为I0,有P=I R,①由题意,在金属棒沿导轨竖直下落的某时刻后,小灯泡保持正常发光,流经MN的电流为I=2I0,②此时金属棒MN所受的重力和安培力相等,下落的速度达到最大值,有mg=BLI,③联立①②③式得B=(2)设灯泡正常发光时,金属棒的速率为v,由电磁感应定律与闭合电路欧姆定律得E=BLv,⑤E=RI0,⑥联立①②④⑤⑥式得v=.⑦19.【答案】00.02或3.46×10-2【解析】线圈ABCO与x轴正方向的匀强磁场平行,没有一条磁感线穿过平面,所以磁通量等于0.在线圈由图示位置绕z轴向下转过60°时,线圈在中性面上面的投影面积为0.4×sin 60°,磁通量Φ=0.1×0.4×sin 60°=0.02Wb,磁通量变化量ΔΦ=0.1×0.4×sin 60°-0=0.02Wb.20.【答案】(1)BC(2)感应电场的电场力机械能(3)负【解析】(1)将线圈A放在线圈B中,由于磁通量不变化,故不会产生感应电流,也不会引起电流计指针偏转,选项A错误;线圈A插入或拔出线圈B的速度越大,则磁通量的变化率越大,产生的感应电流越大,电流计指针偏转的角度越大,选项B正确;滑动变阻器的滑片P滑动越快,电流的变化率越大,磁通量的变化率越大,则感应电流越大,电流计指针偏转的角度越大,选项C正确;滑动变阻器的滑片P 匀速滑动时,电流发生变化,磁通量变化,也会产生感应电流,故电流计指针也会发生偏转,选项D错误.故选BC.(2)这个“电源”内的非静电力是感应电场的电场力.如果是因为线圈A插入或拔出线圈B,导致电流计指针发生了偏转.这时是机械能转化为电能.(3)根据楞次定律可知,通过电流计的电流从负极流入,故灵敏电流计指针向其负接线柱方向偏转.21.【答案】3Bωr2【解析】ΔΦ=Φ2-Φ1=BS sin 30°-0=Bπr2.又Δt===所以===3Bωr2.22.【答案】【解析】杆切割产生的感应电动势:E=Bdv.两个电阻为R的半金属圆环并联,并联电阻R并=R,电路电流(总电流):I==,杆两端的电压:U=IR并=Bdv.23.【答案】50 V50【解析】由B-t图象可知=5 T/s由E=n S得:E=1 000×5×100×10-4V=50 V.。
单元综合测评三第三章磁场(时间:90分钟满分:100分)温馨提示:1.第Ⅰ卷答案写在答题卡上,第Ⅱ卷书写在试卷上;交卷前请核对班级、姓名、考号.2.本场考试时间为90分钟,注意把握好答题时间.3.认真审题,仔细作答,永远不要以粗心为借口原谅自己.第Ⅰ卷(选择题,共52分)一、选择题(本大题共13小题,每小题4分,共52分,每小题至少有一个选项是正确的,全部选对的得4分,选对但不全的得2分,错选或不答的得0分)1.关于磁场的方向,下列叙述中不正确的是( )A.磁感线上某一点的切线方向B.磁场N极到S极的方向C.小磁针静止时北极所指的方向D.小磁针的北极受力方向解析:磁感线上某一点的切线方向即是该点的磁场方向,A正确.在条形磁铁内部磁感线从S极到N极,磁场方向也从S极到N极,B错误.磁场方向规定为小磁针北极的受力方向或静止时小磁针北极的指向,C、D正确,故选B.答案:B2.如图所示,一根长直导线穿过载有恒定电流的金属环的中心且垂直于环面,导线和金属环中的电流如图所示,那么金属环所受安培力( )A.沿圆环半径向里B.等于零C.沿圆环半径向外D.水平向左解析:环形电流I1和直线电流I2激发的磁场的磁感线处处平行,所以金属环所受安培力为零,故B正确,A、C、D错误.答案:B3.如图所示,在正交的匀强电场和磁场的区域内(磁场水平向内),有一粒子恰能沿直线飞过此区域(不计粒子重力)( )A.若粒子带正电,E方向应向下B.若粒子带负电,E方向应向上C.若粒子带正电,E方向应向上D.不管粒子带何种电,E方向都向下解析:若粒子带正电,所受洛伦兹力向上,电场力与其平衡,应该向下,E方向应向下,当粒子带负电时,电场力、洛伦兹力方向都与带正电荷时相反,也能沿直线做匀速直线运动,A、D对.答案:AD4.(2013·孝感高二检测)如图所示,OO′为水平挡板,S为一电子源,它可以向a、b、c、d四个垂直磁场的方向发射速率相同的电子(ac垂直OO′,bd平行OO′),板OO′下方有垂直纸面向里的匀强磁场,磁场范围足够大,不计电子重力,则击中挡板可能性最大的方向是( )A.a B.bC.c D.d解析:四个电子都做匀速圆周运动,d的圆心位置最高,所以击中挡板可能性最大的是d.答案:D5.如图所示的是速度选择器示意图,若要正常工作,则以下论述正确的是( )A.P1的电势必须高于P2的电势B.磁感应强度B、电场强度E和被选择的粒子速率v应满足v=BEC.从S2出来的只能是正电荷,不能是负电荷D.若把磁场和电场的方向都改变为原来的相反方向,速度选择器同样正常工作解析:粒子通过速度选择器的过程中必须满足洛伦兹力与电场力平衡.P1的电势必须低于P2的电势,A错误;磁感应强度B、电场强度E和被选择的粒子速率v应满足Bqv=Eq,B 错;从S2出来的可以是正电荷,也可以是负电荷,C错;若把磁场和电场的方向都改变为原来的相反方向,洛伦兹力与电场力仍然平衡,D正确.答案:D6.(2013·惠州联考)图中的D为置于电磁铁两极间的一段通电直导线,电流方向垂直于纸面向里,在开关S接通后,导线D所受磁场力的方向是( )A.向上B.向下C.向左D.向右解析:由安培定则知,软铁芯在导线处的磁场方向向左,由左手定则可判定导线D受到的磁场力方向向上,A项正确.答案:A7.(2012·高考北京卷)处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( )A.与粒子电荷量成正比B.与粒子速率成正比C.与粒子质量成正比D.与磁感应强度成正比解析:带电粒子在磁场中做匀速圆周运动,则粒子运动的周期T =2πmqB,带电粒子等效为环形电流,由I =q T 可得I =q 2B 2πm,D 正确.答案:D8.(2012·高考广东卷)质量和电量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图中虚线所示.下列表述正确的是( )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M ,N 做正功D .M 的运行时间大于N 的运行时间解析:由左手定则知,M 带负电,N 带正电,选项A 正确;由qvB =m v 2r 得,v =qBrm,两粒子的比荷相等,可知M 的速率大于N 的速率,选项B 错误;洛伦兹力的方向与粒子运动的速度方向垂直,不做功,选项C 错误;由带电粒子在磁场中做圆周运动的周期T =2πmqB知,M ,N 在磁场中的运动时间相等,选项D 错误.答案:A9.(2013·温州十校联考)三个质子1、2和3分别以大小相等的初速度v1、v 2和v 3经平板MN 上的小孔O 射入匀强磁场,各初速度的方向如图所示,磁场方向垂直纸面向里,整个装置处在真空中,且不计质子重力.最终这三个质子打到平板MN 上的位置到小孔的距离分别为s 1、s 2和s 3,则( )A .s 1<s 2<s 3B .s 2>s 3>s 1C .s 1=s 3>s 2D .s 1=s 3<s 2解析:质子在磁场中做匀速圆周运动的半径r 相同,由左手定则可以画出三个质子的轨迹,如图所示,v 2与平板垂直,s 2最大,v 1和v 3与平板的夹角相同,s 1=s 3,故D 项正确.答案:D10.(2013·嘉积中学高二质检)我国南极科考队在南极观看到了美丽的极光.极光是来自太阳的高能带电粒子流高速冲进高空稀薄大气层时,被地球磁场俘获,从而改变原有运动方向,向两极做螺旋运动.这些高能粒子在运动过程中与大气分子或原子剧烈碰撞或摩擦从而激发大气分子或原子,使其发出各种颜色的光.地磁场的存在,使许多宇宙粒子不能达到地面而向人烟稀少的两极地区偏移,为地球生命的诞生和维持提供了天然的屏障.科学家发现并证实,向两极做螺旋运动的这些高能粒子的旋转半径是不断减小的,这主要与下列哪些因素有关( )A .可能是洛伦兹力对粒子做负功,使其动能减小B .可能是空气阻力对粒子做负功,使其动能减小C .可能是粒子的带电荷量减小D .南北两极的磁感应强度较强解析:在地球的大气层中,粒子受阻力作用,使粒子动能减小,速度v 减小;越靠近地球表面,磁感应强度B 增加,由半径公式R =mvqB可知,v 减小、B 增加都是使半径R 减小的原因,故BD 正确.答案:BD11.(2013·宁德高二检测)如图所示,水平放置的平行金属板a 、b 带有等量异种电荷,a 板带正电,两板间有垂直于纸面向里的匀强磁场,若一个带正电的液滴在两板间做直线运动,其运动的方向是( )A .沿竖直方向向下B .沿竖直方向向上C .沿水平方向向左D .沿水平方向向右解析:正电荷受到的电场力竖直向下,重力也竖直向下,做直线运动时必须是洛伦兹力与这两个力方向相反,且大小与这两个力的合力相等,液滴必做匀速直线运动,否则洛伦兹力会发生变化失去平衡而做曲线运动.故答案D 正确.答案:D12.1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖.若一束粒子由左端射入质谱仪后的运动轨迹如图所示,则下列说法中正确的是( )A .该束带电粒子带负电B .速度选择器的P 1极板带正电C .在B 2磁场中运动半径越大的粒子,质量越大D .在B 2磁场中运动半径越大的粒子,比荷q m越小解析:根据左手定则可确定粒子带正电,A 错误;由速度选择器中电场力和洛伦兹力方向相反知,P 1板带正电,B 正确;根据qvB =mv 2r ,r =mvqB,故可以确定C 错误,D 正确.答案:BD13.