爆破机理笔记
- 格式:doc
- 大小:115.00 KB
- 文档页数:7
爆破破岩机理【转发】:一、爆生气体膨胀压力作用破坏论Kutter和Hagan从静力学的观点出发,提出了“气楔作用”(PneumaticWedgtng)这种假说,认为炸药爆炸后产生的高温高压的气体,由于膨胀而产生的推力作用在炸药周围的岩壁上,引起岩体质点的径向位移,从而在岩体中形成剪切应力。
当这种剪切应力超过岩体的极限抗剪强度时,就会引起岩体的破坏。
当爆生气体的膨胀推力足够大时,还会引起自由面附近的岩体隆起、鼓开并沿径向方向抛掷。
这种假说认为,动能仅占炸药总能量的5%~15%,绝大部分能量包含在爆生气体产物中,另一方面,岩体爆破时岩石发生破裂和破碎所需的时间小于爆生气体作用于岩体的时间。
二、应力波反射拉伸作用破坏论以Coates和Hin。
为代表的这种假说,从爆轰动力学的观点出发,认为炸药爆炸后,强大的冲击波冲击和压缩周围的岩体,在岩体中激发出强烈的压缩应力波。
当压缩应力波传播到自由面时,从自由面处反射而形成拉伸波。
当拉伸波的强度超过岩体的极限抗拉强度时,从自由面处开始向爆源方向产生拉伸片裂作用。
三、应力波和爆生气体联合作用破坏论以Fairhurst为代表的这种假说认为,爆破时岩体的破坏是应力波和爆生气体共同作用的结果。
但在解释破碎岩体的主导原因时存在不同观点。
一种观点认为,应力波在破碎岩体时不起主导作用,只是在形成初始径向裂隙时起先锋作用,岩体的破碎主要依靠爆生气体的膨胀推力和尖劈作用;另一种观点则认为,爆破时破碎岩体的主导作用取决于岩体的性质,即取决于岩体的波阻抗。
对于波阻抗为(10一15)× 10^5g/(cm^2.s)的高波阻抗的岩体,即极致密坚韧的岩体,爆炸应力波在其中的传播性能好,波速高。
爆破时岩体的破碎主要由应力波引起。
对于波阻抗为(2一5)× 10^5 g/(cm^2. s) 低波阻抗的松软而具有塑性的岩体,爆炸应力波在其中的传播性能较差,波速低,爆破时岩体的破碎主要依靠爆生气体的膨胀压力;对于波阻抗为(5~10)× 10 ^5g/〈cm^2.S )的中等波阻抗的中等坚硬的岩体,应力波和爆生气体同样起重要作用。
第六章爆破基础知识第一节爆破原理一、炸药及爆炸的一般特征1、炸药及其主要特征炸药是在外界能量作用下,自身进行高速的化学反应,同时产生大量的高温高压气体和热量。
炸药的主要特征是:(1)具有相对稳定性和化学爆炸性。
(2)在微小的体积中蕴藏有大量能量。
(3)能够依靠自身的氧化实现爆炸反应。
2、炸药爆炸及其三要素(1)反应过程中能放出大量的热。
放出大量的热是化学爆炸进行所必须具备的首要条件。
(2)炸药反应速度快。
反应速度快是是形成爆炸的必须条件,也是爆炸反应的特点之一。
(3)能生成大量的气体立物。
炸药爆炸后生成大量的气体,如二氧化碳、氧气和水蒸气,还产生一些有毒气体如一氧化碳和氮的氧化物。
这些气体在膨胀过程中,能对周围介质发生破坏,把炸药的能量转换为机械能。
总之,炸药爆炸必须同时具备三个要素,三者又是相互相系的。
所以,高温、高压高速是炸药爆炸的重要特点。
二、炸药爆轰理论基础知识(一)炸药的起爆和感度1、炸药的起爆炸药在未受外界能量作用时,处于相对稳定状态。