质量为m 、带电荷量为q 的小物块,从倾角为θ的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向里的匀强磁场中,磁感应强度为B ,如图所示.若带电小物块下滑后某时刻对斜面的作用力恰好为零,下面说法中正确的是( )A .小物块一定带正电荷B .小物块在斜面上运动时做匀加速直线运动C .小物块在斜面上运动时做加速度增大,而速度也增大的变加速直线运动D .小物块在斜面上下滑过程中,当小球对斜面压力为零时的速率为mg cos θBq解析:小物块沿斜面下滑对斜面作用力为零时受力分析如图所示,小物块受到重力G 和垂直于斜面向上的洛伦兹力F ,故小物块带负电荷,A 选项错误;小物块在斜面上运动时合力等于mg sin θ保持不变,做匀加速直线运动,B 选项正确,C 选项错误;小物块在斜面上下滑过程中,当小物块对斜面压力为零时有qvB =mg cos θ,则有v =mg cos θBq,D 选项正确.答案:BD第Ⅱ卷(非选择题,共48分)二、计算题(本大题共4小题,共48分,要有必要的文字说明和解题步骤,有数值计算的题要注明单位)14.如图,水平放置的光滑的金属导轨M 、N 平行地置于匀强磁场中,间距为d ,磁场的磁感应强度大小为B ,方向与导轨平面夹角为α,金属棒ab 的质量为m ,放在导轨上且与导轨垂直.电源电动势为E ,定值电阻为R ,其余部分电阻不计.则当电键闭合的瞬间,棒ab 的加速度为多大?解析:画出棒ab 的截面图,如图所示.安培力F =IdB ,斜向左下方,与水平面成90°-α角,据牛顿第二定律有:F sin α=ma据欧姆定律有:I =E R解得a =BEd sin αmR答案:BEd sin αmR15.如图所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xOy 平面并指向纸面外,磁感应强度为B ,一带正电的粒子以速度v 0从O 点射入磁场,入射方向在xOy 平面内,与x 轴正方向的夹角为θ,若粒子的电荷量和质量分别为q 和m ,试求粒子射出磁场时的位置坐标及在磁场中运动的时间.解析:粒子的运动轨迹如图所示,由圆的对称性可知粒子从A 点射出磁场时其速度方向与x 轴的夹角仍为θ.设粒子的轨道半径为R ,由洛伦兹力公式和牛顿第二定律可得qv 0B =mv 20/R ,①设OA 的距离为L ,由几何关系可得L /2=R sin θ② 而A 点的坐标为x =-L ③联立①②③解得x =-2mv 0sin θ/qB ④设粒子在磁场中的运动周期为T ,则T =2πR /v ⑤ 粒子在场中运动轨迹所对的圆心角为α=2(π-θ)⑥ 粒子在磁场中的运动时间为t ,则t =α2πT ⑦由①⑤⑥⑦可得:t =2mπ-θBq.⑧答案:x =-2mv 0sin θ/qB t =2mπ-θBq16.一种半导体材料称为“霍尔材料”,用它制成的元件称为“霍尔元件”,这种材料有可定向移动的电荷,称为“载流子”,每个载流子的电荷量大小为1个元电荷,即q =1.6×10-19C .霍尔元件在自动检测、控制领域得到广泛应用,如录像机中用来测量录像磁鼓的转速、电梯中用来检测电梯门是否关闭以自动控制升降电动机的电源的通断等.在一次实验中,一块霍尔材料制成的薄板宽ab =1.0×10-2m 、长bc =L =4.0×10-2m 、厚h =1×10-3m ,水平放置在竖直向上的磁感应强度B =1.5 T 的匀强磁场中,bc 方向通有I =3.0 A 的电流,如图所示,沿宽度产生1.0×10-5 V 的横向电压.(1)假定载流子是电子,a 、b 两端哪端电势较高? (2)薄板中形成电流I 的载流子定向运动的速度为多大? 解析:(1)根据左手定则可确定a 端电势高.(2)导体内载流子沿电流方向所在的直线定向运动时,受洛伦兹力作用而横向运动,产生横向电场,横向电场的电场力与洛伦兹力平衡时,导体横向电压稳定.设载流子沿电流方向所在直线定向移动的速率为v ,横向电压为U ab ,横向电场强度为E ,电场力F E =Ee =U ab ed,磁场力F B =evB ,平衡时Ee =evB ,得v =U ab l ab B = 1.0×10-51.0×10-2×1.5m/s =6.7×10-4m/s. 答案:(1)a 端 (2)6.7×10-4m/s17.(2012·高考浙江理综)如图所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M 点.(1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B 的值;(3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?解析:(1)墨滴在电场区域做匀速直线运动,有q Ud=mg ① 由①式得:q =mgd U②由于电场方向向下,电荷所受电场力向上,可知: 墨滴带负电荷.③(2)墨滴垂直进入电、磁场共存区域,重力仍与电场力平衡,合力等于洛伦兹力,墨滴做匀速圆周运动,有qv 0B =m v 20R④考虑墨滴进入磁场和撞板的几何关系,可知墨滴在该区域恰完成四分之一圆周运动,则半径R =d ⑤由②④⑤式得B =v 0U gd2.⑥ (3)根据题设,墨滴运动轨迹如图,设圆周运动半径为R ′,有qv 0B ′=m v 20R ′⑦由图示可得:R ′2=d 2+⎝ ⎛⎭⎪⎫R ′-d 22⑧得:R ′=54d ⑨联立②⑦⑨式可得:B ′=4v 0U 5gd2. 答案:(1)负 mgd U (2)v 0U gd 2 (3)4v 0U 5gd2。
(人教版)高中物理选修3-2(全册)课时同步练习汇总第四章第1、2节划时代的发现探究感应电流的产生条件课时达标训练新人教版选修3-2一、单项选择题1.下列现象中属于电磁感应现象的是( )A.磁场对电流产生力的作用B.变化的磁场使闭合电路中产生电流C.插在通电螺线管中的软铁棒被磁化D.电流周围产生磁场2.如图所示, 矩形线框abcd 放置在水平面内, 磁场方向与水平方向成α角, 已知sinα=45, 回路面积为S , 磁感应强度为B , 则通过线框的磁通量为( )A .BS B.45BS C.35BS D.34BS3.如图所示, 开始时矩形线框与匀强磁场的方向垂直, 且一半在磁场内, 一半在磁场外, 若要使线框中产生感应电流, 下列办法中不可行的是( )A .将线框向左拉出磁场B .以ab 边为轴转动(小于90°)C .以ad 边为轴转动(小于60°)D .以bc 边为轴转动(小于60°)4.如图所示, 在匀强磁场中的矩形金属轨道上, 有等长的两根金属棒ab 和cd , 它们以相同的速度匀速运动, 则( )A .断开开关S, ab 中有感应电流B .闭合开关S, ab 中有感应电流C .无论断开还是闭合开关S, ab 中都有感应电流D .无论断开还是闭合开关S, ab 中都没有感应电流二、多项选择题5.我国已经制订了登月计划, 假如宇航员登月后想探测一下月球表面是否有磁场. 他手边有一只灵敏电流表和一个小线圈, 则下列推断正确的是( )A .直接将电流表放于月球表面, 通过观察电流表是否有示数来判断磁场的有无B .将电流表与线圈组成闭合回路, 使线圈沿某一方向运动, 如果电流表无示数, 则可判断月球表面无磁场C .将电流表与线圈组成闭合回路, 使线圈沿某一方向运动, 如果电流表有示数, 则可判断月球表面有磁场D .将电流表与线圈组成闭合回路, 使线圈在某一平面内沿各个方向运动, 电流表无示数, 则不能判断月球表面有无磁场6.如图所示, 水平面内有两条相互垂直且彼此绝缘的通电长直导线, 以它们为坐标轴构成一个平面直角坐标系. 四个相同的圆形闭合线圈在四个象限内完全对称放置, 两直导线中的电流大小与变化情况完全相同, 电流方向如图中所示, 当两直导线中的电流都增大时, 四个线圈a、b、c、d中感应电流的情况是( )A.线圈a中无感应电流 B.线圈b中有感应电流C.线圈c中有感应电流 D.线圈d中无感应电流7.如图所示, 线圈abcd在磁场区域ABCD中, 下列哪种情况下线圈中有感应电流产生( )A.把线圈变成圆形(周长不变)B.使线圈在磁场中加速平移C.使磁场增强或减弱D.使线圈以过ab的直线为轴旋转8.如图所示, 用导线做成圆形或正方形回路, 这些回路与一直导线构成几种位置组合(彼此绝缘), 下列组合中, 切断直导线中的电流时, 闭合回路中会有感应电流产生的是( )三、非选择题9.边长L=10 cm的正方形线框固定在匀强磁场中, 磁场方向与线圈平面间的夹角θ=30°, 如图所示, 磁感应强度随时间变化的规律为B=(2+3t)T, 则第3 s内穿过线圈的磁通量的变化量ΔΦ为多少?10.如图所示, 有一个垂直于纸面向里的匀强磁场, B 1=0.8 T, 磁场有明显的圆形边界, 圆心为O , 半径为r =1 cm. 现在纸面内先后放上与磁场垂直的圆线圈, 圆心均在O 处, A 线圈半径为1 cm, 10匝; B 线圈半径为2 cm, 1匝; C 线圈半径为0.5 cm, 1匝. 问:(1)在B 减为B 2=0.4 T 的过程中, A 线圈和B 线圈磁通量改变多少? (2)在磁场转过30°角的过程中, C 线圈中磁通量改变多少?答案1.解析: 选 B 磁场对电流产生力的作用属于通电导线在磁场中的受力情况; 插在通电螺线管中的软铁棒被磁化属于电流的磁效应; 电流周围产生磁场属于电流的磁效应; 而变化的磁场使闭合电路中产生电流属于电磁感应现象. 故正确答案为B.2.解析: 选B 在磁通量Φ=BS 公式中, B 与S 必须垂直, 若B 与S 不垂直, 则S 要转化为垂直于B 的有效面积, 也可以将B 转化为垂直于S 的垂直分量, 故Φ=BS ·sin α=45BS . 3.解析: 选D 将线框向左拉出磁场的过程中, 线框的bc 部分做切割磁感线的运动, 或者说穿过线框的磁通量减少, 所以线框中将产生感应电流. 当线框以ab 边为轴转动时,线框的cd边的右半段在做切割磁感线的运动, 或者说穿过线框的磁通量在发生变化, 所以线框中将产生感应电流. 当线框以ad边为轴转动(小于60°)时, 穿过线框的磁通量在减小, 所以在这个过程中线框中会产生感应电流, 如果转过的角度超过60°, bc边将进入无磁场区, 那么线框中将不产生感应电流(60°~300°). 当线框以bc边为轴转动时, 如果转动的角度小于60°, 则穿过线框的磁通量始终保持不变(其值为磁感应强度与矩形面积的一半的乘积).4.解析: 选B 两根金属棒ab和cd以相同的速度匀速运动, 若断开开关S, 两根金属棒与导轨构成的回路中磁通量无变化, 则回路中无感应电流, 故选项A、C错误; 若闭合开关S, 两根金属棒与导轨构成的回路中磁通量发生变化, 则回路中有感应电流, 故B正确, D错误.5.解析: 选CD 当线圈平面与磁场方向平行时, 不论向哪个方向移动线圈, 穿过线圈的磁通量都不会变化, 所以也不会产生感应电流, 因此不能判断有无磁场存在; 若使闭合线圈沿某一方向移动时有感应电流产生, 则一定存在磁场. 故正确答案为C、D.6.解析: 选CD 根据安培定则可判断出电流产生的磁场方向, 线圈a中的磁场方向均垂直于纸面向里, 线圈c中的磁场方向均垂直于纸面向外, 线圈b、d中的合磁通量始终为零, 故增大两直导线中的电流时, 线圈a、c中的磁通量发生变化, 有感应电流产生, 而线圈b、d中无感应电流产生. 选项C、D正确, A、B错误.7.解析: 选ACD 选项A中, 线圈的面积变化, 磁通量变化, 故A正确; 选项B中, 无论线圈在磁场中匀速还是加速平移, 磁通量都不变, 故B错; 选项C、D中, 线圈中的磁通量发生变化, 故C、D正确.8.解析: 选CD 穿过线圈A中有效磁通量为ΦA=Φ出-Φ进=0, 且始终为零, 即使切断导线中的电流, ΦA也始终为零, A中不可能产生感应电流. B中线圈平面与导线的磁场平行, 穿过B的磁通量也始终为零, B中也不能产生感应电流. C中穿过线圈的磁通量, ΦΦ出, 即ΦC≠0, 当切断导线中电流后, 经过一定时间, 穿过线圈的磁通量ΦC减小为零, 进>所以C中有感应电流产生. D中线圈的磁通量ΦD不为零, 当电流切断后, ΦD最终也减小为零, 所以D中也有感应电流产生.9.解析: 第3 s内就是从2 s末到3 s末, 所以, 2 s末的磁场的磁感应强度为B1=(2+3×2)T=8 T3 s末的磁场的磁感应强度为B2=(2+3×3)T=11 T则有ΔΦ=ΔBS sin θ=(11-8)×0.12×sin 30° Wb=1.5×10-2 Wb答案: 1.5×10-2 Wb10.解析: (1)对A线圈, Φ1=B1πr2,Φ2=B2πr2磁通量的改变量|Φ2-Φ1|=(0.8-0.4)×3.14×10-4 Wb=1.256×10-4 Wb对B线圈, Φ1=B1πr2, Φ2=B2πr2磁通量的改变量|Φ2-Φ1|=(0.8-0.4)×3.14×10-4 Wb=1.256×10-4 Wb(2)对C线圈: Φ1=Bπr2C, 磁场转过30°, 线圈仍全部处于磁场中, 线圈面积在垂直磁场方向的投影为πr2C cos 30°, 则Φ2=Bπr2C cos 30°. 磁通量的改变量|Φ2-Φ1|=Bπr2C(1-cos 30°)≈0.8×3.14×(5×10-3)2×(1-0.866) Wb≈8.4×10-6 Wb答案: (1)1.256×10-4 Wb 1.256×10-4 Wb (2)8.4×10-6 Wb第四章 第4节 法拉第电磁感应定律课时达标训练 新人教版选修3-2一、单项选择题1.一金属圆环水平固定放置, 现将一竖直的条形磁铁, 在圆环上方沿圆环轴线从静止开始释放, 在条形磁铁穿过圆环的过程中, 条形磁铁与圆环( )A .始终相互吸引B .始终相互排斥C .先相互吸引, 后相互排斥D .先相互排斥, 后相互吸引2.如图甲所示, 长直导线与闭合金属线框位于同一平面内, 长直导线中的电流i 随时间t 的变化关系如图乙所示. 在0~T 2时间内, 直导线中电流向上, 则在T2~T 时间内, 线框中感应电流的方向与所受安培力情况是( )A .感应电流方向为顺时针, 安培力的合力方向向左B .感应电流方向为逆时针, 安培力的合力方向向右C .感应电流方向为顺时针, 安培力的合力方向向右D .感应电流方向为逆时针, 安培力的合力方向向左3.如图所示, 通电螺线管两侧各悬挂一个小铜环, 铜环平面与螺线管截面平行. 当电键S 接通瞬间, 两铜环的运动情况是( )A .同时向两侧推开B .同时向螺线管靠拢C .一个被推开, 一个被吸引, 但因电源正负极未知, 无法具体判断D .同时被推开或同时向螺线管靠拢, 因电源正负极未知, 无法具体判断4.电阻R 、电容器C 与一个线圈连成闭合回路, 条形磁铁静止在线圈的正上方, N 极朝下, 如图所示. 现使磁铁开始自由下落, 在N 极接近线圈上端过程中, 流过R 的电流方向和电容器极板的带电情况是( )A.从a到b, 上极板带正电B.从a到b, 下极板带正电C.从b到a, 上极板带正电D.从b到a, 下极板带正电5.如图所示, ab为一金属杆, 它处在垂直于纸面向里的匀强磁场中, 可绕a点在纸面内转动; S是以a为圆心位于纸面内的金属圆环. 在杆转动过程中, 杆的b端与金属环保持良好接触; A为电流表, 其一端与金属环相连, 一端与a点良好接触. 当杆沿顺时针方向转动时, 某时刻ab杆的位置如图所示, 则此时刻( )A.电流表中电流的方向由c→d; 作用于ab的安培力向右B.电流表中电流的方向由c→d; 作用于ab的安培力向左C.电流表中电流的方向由d→c; 作用于ab的安培力向右D.无电流通过电流表, 作用于ab的安培力为零二、多项选择题6.如图所示, 闭合金属圆环沿垂直于磁场方向放置在有界匀强磁场中, 将它从匀强磁场中匀速拉出, 以下各种说法中正确的是( )A.向左拉出和向右拉出时, 环中的感应电流方向相反B.向左或向右拉出时, 环中感应电流方向都是沿顺时针方向的C.向左或向右拉出时, 环中感应电流方向都是沿逆时针方向的D.环在离开磁场之前, 圆环中无感应电流7.如图所示, 用一根长为L、质量不计的细杆与一个上孤长为l0、下弧长为d0的金属线框的中点联结并悬挂于O点, 悬点正下方存在一个上弧长为2l0、下弧长为2d0的方向垂直纸面向里的匀强磁场, 且d0≪L. 先将线框拉开到如图所示位置, 松手后让线框进入磁场, 忽略空气阻力和摩擦力, 下列说法正确的是( )A.金属线框进入磁场时感应电流的方向为a→b→c→d→aB.金属线框离开磁场时感应电流的方向为a→b→c→d→aC.金属线框dc边进入磁场与ab边离开磁场的速度大小总是相等D.向左摆动进入或离开磁场的过程中, 所受安培力方向向右; 向右摆动进入或离开磁场的过程中, 所受安培力方向向左8.如图所示, “U”形金属框架固定在水平面上, 金属杆ab与框架间无摩擦. 整个装置处于竖直方向的磁场中. 若因磁场的变化, 使杆ab向右运动, 则磁感应强度( )A.方向向下并减小B.方向向下并增大C.方向向上并增大 D.方向向上并减小关.三、非选择题9.某同学在学习了法拉第电磁感应定律之后, 自己制作了一个手动手电筒. 如图所示是手电筒的简单结构示意图, 左右两端是两块完全相同的条形磁铁, 中间是一根绝缘直杆, 由绝缘细铜丝绕制的多匝环形线圈只可在直杆上自由滑动, 线圈两端接一灯泡, 晃动手电筒时线圈也来回滑动, 灯泡就会发光, 其中O点是两磁极连线的中点, a、b两点关于O点对称.(1)试分析其工作原理;(2)灯泡中的电流方向是否变化.答案1.解析: 选 D 在条形磁铁靠近圆环的过程中, 通过圆环的磁通量不断增加, 会产生感应电流, 从而阻碍条形磁铁的运动, 所以此过程中它们是相互排斥的, 当条形磁铁穿过圆环后, 通过圆环的磁通量又会减小, 产生一个与原磁场相同的感应磁场, 阻碍原磁通量的减小, 所以圆环与条形磁铁间有相互吸引的作用力, D 正确.2.解析: 选C 在T2~T 时间内, 直导线中的电流方向向下增大, 穿过线框的磁通量垂直纸面向外增加, 由楞次定律知感应电流方向为顺时针, 线框所受安培力的合力由左手定则可知向右, C 正确.3.解析: 选 A 当电路接通瞬间, 穿过线圈的磁通量增加, 使得穿过两侧铜环的磁通量都增加, 由楞次定律可知, 两环中感应电流的磁场与线圈两端的磁场方向相反, 即受到线圈磁场的排斥作用, 使两铜环分别向外侧移动, A 正确.4.解析: 选D 磁铁N 极接近线圈的过程中, 线圈中有向下的磁场, 并且磁通量增加, 由楞次定律可得, 感应电流的方向为b →R →a , 故电容器下极板带正电, 上极板带负电, D 正确.5.解析: 选A 金属杆顺时针转动切割磁感线, 由右手定则可知产生a 到b 的感应电流, 电流由c →d 流过电流表, 再由左手定则知此时ab 杆受安培力向右, 故A 正确.6.解析: 选BD 将金属圆环不管从哪边拉出磁场, 穿过闭合圆环的磁通量都要减少, 根据楞次定律可知, 感应电流的磁场要阻碍原磁通量的减少, 感应电流的磁场方向与原磁场方向相同, 应用安培定则可以判断出感应电流的方向是顺时针方向的, 选项B 正确, A 、C 错误; 另外在圆环离开磁场前, 穿过圆环的磁通量没有改变, 该种情况无感应电流, D 正确.7.