利用炸药进行爆破作业时,必须由外界给予足够的能量,使炸药的局部活化,失去平衡,发生爆炸反应,使炸药局部失去相对稳定状态到开始发生爆炸反应的过程称为起爆。
井下爆破工程常用的起爆能有爆炸能和热能。
2、炸药的感度炸药材料在在外界能量作用下,引起炸药爆炸的难易程度称为感应度。
炸药的感应的必须适中,以6号和8号雷管能够起爆为宜。
(二)炸药的殉爆炸药(主爆药)爆轰时引起与相隔一定距离的另一炸药(受爆药)爆轰的现象称为殉爆。
主爆药与受爆药之间发生殉爆的概率为100%的最大距离,称为殉爆距离。
对一定量的炸药来说,殉爆距离越大,表明爆感度越高。
产生殉爆现象的原因,主要是由于受爆药接受了主爆药卷的爆炸气流和冲击波形式传来的足够的激发能量。
(三)炸药爆炸的稳定性传播(1)传爆,炸药由起爆到爆炸结束的过程中,爆炸反应在炸药中自行传播的过程称为传爆。
(2)冲击波和爆轰波。
炸药起爆后,产生大量的热能和气体,形成了高温、高压、瞬间膨胀并高速运行的气浪,这种气浪具有极大的冲击作用,即冲击波。
培训笔记(三)——破岩机理一、破岩过程一阶段:炸药爆炸阶段二阶段:冲击波反射阶段三阶段:气体膨胀阶段二、破岩理论1.爆炸气体产物膨胀压力破坏理论:岩石主要由于装药空间内爆炸气体产物的压力作用而破坏。
2.冲击波引起应力波反射破坏理论:岩石的破坏主要是由自由面上应力波反射转变成的拉应力波造成的。
3.爆炸气体膨胀压力和冲击波所引起的应力波共同作用理论:爆破时岩石的破坏是爆炸气体和冲击波共同作用的结果,它们各自在岩石破坏过程的不同阶段起重要作用。
三、波阻抗:即岩石密度与冲击波在岩石中传播速度的乘积。
岩石按波阻抗值分为三类:1、岩石波阻抗为10X105~25X105(g/cm2·s);2、岩石波阻抗为5X105~10X105(g/cm2·s);3、岩石波阻抗为2X105~5X105(g/cm2·s)。
四、爆破内部作用1.压缩区受到爆炸冲击波的强动作用,炮孔壁周围的介质被粉碎或强烈压缩,形成压缩区或粉碎区成压缩区或粉碎区。
2.破碎区爆炸冲击波在岩石中形成新鲜裂纹或激活原生裂纹,爆炸气体的高压气楔作用,对裂纹进行扩展,形成破碎区。
3.震动区在破坏区以外的岩体,只发生弹性震动。
五、爆破漏斗:当药包产生外部作用时,在地表会形成一个爆破坑,称为爆破漏斗。
1、爆破漏斗的构成要素(1)自由面;(2)最小抵抗线;(3)爆破漏斗底圆半径;(4)爆破作用半径;(5)爆破漏斗深度;(6)爆破漏斗可见深度;(7)爆破漏斗张开角。
图7-6 爆破漏斗2、爆破作用指数n=r/W在最小抵抗线相同的情况下,爆破作用愈强,爆破漏斗底圆半径愈大。
根据n的大小爆破漏斗分为:(1)标准抛掷(n=1);(2)加强抛掷(n>1);(3)减弱抛掷(0.75<n<1);(4)松动爆破(0<n<0.75)。
爆破工程技术人员培训考核笔记(考试内容)二、炸药与爆炸基本理论(1)爆炸及其分类,炸药化学变化的基本形式爆炸:爆炸是某一物质系统在有限空间和极短时间内,大量能量迅速释放或急剧转化的物理、化学过程。
在这种变化过程中通常伴随有强烈放热、发光和声响等效应。
爆炸的分类:通常可以将爆炸现象归纳为三大类:物理爆炸、化学爆炸、核爆炸,炸药的爆炸属于化学爆炸。
爆炸作业的定义:爆破作业时利用炸药的爆炸能量对介质做功,以达到预定工程目标的作业。