解析: 选BD 当线框进入磁场时, dc 边切割磁感线, 由楞次定律可判断, 感应电流的方向为: a →d →c →b →a ; 当线框离开磁场时, 同理可判其感应电流的方向为: a →b →c →d →a , A 错误, B 正确; 线框dc 边(或ab 边)进入磁场或离开磁场时, 都要切割磁感线产生感应电流, 机械能转化为电能, 故dc 边进入磁场与ab 边离开磁场的速度大小不相等, C 错误; 由“来拒去留”知, D 正确.8.解析: 选AD 因磁场变化, 发生电磁感应现象, 杆ab 中有感应电流产生, 而使杆ab 受到磁场力的作用, 并发生向右运动. 而杆ab 向右运动, 使得闭合回路中磁通量有增加的趋势, 说明原磁场的磁通量必定减弱, 即磁感应强度正在减小, 与方向向上、向下无关.9.解析: (1)线圈来回滑动时, 穿过线圈的磁通量不断变化, 线圈中产生感应电流, 灯泡发光.(2)线圈由a 滑至b 过程中, 磁场方向向左, 穿过线圈的磁通量先减小后增加, 根据楞次定律, 灯泡中电流方向先由右向左, 后由左向右.同样可判断线圈由b 滑至a 过程中, 灯泡中电流方向先由右向左, 后由左向右. 所以线圈中电流方向不断变化.答案: (1)见解析(2)变化第四章第4节法拉第电磁感应定律课时达标训练新人教版选修3-2一、单项选择题1.穿过一个单匝线圈的磁通量始终保持每秒均匀地减少2 Wb, 则( )A.线圈中感应电动势每秒增加2 VB.线圈中感应电动势每秒减小2 VC.线圈中无感应电动势D.线圈中感应电动势大小不变2.如图所示, 在竖直向下的匀强磁场中, 将一水平放置的金属棒ab以水平速度v0抛出, 运动过程中棒的方向不变, 不计空气阻力, 那么金属棒内产生的感应电动势将( )A.越来越大B.越来越小C.保持不变 D.方向不变, 大小改变3.环形线圈放在均匀磁场中, 如图甲所示, 设在第1 s内磁感线垂直于线圈平面向里, 若磁感应强度随时间变化的关系如图乙所示, 那么在第2 s内线圈中感应电流的大小和方向是( )A.感应电流大小恒定, 顺时针方向B.感应电流大小恒定, 逆时针方向C.感应电流逐渐增大, 逆时针方向D.感应电流逐渐减小, 顺时针方向4.如图所示, 在匀强磁场中, MN、PQ是两条平行金属导轨, 而ab、cd为串有电压表和电流表的两根金属棒, 两只电表可看成理想电表. 当两棒以相同速度向右匀速运动时(运动过程中两棒始终与导轨接触)( )A.电压表有读数; 电流表有读数B.电压表无读数; 电流表无读数C.电压表有读数; 电流表无读数D .电压表无读数; 电流表有读数5.如图所示, 一个半径为L 的半圆形硬导体AB 以速度v , 在水平U 型框架上匀速滑动, 匀强磁场的磁感应强度为B , 回路电阻为R 0, 半圆形硬导体AB 的电阻为r , 其余电阻不计, 则半圆形导体AB 切割磁感线产生感应电动势的大小及AB 之间的电势差分别为( )A .BLv ;BLvR 0R 0+rB .2BLv ; BLvC .2BLv ; 2BLvR 0R 0+rD .BLv ; 2BLv二、多项选择题6.有一种高速磁悬浮列车的设计方案是: 在每节车厢底部安装强磁铁(磁场方向向下), 并且在沿途两条铁轨之间平放一系列线圈. 下列说法中正确的是( )A .列车运动时, 通过线圈的磁通量会发生变化B .列车速度越快, 通过线圈的磁通量变化越快C .列车运动时, 线圈中会产生感应电动势D .线圈中的感应电动势的大小与列车速度无关7.(山东高考)如图所示, 一端接有定值电阻的平行金属轨道固定在水平面内, 通有恒定电流的长直绝缘导线垂直并紧靠轨道固定, 导体棒与轨道垂直且接触良好. 在向右匀速通过M 、N 两区的过程中, 导体棒所受安培力分别用F M 、F N 表示. 不计轨道电阻. 以下叙述正确的是( )A .F M 向右B .F N 向左C .F M 逐渐增大D .F N 逐渐减小8.如图所示, 长为L 的金属导线弯成一圆环, 导线的两端接在电容为C 的平行板电容器上, P 、Q 为电容器的两个极板, 磁场垂直于环面向里, 磁感应强度以B =B 0+kt (k >0)随时间变化, t =0时, P 、Q 两板电势相等, 两板间的距离远小于环的半径, 经时间t , 电容器P 板( )A .不带电B .所带电荷量与t 无关C .带正电, 电荷量是kL 2C4πD .带负电, 电荷量是kL 2C4π三、非选择题9.一个边长为a=1 m的正方形线圈, 总电阻为R=2 Ω, 当线圈以v=2 m/s的速度通过磁感应强度B=0.5 T的匀强磁场区域时, 线圈平面总保持与磁场垂直. 若磁场的宽度b>1 m, 如图所示, 求:(1)线圈进入磁场过程中感应电流的大小;(2)线圈在穿过整个磁场过程中释放的焦耳热.10.如图所示, 两根足够长的金属导轨ab、cd竖直放置, 导轨间距离为L, 电阻不计. 在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡. 整个系统置于匀强磁场中, 磁感应强度方向与导轨所在平面垂直. 现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放. 金属棒下落过程中保持水平, 且与导轨接触良好. 已知某时刻后两灯泡保持正常发光. 重力加速度为g. 求:(1)磁感应强度的大小;(2)灯泡正常发光时导体棒的运动速率.答案1.解析: 选D 因线圈的磁通量均匀变化, 所以磁通量的变化率ΔΦΔt 为一定值, 又因为是单匝线圈, 据E =ΔΦΔt可知选项D 正确.2.解析: 选 C 由于导体棒中无感应电流, 故棒只受重力作用, 导体棒做平抛运动, 水平速度v 0不变, 即切割磁感线的速度不变, 故感应电动势保持不变, C 正确.3.解析: 选B 由B t 图知, 第2秒内ΔB Δt 恒定, 则E =ΔB Δt S 也恒定, 故感应电流I =ER 大小恒定, 又由楞次定律判断知电流方向沿逆时针方向, B 正确, A 、C 、D 错误.4.解析: 选 B 在两棒以相同速度向右匀速运动的过程中, 磁通量不变, 无感应电流产生. 根据电压表和电流表的测量原理知, 两表均无读数, B 正确.5.解析: 选C 半圆形导体AB 切割磁感线的有效长度为2L , 对应的电动势为E =2BLv ,AB 间的电势差U AB =E R 0+r R 0=2BLvR 0R 0+r, C 正确.6.解析: 选ABC 列车运动时, 安装在每节车厢底部的强磁铁产生的磁场使通过线圈的磁通量发生变化; 列车速度越快, 通过线圈的磁通量变化越快, 根据法拉第电磁感应定律可知, 由于通过线圈的磁通量发生变化, 线圈中会产生感应电动势, 感应电动势的大小与通过线圈的磁通量的变化率成正比, 与列车的速度有关. 由以上分析可知, A 、B 、C 正确, D 错误.7.解析: 选BCD 由题意可知, 根据安培定则, 在轨道内的M 区、N 区通电长直导线产生的磁场分别垂直轨道平面向外和向里, 由此可知, 当导体棒运动到M 区时, 根据右手定则可以判定, 在导体棒内产生的感应电流与长直绝缘导线中的电流方向相反, 再根据左手定则可知, 金属棒在M 区时受到的安培力方向向左, 因此A 选项不正确; 同理可以判定B 选项正确; 再根据导体棒在M 区匀速靠近长直绝缘导线时对应的磁场越来越大, 因此产生的感应电动势越来越大, 根据闭合电路的欧姆定律和安培力的公式可知, 导体棒所受的安培力F M 也逐渐增大, 故C 选项正确; 同理D 选项正确.8.解析: 选BD 磁感应强度以B =B 0+kt (k >0)随时间变化, 由法拉第电磁感应定律得: E =ΔΦΔt =S ΔB Δt =kS , 而S =L 24π, 经时间t 电容器P 板所带电荷量Q =EC =kL 2C 4π; 由楞次定律知电容器P 板带负电, B 、D 正确.9.解析: (1)根据E =Blv , I =ER知I =Bav R =0.5×1×22A =0.5 A (2)线圈穿过磁场过程中, 由于b >1 m,故只在进入和穿出时有感应电流, 故Q =2I 2Rt =2I 2R ·a v =2×0.52×2×12J =0.5 J答案: (1)0.5 A (2)0.5 J10.解析: (1)设小灯泡的额定电流为I 0, 有 P =I 20R ①由题意, 在金属棒沿导轨竖直下落的某时刻后, 小灯泡保持正常发光, 流经MN 的电流为I =2I 0 ②此时金属棒MN 所受的重力和安培力相等, 下落的速度达到最大值, 有 mg =BLI ③联立①②③式得B =mg2LR P④ (2)设灯泡正常发光时, 导体棒的速率为v , 由电磁感应定律与欧姆定律得 E =BLv ⑤ E =RI 0⑥联立①②④⑤⑥式得v =2Pmg⑦答案: (1)mg 2L R P (2)2P mg第四章 第5节 电磁感应现象的两类情况课时达标训练 新人教版选修3-2一、单项选择题1.如图所示, 在一水平光滑绝缘塑料板上有一环形凹槽, 有一带正电小球质量为m , 电荷量为q , 在槽内沿顺时针做匀速圆周运动, 现加一竖直向上的均匀变化的匀强磁场, 且B 逐渐增加, 则( )A .小球速度变大B .小球速度变小C .小球速度不变D .以上三种情况都有可能2.如图所示, 竖直放置的两根平行金属导轨之间接有定值电阻R , 质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦, 金属棒与导轨的电阻均不计, 整个装置放在匀强磁场中, 磁场方向与导轨平面垂直, 金属棒在竖直向上的恒力F 作用下加速上升的一段时间内, 力F 做的功与安培力做的功的代数和等于( )A .金属棒的机械能增加量B .金属棒的动能增加量C .金属棒的重力势能增加量D .电阻R 上放出的热量3.如图所示, 金属棒ab 置于水平放置的光滑框架cdef 上, 棒与框架接触良好, 匀强磁场垂直于ab 棒斜向下. 从某时刻开始磁感应强度均匀减小, 同时施加一个水平方向上的外力F 使金属棒ab 保持静止, 则F ( )A.方向向右, 且为恒力B.方向向右, 且为变力C.方向向左, 且为变力 D.方向向左, 且为恒力4.如图甲所示, 平面上的光滑平行导轨MN、PQ上放着光滑导体棒ab、cd, 两棒用细线系住, 细线拉直但没有张力. 开始时匀强磁场的方向如图甲所示, 而磁感应强度B随时间t的变化如图乙所示, 不计ab、cd间电流的相互作用, 则细线中的张力大小随时间变化的情况为图丙中的( )A B C D丙5. (福建高考)如图甲所示, 一圆形闭合铜环由高处从静止开始下落, 穿过一根竖直悬挂的条形磁铁, 铜环的中心轴线与条形磁铁的中轴线始终保持重合. 若取磁铁中心O为坐标原点, 建立竖直向下为正方向的x轴, 则图乙中最能正确反映环中感应电流i随环心位置坐标x变化的关系图象是( )甲A B C D乙二、多项选择题6.如图所示, 导体AB在做切割磁感线运动时, 将产生一个电动势, 因而在电路中有电流通过, 下列说法中正确的是( )。