炸药爆炸的三要素:炸药爆炸包含三要素,即释放大量的热、变化过程必须是快速的、生成大量的气体产物。
这是炸药爆炸的基本条件,也是炸药爆炸不同于一般化学反应的3个重要特征。
炸药的基本形式:按照炸药化学变化过程的传播性质和速度的不同,可将炸药化学变化的基本形式分为四种:热分解、燃烧、爆炸、爆轰。
爆轰的定义:炸药以最大而稳定的爆速进行传爆的过程叫做爆轰。
炸药化学变化的4种基本形式间的关系:在一定的外界条件下热分解、燃烧、爆炸和爆轰可以互相转化。
炸药的热分解在一定条件下可以转变为燃烧。
而炸药的燃烧随温度和压力的增加又可能发展转变为爆炸,直至过渡到稳定的爆轰。
(2)炸药起爆的基本理论、起爆能和炸药感度,影响炸药感度的因素炸药的机械能起爆理论——热点理论(灼热核理论)当炸药受到撞击、摩擦等机械能的作用时,并非受作用的各个部分都被加热到相同温度,而只是其中的某一部分或几个极小的部分。
例如,个别晶体的棱角处或微小气泡处,首先被加热到炸药的爆发温度,促使局部炸药首先起爆,然后迅速传播至全部。
这种温度很高的微小区域,通常被称为热点(灼热核)。
形成热点的原因1)绝热压缩炸药内所含的微小气泡,形成热点;2)炸药受机械作用,颗粒间产生摩擦,形成热点;3)液态炸药(塑性炸药或低熔点炸药)具有高速黏性流动,也可形成热点。
热点起爆必须满足的条件:1)热点的尺寸应尽可能的细小,直径一般为10-5~10-3cm。
2)热点的温度应为300-600℃3)热点的作用时间在10-7s以上。
1.影响凿岩爆破的岩石物理性质有:1)岩石的矿物成分和组织特征;2)岩石的孔隙度、密度、容重3)岩石的碎胀性4)岩石的波阻抗。
岩石的力学性质;1,岩石的变形特性 2,岩石的强度特性3,岩石的硬度2.在不同受力状态下,岩石的各种强度极限不同,从载荷性质看,单向抗压强度>单向抗剪强度>单向抗弯强度>单向抗拉强度;从应力状态看,三向抗压强度>双向抗压强度>单向抗压强度。
3.比能:破碎单位体积岩石所消耗的能量称为比能。
4.岩石的硬度:岩石表面抵抗工具侵入的能力。
5.岩石的磨蚀性:岩石对工具的磨蚀能力。
6.岩石的普氏坚固系数直接用岩石的单向抗压强度来确定。
7.统一岩石分级法,用每凿1m炮眼磨钝的钢钎或硬质合金钎头个数和纯凿岩速度作凿岩性指标。
8.冲击式凿岩机有冲击、转钎、排粉、推进、操纵、配气等结构;主要用于坚硬性脆和磨蚀性强的岩石中。
9.钎子的结构:钎头、钎身、钎肩、钎尾、中心水孔;活动钎子还有钎梢。
10.凿岩工作对钎头的要求:形状、结构合理,凿岩速度高,耐磨性强,有足够的机械强度,排粉性能好,使用寿命长,制造和修磨方便,以及成本低廉。
冲击式凿岩原理;依靠凿岩机的冲击机构使活塞往复运动冲击钎杆,并通过钎头在炮眼底部的岩石面上形成一条凿痕A-a,随后在回转机构的扭矩作用下使钎杆转动一个角度。
再次冲击时,钎头在岩石上形成一条新的凿痕B-b,并破碎AOB,aob俩快扇形岩体,破坏的岩屑由排粉机够从孔底排至空外。
扎样,冲击,转钎,排粉等动作不断循环下去,即可凿出所需深度的炮眼。
冲击式凿岩机理(应力波理论);认为凿岩机的活塞冲击钎杆尾后,在钎杆内便产生应力,这种应力以波的形式由钎尾向钎头传递。
应力波传到钎刃时,一部分进入岩石,另一部分反射回来。
当入射和反射的应力波合成后形成的合力超过了岩石的抗破坏强度时,岩石便会碎。
风动冲击式凿岩机有冲击,转钎,排粉,操纵,润滑等机构凿岩机主要组成部分;配气,转钎,排粉,推进,操纵等机构11.钎头构造的主要参数:刃角、隙角、曲率半径、体形结构、排粉槽和吹洗孔。
爆破原理及爆破方法第一节爆破作用原理一、岩体爆破破坏机理爆破是当前破碎岩石的主要手段。
关于岩石等脆性介质爆破破坏机理,有许多假设,按其基本观点,归纳起来有爆轰气体膨胀压力作用破坏论、应力波及反射拉伸破坏论、冲击波和爆轰气体膨胀压力共同作用破坏论三种。
1.爆轰气体膨胀压力作用破坏论该理论认为炸药爆炸所引起脆性介质(岩石)的破坏,使其产生大量高温高压气体,它所产生的推力,作用在药包四周的岩壁上,引起岩石质点的径向位移,由于作用力的不等引起的径向位移,导致在岩石中形成剪切应力,当这种剪切应力超过岩石的极限抗剪强度时就会引起岩石破裂,当爆轰气体的膨胀推力足够大时,会引起自由面四周的岩石隆起,鼓开并沿径向推出。
这种观点完全否认冲击波的动作用,这是不符合实际的。
2.应力波反射拉伸破坏论该理论认为药包爆炸时,强大的冲击波冲击和压缩四周岩石,在岩石中激发成激烈的压缩应力波,当传到自由面反射变成拉伸应力波,其强度超过岩石的极限抗拉强度时,从自由面开始向爆源方向产生拉伸片裂破坏作用。
这种理论只从爆轰的动力学观点出发,而忽视了爆生气体膨胀做功的静作用,因而也具有片面性。
3.冲击波和爆轰气体膨胀压力共同作用破坏论该理论认为爆破时,岩石的破坏是冲击波和爆轰气体膨胀压力共同作用的结果。
但在解释岩石破碎的原因是谁起主导作用时仍存在不同的观点,一种认为冲击波在破碎岩石时不起主要作用,它只是在形成初始径向裂隙时起了先锋作用,但在大量破碎岩石时则主要依靠爆轰气体膨胀压力的推力作用和尖劈作用。
另一种观点则认为爆破时岩石破碎谁起主要作用要取决于岩石的性质,即取决于岩石的波阻抗。
关于高波阻抗的岩石,即致密坚韧的整体性岩石,它对爆炸应力波的传播性能好,波速大。
关于低波阻松软而具有塑性的岩石,爆炸应力波传播的性能较差,波速较低,爆破时岩石的破坏主要依靠爆轰气体的膨胀压力;关于中等波阻抗的中等坚硬岩石,应力波和爆轰气体膨胀压力同样起重要作用。
一、选填题1、炸药三种不同形式的化学变化是缓慢分解、燃烧、爆炸与爆轰。
2、氧平衡值:炸药内含氧量与所含可燃元素充分氧化所需氧量差值相比之间的差值,分为正氧平衡、负氧平衡和零氧平衡。
3、爆轰产物主要有等,若炸药中含硫、氯和金属等产物中还会有硫化氢、氯化氢和金属氧化物、金属氯化物等。
4、炸药爆炸产生的有毒气体主要有CO和氮氧化合物。
5、感度:在外界能量的作用下,炸药发生爆炸的难易程度。
6、列出炸药的几种感度:炸药热感度、炸药机械感度(包括撞击感度和摩擦感度)。
7、殉爆距离:主发药包爆炸时,引爆被发药包的两药包间的最大距离,单位一般是厘米。
8、影响殉爆距离的因素:装药密度、药量和药包直径、药包外壳和连接方式。
9、随着药包直径的增大,爆速相应增大,一直到药包直径增大到d极时,药包直径虽然继续增大,爆速将不再升高而趋于一恒定值,亦即达到了该条件下的最大爆速。
d极称为药包极限直径。
随着药包直径的减小,爆速逐渐下降,一直到药包直径降到d临时,如果继续缩小药包直径,即d<d临,则爆轰完全中断,d临称为药包临界直径。
10、炸药爆炸性能有爆速、威力、猛度、聚能效应。