课时作业(三十六)1.(2012·广东卷)某小型发电机产生的交变电动势为e=50sin100πt(V),对此电动势,下列表述正确的有( ) A.最大值是50 2 V B.频率是100 HzC.有效值是25 2 V D.周期是0.02 s[解析] 从表达式知该交变电动势的最大值为50 V,有效值是25 2 V,A错,C对.由2πf=100π得f=50 Hz,周期T=0.02 s,D对.[答案] CD2.如图中各图面积均为S的线圈均绕其对称轴或中心轴在匀强磁场B中以角速度ω匀速转动,能产生正弦交变电动势e=BSωsinωt的图是 ( )[解析] 线圈在匀强磁场中绕垂直于磁场方向的轴(轴在线圈所在平面内)匀速转动,产生的正弦交变电动势为e=BSωsinωt,由这一原则判断,A图和C图符合要求;B图中的转轴不在线圈所在平面内;D图转轴与磁场方向平行,而不是垂直.故A、C正确.[答案] AC3.如右图所示,矩形线框置于竖直向下的磁场中,通过导线与灵敏电流表相连,线框在磁场中绕垂直于磁场方向的转轴匀速转动,图中线框平面处于竖直面内,下述说法正确的是( )A .因为线框中产生的是交变电流,所以电流表示数始终为零B .线框通过图中位置瞬间,穿过线框的磁通量最大C .线框通过图中位置瞬间,通过电流表的电流瞬时值最大D .若使线框转动的角速度增大一倍,那么通过电流表电流的有效值也增大一倍 [答案] CD4.(2012·南通模拟)面积为S 的两个电阻相同的线圈,分别放在如图所示的磁场中,图甲中是磁感应强度为B 0的匀强磁场,线圈在磁场中以周期T 绕OO ′轴匀速转动,图乙中磁场变化规律为B =B 0cos 2πtT,从图示位置开始计时,则( )A .两线圈的磁通量变化规律相同B .两线圈中感应电动势达到最大值的时刻不同C .经相同的时间t (t >T ),两线圈产生的热量相同D .从此时刻起,经T /4时间,流过两线圈横截面的电荷量相同 [解析] 甲:Φ甲=B 0S cos ωt ,乙:Φ乙=BS cos ωt =B 0S cos ωt ,故磁通量变化率相同,又E =ΔΦΔt ,所以电动势变化规律也相同,故甲、乙两种情况电动势最大值出现时刻及有效值、平均值均同.[答案] ACD5.如图所示,图甲和图乙分别表示正弦脉冲波和方波的交变电流与时间的变化关系.若使这两种电流分别通过两个完全相同的电阻,则经过1 min 的时间,两电阻消耗的电功之比W 甲∶W 乙为 ( )A .1∶ 2B .1∶2C .1∶3D .1∶6[解析] 电功的计算,I 要用有效值计算,图甲中,由有效值的定义得(12)2R ×2×10-2+0+(12)2R ×2×10-2=I 21R ×6×10-2,解得I 1=33A ;图乙中,I 的值不变,I 2=1 A ,由W =UIt =I 2Rt ,可以得到W 甲∶W 乙=1∶3,C 正确.[答案] C6.一只矩形线圈在匀强磁场中绕垂直于磁感线的轴匀速转动,穿过线圈的磁通量随时间变化的图象如图甲所示,则下列说法正确的是( )A .t =0时刻,线圈平面与中性面垂直B .t =0.01 s 时刻,Φ的变化率最大C .t =0.02 s 时刻,交流电动势达到最大D .该线圈产生的交流电动势的图象如图乙所示[解析] 由Φ-t 图知,t =0时,Φ最大,即线圈处于中性面位置,此时e =0,故A 、D 两项错误;由图知T =0.04 s ,在t =0.01 s 时,Φ=0,ΔΦΔt 最大,e 最大,则B 项正确;在t =0.02 s 时,Φ最大,ΔΦΔt=0,e =0,则C 项错误. [答案] B7.(2012·扬州模拟)如图甲所示,一矩形闭合线圈在匀强磁场中绕垂直于磁场方向的转轴OO ′以恒定的角速度ω转动,从线圈平面与磁场方向平行时开始计时,线圈中产生的交变电流按照图乙所示的余弦规律变化,在t =π2ω时刻( )A .线圈中的电流最大B .穿过线圈的磁通量最大C .线圈所受的安培力为零D .穿过线圈磁通量的变化率最大[解析] t =π2ω=T4,线圈转过90°,线圈平面与磁感线垂直,此时穿过线圈的磁通量最大,穿过线圈磁通量的变化率为零,感应电流为零,线圈不受安培力作用,故A 、D 错误,B 、C 正确.[答案] BC8.(2012·连云港模拟)一个闭合的矩形线圈放在匀强磁场中匀速转动,角速度为ω时,线圈中产生的交变电动势的最大值为E 0,周期为T 0,外力提供的功率为P 0.若使线圈转动的角速度变为2ω,线圈中产生的交变电动势的最大值为E ,周期为T ,外力提供的功率为P .则E 、T 和P 的大小为( )A .E =2E 0,T =12T 0,P =2P 0B .E =E 0,T =12T 0,P =2P 0C .E =2E 0,T =T 0,P =2P 0D .E =2E 0,T =12T 0,P =4P 0[解析] 设线圈为N 匝,面积为S ,所在区域磁感应强度为B ,当角速度为ω时,产生的最大感应电动势E 0=NBS ω,周期T 0=2πω,外力提供的功率P 0=E 2有R =NBS ω222R =N 2B 2S 2ω22R .当角速度为2ω时,产生的最大感应电动势E =2NBS ω=2E 0,周期T =2π2ω=πω=12T 0,外力提供的功率P =NBS 2ω222R=4N 2B 2S 2ω22R =4P 0.故D 正确. [答案] D9.如右图所示,面积为S 、匝数为N 、电阻为r 的线圈固定在图示位置,线圈与阻值为R 的电阻构成闭合电路,理想交流电压表并联在电阻R 的两端;U 形磁铁以线圈的中心轴线OO ′为轴以角速度ω匀速转动,已知U 形磁铁两极间的磁场为匀强磁场,磁感应强度为B ,取磁铁转动到图示位置的时刻t =0.则( )A .在t =0时刻,线圈处于中性面,流过电阻R 的电流为0B .1 s 内流过电阻R 的电流方向改变ωπ次C .线圈匝数减少为原来的一半,磁铁转动角速度增大到原来2倍,电压表读数不变D .在电阻R 的两端再并联一只阻值为R 的电阻后,电压表的读数不变[解析] 在t =0时刻,线圈中的磁通量最小,线圈处于垂直于中性面的位置,感应电动势最大,流过电阻R 的电流为最大值,A 错;由于一个周期内电流的方向改变两次,1 s 内流过电阻R 的电流方向改变的次数为n =2f =ωπ,B 正确;线圈产生的感应电动势的最大值E m =NBS ω,线圈匝数减少为原来的一半,磁铁转动角速度增大到原来2倍,E m 不变,由于产生的交变电流为正弦交变电流,因此其有效值为E =E m2也不变,因匝数减半,内阻也减半,外电阻不变.所以路端电压增加,即电压读数变大,所以C 不正确.当并联一个电阻R 后,外电阻内电阻不变,所以路端电压减小,即电压读数减小,所以D 错.[答案] B10.将硬导线中间一段折成不封闭的正方形,每边长为l ,它在磁感应强度为B 、方向如右图所示的匀强磁场中匀速转动,转速为n ,导线在a 、b 两处通过电刷与外电路连接,外电路接有额定功率为P 的小灯泡并正常发光,电路中除灯泡外,其余部分的电阻不计,灯泡的电阻应为( )A.πl 2nB2PB.πl 2nB2PC.l 2nB 22PD.l 2nB 2P[解析] 单匝正方形线圈绕垂直于磁场方向的轴匀速转动,将产生正弦式电流,则电动势的最大值E m =Bl 2ω=2πnBl 2,其有效值E =E m2=2πnBl22,计算小灯泡的额定功率P 要用其有效值,即P =E 2R.R =E 2P=πBnl22P,故只有B 选项正确.[答案] B11.下图甲所示为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO ′匀速转动,线圈的匝数n =100匝、电阻r =10 Ω,线圈的两端经集流环与电阻R 连接,电阻R =90 Ω,与R 并联的交流电压表为理想电表.在t =0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量Φ随时间t 按下图乙所示正弦规律变化.求:(1)交流发电机产生的电动势的最大值; (2)电路中交流电压表的示数.[解析] (1)交流发电机产生的电动势的最大值E m =nBS ω 而Φm =BS ,ω=2πT,所以E m =2n πΦmT由Φ-t 图线可知:Φm =2.0×10-2Wb ,T =6.28×10-2 s 所以E m =200 V.(2)电动势的有效值E =22E m =100 2 V 由闭合电路的欧姆定律,电路中电流的有效值为I =E R +r = 2 A 交流电压表的示数为 U =IR =90 2 V≈127 V.[答案] (1)200 V (2)127 V12.如下图甲所示是某同学设计的一种振动发电装置的示意图,它的结构是一个套在辐向形永久磁铁槽中的半径为r =0.10 m 、匝数n =20匝的线圈,磁场的磁感线均沿半径方向均匀分布(其右视图如下图乙所示).在线圈所在位置磁感应强度B 的大小均为B =0.20π T ,线圈的电阻为R 1=0.50 Ω,它的引出线接有R 2=9.5 Ω的小电珠L.外力推动线圈框架的P 端,使线圈沿轴线做往复运动,便有电流通过小电珠.当线圈运动速度v 随时间t 变化的规律如下图丙所示时(摩擦等损耗不计).求:(1)小电珠中电流的最大值; (2)电压表的示数;(3)t =0.1 s 时外力F 的大小;(4)在不改变发电装置结构的条件下,要使小电珠的功率提高双倍,可采取什么办法(至少说出两种方法)?[解析] (1)由题意及法拉第电磁感应定律知道,由于线圈在磁场中做往复运动,产生的感应电动势的大小符合正弦曲线变化规律,线圈中的感应电动势的最大值为:E m =nBlv =nB 2πrv m ,电路总电阻为:R 1+R 2,那么小电珠中电流的最大值为I m =nB 2πrv mR 1+R 2=20×0.2×2π×0.1×2π+A =0.16 A.(2)电压表示数为有效值U =U m2=22I m R 2=22×0.16×9.5 V=0.76 2 V≈1.07 V. (3)当t =0.1 s 也就是T /4时,外力F 的大小为F =nB 2πrI m =n 2B 2πr 2R 1+R 2v m =0.128N.(4)提高v m 用变压器[答案] (1)0.16 A (2)1.07 V (3)0.128 N (4)提高v m 用变压器。
课时作业(三十三)1.(2012·江苏南通月考)电磁炉的工作原理是利用电磁感应现象产生的涡流,使锅体发热从而加热食物.下列相关的说法中正确的是( ) A.锅体中涡流的强弱与磁场变化的频率有关B.电磁炉中通入电压足够高的直流电也能正常工作C.金属或环保绝缘材料制成的锅体都可以利用电磁炉来烹饪食物D.电磁炉的上表面一般都用金属材料制成,以加快热传递、减少热损耗[解析] 涡流是高频交流电产生的磁场引起的电磁感应现象,故选项A正确、B错误;电磁炉表面一般用绝缘材料制成,避免产生涡流,锅体用金属制成利用涡流加热食物,故选项C、D错误.[答案] A2.(2012·湖南嘉兴模拟)在竖直向下的匀强磁场中,将一水平放置的金属棒PQ以初速度v0水平抛出,如右图所示.棒在运动过程中始终保持水平,空气阻力不计,那么,下列说法中正确的是( ) A.PQ棒两端的电势一定满足φP<φQB.PQ棒中的感应电动势越来越大C.PQ棒中的感应电动势越来越小D.PQ棒中的感应电动势保持不变[解析] PQ棒水平切割磁感线,利用右手定则可判断两端的电势一定满足φP<φQ,A 正确;因PQ棒水平方向速度不变,竖直方向不切割磁感线,所以PQ棒中的感应电动势保持不变,D正确.[答案] AD3.如右图所示,平行导轨间距为d,一端跨接一个电阻R,匀强磁场的磁感应强度为B,方向垂直于平行金属导轨所在平面.一根金属棒与导轨成θ角放置,金属棒与导轨的电阻均不计.当金属棒垂直于棒的方向以恒定的速度v在金属导轨上滑行时,通过电阻R的电流是( )A.BdvRB.Bdv sin θR C.Bdv cos θRD.Bdv R sin θ[解析] 导体棒与磁场垂直,速度与磁场垂直且与棒长度方向垂直,由E =Blv ,l =dsin θ得I =E R =BdvR sin θ,D 正确.[答案] D4.(2012·徐州检测)如图所示,A 、B 、C 是相同的白炽灯,L 是自感系数很大、电阻很小的自感线圈.现将S 闭合,下面说法正确的是( )A .B 、C 灯同时亮,A 灯后亮B .A 、B 、C 灯同时亮,然后A 灯逐渐变暗,最后熄灭 C .A 灯一直不亮,只有B 灯和C 灯亮D .A 、B 、C 灯同时亮,并且亮暗没有变化[解析] 由于线圈的自感系数很大,在开关闭合瞬间线圈的阻碍作用很大,线圈中电流为零,所以电流通过A 和B 、C 支路,三灯同时亮;随着L 中的电流增大,A 中电流逐渐减小;由于线圈L 的电阻很小,电路达到稳定时灯泡A 被线圈短路,灯泡A 中电流为零,最后熄灭,故B 项正确.[答案] B5.如右图所示,两块水平放置的金属板距离为d ,用导线、开关S 与一个n 匝的数圈连接,线圈置于方向竖直向上的均匀变化的磁场中.两板间放一台小压力传感器,压力传感器上表面绝缘,在其上表面静止放置一个质量为m 、电荷量为+q 的小球.开关S 闭合前传感器上有示数,开关S 闭合后传感器上的示数变为原来的一半.则线圈中磁场的变化情况和磁通量变化率分别是( )A .正在增强,ΔΦΔt =mgd2qB .正在增强,ΔΦΔt =mgd2nqC .正在减弱,ΔΦΔt =mgd2qD .正在减弱,ΔΦΔt =mgd2nq[解析] 开关S 闭合后传感器示数减小,说明带电小球对传感器的压力变小,小球带正电,说明金属板上极板带负电,由楞次定律判断可知,线圈中感应电流的磁场方向是竖直向下的,从而推知题图中的磁场正在增强;依题意知,闭合开关S 后小球受重力mg .支持力F N和电场力F 电而处于平衡状态,即F 电+F N =mg ,其中F 电=q ·nΔΦΔtd,F N =12mg ,代入解得ΔΦΔt=mgd2nq,故选项B 正确. [答案] B6.如右图所示的电路中,两个相同的小灯泡L 1和L 2分别串联一个带铁芯的电感线圈L 和一个滑动变阻器R .闭合开关S 后,调整R ,使L 1和L 2发光的亮度一样,此时流过两个灯泡的电流为I .然后,断开S.若t ′时刻再闭合S ,则在t ′前后的一小段时间内,正确反映流过L 1的电流i 1、流过L 2的电流i 2随时间t 变化的图象是[解析] 闭合开关S ,调整R ,使两个灯泡L 1、L 2发光亮度相同,电流为I ,说明R L =R ;若t ′时刻再闭合S ,流过电感线圈L 和灯泡L 1的电流迅速增大,电感线圈L 产生自感电动势,阻碍流过L 1的电流i 1增大,直至达到电流I ,故选项A 错误,B 正确;而对于R 和L 2支路来说,流过灯泡L 2的电流i 2立即达到电流I ,故C 、D 均错误.[答案] B7.如右图,垂直矩形金属框的匀强磁场的磁感应强度为B ,导体棒ab 垂直线框两长边搁在框上,ab 长为l ,在Δt 时间内,ab 向右以速度v 匀速滑过距离d ,则A .因右边面积减小ld ,左边面积增大ld ,则ΔΦ=2Bld ,E =2Bld2ΔtB .因右边面积减小ld ,左边面积增大ld ,减小磁通量与增大磁通量相互抵消,ΔΦ=0,E =0C .ΔΦ=Bld ,E =BldΔtD .因ab 棒做切割磁感线运动,所以不能用E =ΔΦΔt 计算感应电动势,只能用E =Blv计算感应电动势[解析] 磁通量的变化等于磁感应强度与导线扫过面积的乘积,即ΔΦ=Bld ,故选项A 、B 均错误;感应电动势E =ΔΦΔt =BldΔt或E =Blv ,故选项C 正确,D 错误.[答案] C8.(2012·扬州检测)面积S =0.2 m 2、n =100匝的圆形线圈,处在如下图所示的匀强磁场内,磁感应强度B 随时间t 变化的规律是B =0.02 t T .电阻R 与电容器C 并联后接在线圈两端,电阻R =3 Ω,电容C =30 μF ,线圈电阻r =1 Ω.求:(1)通过R 的电流的大小和方向; (2)电容器所带的电荷量.[解析] (1)通过圆形线圈的磁通量Φ变大,由楞次定律和安培定则知,线圈中感应电流的方向为逆时针,所以通过R 的电流方向为由b 到a .由法拉第电磁感应定律,线圈产生的感应电动势为E =n ΔΦΔt =nS ΔBΔt=100×0.2×0.02 V=0.4 V , 由闭合电路欧姆定律,通过R 的电流为I =E R +r =0.43+1A =0.1 A. (2)电容器两端的电压等于电阻R 两端的电压,即U C =U R =IR =0.1×3 V=0.3 V ,电容器所带的电荷量为Q =CU C =30×10-6×0.3 C=9×10-6 C.[答案] (1)0.1 A ,方向b →R →a (2)9×10-6C9.(2012·无锡检测)如右图所示,在存在右边界的垂直纸面向里、磁感应强度为B 的匀强磁场区域中有一个均匀导线制成的单匝直角三角形线框.现用外力使线框以恒定的速度v 沿垂直磁场方向向右运动,运动中线框的AB 边始终与磁场右边界平行.已知AB =BC =l ,线框导线的总电阻为R .则线框离开磁场的过程中A .线框中的电动势随时间均匀增大B .通过线框截面的电荷量为Bl 22RC .线框所受外力的最大值为2B 2l 2vRD .线框中的热功率与时间成正比[解析] 三角形线框向外匀速运动的过程中,由于有效切割磁感线的长度L =vt ,所以线框中感应电动势的大小E =BLv =Bv 2t ,故选项A 正确;线框离开磁场的运动过程中,通过线圈的电荷量Q =It =ΔΦΔtR ×Δt =Bl22R,选项B 正确;当线框恰好刚要完全离开磁场时,线框有效切割磁感线的长度最大,则F =BIl =B 2l 2vR ,选项C 错误;线框的热功率为P =Fv =BIvt ×v =B 2v 4t 2R,选项D 错误.[答案] AB10.某学习小组设计了一种发电装置如下图甲所示,图乙为其俯视图.将8块外形相同的磁铁交错放置组合成一个高h =0.5 m 、半径r =0.2 m 的圆柱体,其可绕固定轴OO ′逆时针(俯视)转动,角速度ω=100 rad/s.设圆柱外侧附近每个磁场区域的磁感应强度大小均为B =0.2 T 、方向都垂直于圆柱体侧表面.紧靠圆柱外侧固定一根与其等高、电阻R 1=0.5 Ω的细金属杆ab ,杆与轴OO ′平行.图丙中阻值R =1.5 Ω的电阻与理想电流表A 串联后接在杆a 、b 两端.下列说法正确的是( )A .电流表A 的示数约为1.41 AB .杆ab 产生的感应电动势的有效值E =2 VC .电阻R 消耗的电功率为2 WD .在圆柱体转过一周的时间内,流过电流表A 的总电荷量为零 [解析] 圆柱体转过一周为感应电动势的4个周期,T =T 04=142πω=π200s.金属杆上感应电动势的大小E ′=Blv =Bhr ω=2.0 V ;感应电动势的方向周期性变化,周期为π200 s ,所以有效值E =2.0 V ,则I =E R 1+R =1.0 A ,电阻R 的电功率为P =I 2R =1.5W .电流在电流表中周期性变化,每个周期的总电流为零.[答案] BD11.如右图所示,金属杆ab 放在光滑的水平金属导轨上,与导轨组成闭合矩形电路,长l 1=0.8 m ,宽l 2=0.5 m ,回路总电阻R =0.2 Ω,回路处在竖直方向的磁场中,金属杆用水平绳通过定滑轮连接质量M =0.04 kg 的木块,磁感应强度从B 0=1 T 开始随时间均匀增加,5 s 末木块将离开水平面,不计一切摩擦,g 取10 m/s 2,求回路中的电流强度.[解析] 设磁感应强度B (t )=B 0+kt ,k 是大于零的常量, 于是回路电动势E =S ΔBΔt=kS① S =l 1×l 2② 回路电流I =E R③杆受安培力F (t )=BIl 2=(B 0+kt )Il 2④5秒末有F (5)=B 0+5·k kl 1l 22R=Mg⑤可以得到k =0.2 T/s 或k =-0.4 T/s(舍去), 解得I =0.4 A. [答案] 0.4 A12.(2012·长春调研)如图甲所示,空间存在一宽度为2L 的有界匀强磁场,磁场方向垂直纸面向里.在光滑绝缘水平面内有一边长为L 的正方形金属线框,其质量m =1 kg 、电阻R =4 Ω,在水平向左的外力F 作用下,以初速度v 0=4 m/s 匀减速进入磁场,线框平面与磁场垂直,外力F 大小随时间t 变化的图线如图乙所示.以线框右边刚进入磁场时开始计时,求:(1)匀强磁场的磁感应强度B ;(2)线框进入磁场的过程中,通过线框的电荷量q ; (3)判断线框能否从右侧离开磁场?说明理由.[解析] (1)由F —t 图象可知,线框加速度a =F 2m=2 m/s 2框的边长L =v 0t -12at 2=(4×1-12×2×12) m =3 mt =0时刻线框中的感应电流I =BLv 0R线框所受的安培力F 安=BIL 由牛顿第二定律F 1+F 安=ma 又F 1=1 N ,联立得B =13T =0.33 T(2)线框进入磁场的过程中,平均感应电动势E =BL 2t平均电流I =ER通过线框的电荷量q =I t联立得q=0.75 C(3)设匀减速运动速度减为零的过程中线框通过的位移为x,由运动学公式得0-v20=-2ax代入数值得x=4 m<2L所以线框不能从右侧离开磁场.[答案] (1)0.33 (2)0.75(3)不能从右侧离开磁场理由见解析。
一、选择题1.下列哪组现象说明光具有波粒二象性( )A .光的色散和光的干涉B .光的衍射和光的干涉C .泊松亮斑和光电效应D .以上三组现象都不行C解析:CA .光的色散现象,说明太阳光是复色光、光的干涉说明了光的波动性,不能说明粒子性,故A 错误;B .光的衍射、干涉现象只说明了光的波动性,不能说明粒子性,故B 错误; CD .泊松亮斑是由于光的衍射形成的,能说明光具有波动性,光电效应说明光具有粒子性,故C 正确,D 错误。
故选C 。
2.研究光电效应现象的实验电路如图所示,A 、K 为光电管的两个电极,电压表V 、电流计G 均为理想电表。
已知该光电管阴极K 的极限频率为ν0,元电荷电量为e ,普朗克常量为h ,开始时滑片P 、P '上下对齐。
现用频率为ν的光照射阴极K (ν>ν0),则下列说法错误的是A .该光电管阴极材料的逸出功为hν0B .若加在光电管两端的正向电压为U ,则到达阳极A 的光电子的最大动能为hv-hv 0+eUC .若将滑片P 向右滑动,则电流计G 的示数一定会不断增大D .若将滑片P '向右滑动,则当滑片P 、P '间的电压为0hv hv e-时,电流计G 的示数恰好为0C解析:CA .由极限频率为ν0,故金属的逸出功为W 0= hν0,A 正确;B .由光电效应方程可知,电子飞出时的最大动能为0k E hv W =- 由于加的正向电压,由动能定理kk eU E E '=- 解得0kE hv hv eU '=-+ 故B 正确;C .若将滑片P 向右滑动时,若电流达到饱和电流,则电流不在发生变化,故C 错误;D .P '向右滑动时,所加电压为反向电压,由k eU E =可得 0hv hv U e -= 则反向电压达到遏止电压后,动能最大的光电子刚好不能参与导电,则光电流为零,故D 正确;故选C 。
3.一平行板电容器的电容为C ,A 极板材料发生光电效应的极限波长为0λ,整个装置处于真空中,如图所示。
课时作业(三十四)(分钟:45分钟 满分:100分)一、选择题(每小题7分,共56分)1.若物体做简谐运动,则下列说法中正确的是( ) A .若位移为负值,则速度一定为正值,加速度也一定为正值 B .物体通过平衡位置时,所受合力为零,回复力为零,处于平衡状态 C .物体每次通过同一位置时,其速度不一定相同,但加速度一定相同 D .物体的位移增大时,动能增加,势能减少[解析] 如图所示,图线中a 、b 两处,物体处于同一位置,位移为负值,加速度一定相同,但速度方向分别为负、正,A 错误,C 正确.物体的位移增大时,动能减少,势能增加,D 错误.单摆摆球通过最低点时,回复力为零,但合力不为零,B 错误.[答案] C2.(2011·通州模拟)一个做简谐运动的弹簧振子,周期为T ,振幅为A ,设振子第一次从平衡位置运动到x =A 2处所经最短时间为t 1,第一次从最大正位移处运动到x =A2所经最短时间为t 2,关于t 1与t 2,以下说法正确的是( )A .t 1=t 2B .t 1<t 2C .t 1>t 2D .无法判断[解析] 用图象法,画出x -t 图象,如右图所示,从图象上,我们可以很直观地看出:t 1<t 2,答案为B.[答案] B3.一个弹簧振子做受迫运动,它的振幅A 与驱动力频率f 之间的关系如右图所示.由图可知( )A .驱动力频率为f 2时,振子处于共振状态B .驱动力频率为f 3时,受迫振动的振幅比共振小,但振子振动的频率仍为f 2C .振子如果做自由振动,它的频率是f 2D .振子可以做频率为f 1的等幅振动[解析] 弹簧振子做受迫振动时,其振动频率等于驱动力的频率,与物体的固有频率无关,由图知当驱动力频率为f 2时振幅最大,振动处于共振状态,说明振子的固有频率为f 2,故A 、C 对.当驱动力频率为f 3时,振子振动频率也为f 3,故B 错.如果给振子频率f 1的驱动力,振子可以做频率为f 1的等幅振动,D 对.[答案] ACD4.摆长为l 的单摆做简谐运动,若从某时刻开始计时(取t =0),当振动至t =3π2lg时,摆球具有负向最大速度,则单摆的振动图象是下图中的( )[解析] 从t =0时至t =3π2l g ,这段时间为34T ,经过34T 摆球具有负向最大速度,说明在34T 时刻,摆球在平衡位置,且正由平衡位置向负向最大位移处振动,答案为C.[答案] C5.一单摆做小角度摆动,其振动图象如右图所示,以下说法正确的是( ) A .t 1时刻摆球速度最大,悬线对它的拉力最小 B .t 2时刻摆球速度为零,悬线对它的拉力最小 C .t 3时刻摆球速度为零,悬线对它的拉力最大 D .t 4时刻摆球速度最大,悬线对它的拉力最大[解析] 由振动图象可知t 1和t 3时刻摆球偏离平衡位置位移最大,此时摆球速度为0,悬线对摆球拉力最小;t 2和t 4时刻摆球位移为0,正在通过平衡位置,速度最大,悬线对摆球拉力最大,故选项D 正确.[答案] D6.(2011·安徽合肥一模)如图所示,弹簧振子在振动过程中,振子从a 到b 历时0.2 s ,振子经a 、b 两点时速度相同,若它从b 再回到a 的最短时间为0.4 s ,则该振子的振动频率为( )A .1 HzB .1.25 HzC .2 HzD .2.5 Hz[解析] 由简谐运动的对称性可知,t cb =0.1 s ,t bc =0.1 s ,故T4=0.2 s ,解得T =0.8 s ,f=1T=1.25 Hz ,选项B 正确.[答案] B7.(2011·吉安模拟)如右图所示,两根完全相同的弹簧和一根张紧的细线将甲、乙两物块束缚在光滑水平面上,已知甲的质量大于乙的质量.当细线突然断开后,两物块都开始做简谐运动,在运动过程中( )A .甲的振幅大于乙的振幅B .甲的振幅小于乙的振幅C .甲的最大速度小于乙的最大速度D .甲的最大速度大于乙的最大速度[解析] 由题意知,在细线未断之前两个弹簧所受到的弹力是相等的,所以当细线断开后,甲、乙两个物体做简谐运动时的振幅是相等的,A 、B 错;两物体在平衡位置时的速度最大,此时的动能等于弹簧刚释放时的弹性势能,所以甲、乙两个物体的最大动能是相等的,则质量大的速度小,所以C 正确,D 错误.[答案] C8.弹簧振子做简谐运动,t 1时刻速度为v ,t 2时刻速度也为v ,且方向相同.已知(t 2-t 1)小于周期T ,则(t 2-t 1)(v ≠0)( )A .可能大于T 4B .可能小于T4C .一定小于T2D .可能等于T2[解析] 如右图所示,弹簧振子在A 、A ′间做简谐运动,O 为平衡位置,C 、C ′分别是OA 和OA ′间的关于O 点对称的两位置.根据对称性,C 、C ′两位置速度大小一定相等,设为v .若C 对应t 1时刻,C ′对应t 2时刻,在C →O →C ′的过程中,速度均向右,满足(t 2-t 1)<T ,则0<t 2-t 1<T2.可以看出,C 、C ′可无限靠近O ,也可分别无限靠近A 、A ′,即t 2-t 1可小于T 4,也可大于T4,故A 、B 正确. 若C ′对应t 1时刻,C 对应t 2时刻,从C ′→A ′→C ′→O →C →A →C 的过程中,C ′、C 的速度满足条件.由图可知T2<t 2-t 1<T ,所以C 、D 不正确.[答案] AB二、非选择题(共44分)9.(10分)(2011·朝阳区模拟)如图所示为用频闪照相的方法拍到的一个水平放置的弹簧振子振动情况.甲图是振子静止在平衡位置的照片,乙图是振子被拉伸到左侧距平衡位置20 mm 处,放手后向右运动14周期内的频闪照片.已知频闪的频率为10 Hz.求:(1)相邻两次闪光的时间间隔t 0、振动的周期T 0.(2)若振子的质量为20 g ,弹簧的劲度系数为50 N/m ,则振子的最大加速度是多少? [解析] (1)T =1f =0.1 s ,即相邻两次闪光的时间间隔为t 0=0.1 s .振子从最大位移处运动到平衡位置经历时间为0.3 s ,故振子振动周期T 0=1.2 s.(2)a m =F m m =kAm=50 m/s 2 [答案] (1)0.1 s 1.2 s (2)50 m/s 210.(10分)弹簧振子以O 点为平衡位置在B 、C 间做简谐运动,B 、C 相距20 cm ,某时刻振子处在B 点,经0.5 s 振子首次达到C 点.求:(1)振动的周期和频率;(2)振子在5 s 内通过的路程及这时位移的大小. [解析] (1)设振幅为A ,则2A =20 cm ,A =10 cm. 设周期为T ,则T /2=0.5 s ,T =1 s ,f =1 Hz.(2)振子在1T 内通过的路程为4A ,故在t =5 s =5T 内通过的路程s =5×4A =20A =20×10 cm =200 cm =2 m.5 s 末振子处在B 点,所以它相对平衡位置的位移大小为10 cm. [答案] (1)1 s 1 Hz (2)2 m 10 cm11.(12分)如右图所示,有一个摆长为l 的单摆,现将摆球A 拉离平衡位置一个很小的角度,然后由静止释放,A 摆至平衡位置P 时,恰与静止在P 处的B 球发生正碰,碰后A 继续向右摆动,B 球以速度v 沿光滑水平面向右运动,与右侧的墙壁碰撞后以原速率返回,当B 球重新回到位置P 时恰与A 再次相遇,求位置P 与墙壁间的距离d .[解析] 摆球A 做简谐运动,当其与B 球发生碰撞后速度改变,但是摆动的周期不变.而B 球做匀速直线运动,这样,再次相遇的条件为B 球来回所需要的时间为单摆半周期的整数倍:2d /v =n (T /2)(其中n =1、2、3…) 由单摆周期公式T =2πl g得 d =n v π2lg (其中n =1、2、3…). [答案]n v π2lg(其中n =1、2、3…)12.(12分)如下图甲所示,在弹簧振子的小球上安装了一支记录用的笔P ,在下面放一白纸带.当小球做简谐运动时,沿垂直于振动方向拉动纸带,笔P 就在纸带上画出了一条振动曲线.已知在某次实验中沿如图所示方向拉动纸带,且在某段时间内得到如图乙所示的曲线.根据曲线回答下列问题:(1)纸带速度的变化是__________.(填“增大”、“不变”或“减小”)(2)若已知纸带的加速度为a =2 m/s 2,且已测出图乙中x ab =0.54 m ,x bc =0.22 m ,则弹簧振子的周期T =____________________.(3)若纸带做v =2 m/s 的匀速直线运动,从t 0时刻,即振子经过平衡位置向y 轴正方向振动时开始计时,试在下图所给的坐标中画出纸带上产生的曲线.(忽略振幅的减小)[解析] (1)由于纸带上振动曲线由B 到A 间距增大,故纸带做加速运动,纸带速度增大.(2)由Δx =at 2可知: t =x ab -x bca=0.54-0.222s =0.4 s T =2t =0.8 s.(3)横轴表示纸带的位移,且与时间成正比,故一个周期对应的位移L =v T =2×0.8 m =1.6 m (来源)所以曲线如图所示[答案] (1)增大 (2)0.8 s (3)见解析图。
第四章第5节电磁感应现象的两类情况
一、选择题
1.在如图所示的四种磁场情况中能产生恒定的感生电场的是()
解析:据麦克斯韦电磁理论,要产生恒定的感生电场,必须由均匀变化的磁场产生,C 对.
答案:C
2.下列说法中正确的是()
A.动生电动势是洛伦兹力对导体中自由电荷做功而引起的
B.因为洛伦兹力对运动电荷始终不做功,所以动生电动势不是由洛伦兹力而产生的C.动生电动势的方向可以由右手定则来判定
D.导体棒切割磁感线产生感应电流,受到的安培力一定与受到的外力大小相等、方向相反
解析:动生电动势是洛伦兹力沿导体方向的分力做功引起的,但洛伦兹力对自由电荷所做的总功仍为零,选项A、B错误;动生电动势是由于导体切割磁感线产生的,可由右手定则判定方向.C正确;只有在导体棒做匀速切割时,除安培力以外的力的合力才与安培力大小相等方向相反,做变速运动时不成立.故D错误.
答案:C
3.如图所示,内壁光滑的塑料管弯成的圆环平放在水平桌面上,
环内有一带负电小球,整个装置处于竖直向下的
磁场中,当磁场突然增大时,小球将()
A.沿顺时针方向运动
B.沿逆时针方向运动
C.在原位置附近往复运动
D.仍然保持静止状态
解析:当磁场增大时,由楞次定律和右手螺旋定则知,感应电场沿逆时针方向,带负电小球在电场力作用下沿顺时针方向运动.
答案:A
4.(2013·大连高二检测)如图所示,由导体棒ab和矩形线框cdef
组成的“10”图案在匀强磁场中一起向右匀速平动,磁场的方向垂直线框
平面向里,磁感应强度B随时间均匀增大,则下列说法正确的是()
A.导体棒的a端电势比b端电势高,电势差U ab在逐渐增大
B.导体棒的a端电势比b端电势低,电势差U ab在逐渐增大
C .线框cdef 中有顺时针方向的电流,电流大小在逐渐增大
D .线框cdef 中有逆时针方向的电流,电流大小在逐渐增大
解析:导体棒ab 切割磁感线属于动生电动势,由右手定则可知,φa >φb ,磁感应强度B 随时间均匀增大,由E =BL v 得,电势差U ab 在逐渐增大,选项A 正确而B 错误;矩形线框cdef 因为运动而在cd 、ef 中产生的动生电动势相抵消,故只有磁感应强度变化而在线框中产生的感生电动势,由楞次定律得,线框中感应电流的方向是逆时针方向,由法拉第电磁感
应定律E =ΔB Δt
·S 得,线框cdef 中感应电动势的大小不变,因此其感应电流的大小也不变,选项C 、D 均错.
答案:A
5.如图所示,一金属半圆环置于匀强磁场中,当磁场突然减弱时,则( )
A .N 端电势高
B .M 端电势高
C .若磁场不变,将半圆环绕MN 轴旋转180°的过程中,N 端电势高
D .若磁场不变,将半圆环绕MN 轴旋转180°的过程中,M 端电势高
解析:将半圆环补充为圆形回路,由楞次定律可判断圆环中产生的感应电动势方向在半圆环中由N 指向M ,即M 端电势高,B 正确;若磁场不变,半圆环绕MN 轴旋转180°的过程中,由楞次定律可判断,半圆环中产生的感应电动势在半圆环中由N 指向M ,即M 端电势高,D 正确.
答案:BD
6.一匀强磁场,磁场方向垂直于纸面,规定向里为正方向,在磁场中有一金属圆环,圆环平面位于纸面内,如图所示.现令磁感应强度B 随时间变化,先按如图所示的Oa 图线变化,后来又按照图线bc 、cd 变化,令E 1、E 2、E 3分别表示这三段变化过程中的感应电动势的大小,I 1、I 2、I 3分别表示对应的感应电流,则( )
A .E 1>E 2,I 1沿逆时针方向,I 2沿顺时针方向
B .E 1<E 2,I 1沿逆时针方向,I 2沿顺时针方向
C .E 1<E 2,I 2沿顺时针方向,I 3沿顺时针方向
D .
E 3=E 2,I 2沿顺时针方向,I 3沿逆时针方向
解析:bc 段与cd 段磁感应强度的变化率相等,大于aO 的磁感应强度变化率.E 1<E 2,由楞次定律及安培定则可以判断B 、C 正确.
答案:BC
二、非选择题
7.如图所示,光滑导轨MN 、PQ 在同一水平面内平行固定放置,
其间距d =1 m ,右端通过导线与阻值R =10 Ω的小灯泡L 相连,导轨区域内有竖直向下磁感应强度B =1 T 的匀强磁场,一金属棒在恒力F =0.8 N 的作用下匀速通过磁场.
(不考虑导轨和金属棒的电阻,金属棒始终与导轨垂直并保持良好接触).求:
(1)金属棒运动速度的大小;
(2)小灯泡的功率.
解析:(1)由E =Bd v ,I =E R
匀速时F =BId 得v =FR B 2d 2=8 m/s. (2)P =I 2
R =B 2d 2v 2R =6.4 W. 答案:(1)8 m/s (2)6.4 W
8.如图甲所示,截面积为0.2 m 2的100匝圆形线圈A 处在变化的磁场中.磁场方向垂直纸面,其磁感应强度B 随时间t 的变化规律如图乙所示,设向外为B 的正方向.R 1=4 Ω,R 2=6 Ω,C =30 μF ,线圈的内阻不计,求电容器上极板所带电荷量并说明正负.
解析:E =n ΔB Δt S =100×0.021
×0.2 V =0.4 V 电路中的电流I =E R 1+R 2=0.44+6
A =0.04 A 所以U C =U 2=IR 2=0.04×6 V =0.24 V
Q =CU C =30×10-6×0.24 C =7.2×10-
6 C 由楞次定律和安培定则可知,电容器的上极板带正电.
答案:7.2×10-
6 C 上极板带正电。