11、炸药做功能力是衡量炸药威力的重要指标之一。
(威力的表示方法)12、测定威力的实验方法有铅铸扩孔法、弹道臼炮法、爆破漏斗法。
13、按炸药组成分类:单质炸药、混合炸药按炸药作用特性分类:起爆药、猛炸药、发射药、烟火剂按工业炸药主要化学成分分类:硝铵类炸药、硝化甘油类炸药、芳香族硝基化合物类炸药14、硝铵类炸药主要有硝酸铵、铵梯炸药、铵油炸药、乳化炸药等含水炸药。
15、含水炸药包括:浆状炸药、水胶炸药和乳化炸药。
16、铵梯炸药有硝酸铵、梯恩梯和木粉三种成分组成铵油炸药:以硝酸铵和燃料油为主要成分的粒状或粉状(添加适量木粉)爆炸性混合物称为铵油炸药,简称ANFO爆破剂。
17、爆破器材的销毁方法:爆炸销毁法、焚烧销毁法、溶解销毁法、化学分解法。
18、按引爆方式和起爆能源的不同,工程爆破中常用的工业雷管有火雷管、电雷管和非电雷管等。
工程爆破复习重点第一章1.炸药爆炸的三要素。
①放出热量②生成气体产物③反应的高速度2.氧平衡的概念及氧平衡的计算。
氧平衡是指炸药中所含的氧完全用以氧化其所含的可燃元素后,所多余或不足的氧量。
3.爆温、爆热、爆容、爆炸压力的概念及改变爆热的途径。
①爆温:炸药爆炸时放出的热量使爆炸产物定容加热所达到的最高温度称为爆温。
②爆热:在规定条件下,单位质量炸药爆炸时放出的热量称为炸药的爆热。
改变途径:⑴改善炸药的氧平衡。
⑵加入高能元素或高能量的可燃剂。
③爆容:又称比容,是单位质量炸药爆炸时生成的气体产物在标准状况(0℃、1个大气压)下所占的体积,常用的单位是L/㎏。
④爆炸压力:炸药爆炸时生成的热气体所产生的压力称为爆炸压力。
4.凝聚炸药的爆轰反应机理。
①均匀灼烧机理②不均匀灼烧机理③混合反应机理。
5.炸药的物理状态和装药条件对感度的影响。
①温度的影响:随着温度的增高,炸药的各种感度都增加,在高温介质中爆破应引起充分重视。
②炸药物理状态与晶体形态的影响:铵梯炸药受潮结块时,感度明显下降;硝化甘油炸药冻结时,晶体形态发生变化,感度明显提高(普通型硝化甘油储运温度不低于10℃,难冻型不低于-20℃)③炸药颗粒度:一般情况下,颗粒越小,炸药的爆轰感度越大。
④装药密度的影响:装药密度主要影响起爆感度和火焰感度,通常,随着装药密度的增加,炸药的起爆感度和火焰感度都下降。
粉状铵梯炸药的装药密度大于1.2kg/cm³时,容易出现拒爆。
⑤附加物的影响:在炸药中掺入附加物可以显著地影响炸药的机械感度(当附加物硬度较高时如石英砂、碎玻璃可能使炸药的机械感度增高,这类物质叫增感剂。
另外一类较软且热容量大的物质,如水、石蜡等,掺入后使炸药感度降低,称为钝感剂)。
6.影响爆速的因素。
①药柱直径②炸药密度③药柱外壳7.沟槽效应的概念、产生的原因及其消除方法。
混合炸药细长的连续药柱,在炮眼,如果药柱与炮眼孔壁间存有间隙,常常会发生爆轰中断或爆轰转变为燃烧的现象,这种现象称为沟槽效应。
露天矿临近边坡的控制爆破学习总结随着露天矿的向下延深,形成固定的最终边坡越来越高,边坡的稳定性问题也日益突出。
虽然影响边坡稳定性的因素很多,但爆破震动对边坡直接破坏的影响也是不容忽视的。
为了保护边坡的稳定性,除了采取其它的有效措施以外,对临近边坡的爆破也要严加控制。
临近边坡控制爆破的主要方法有:预裂爆破、光面爆破和缓冲爆破。
一、预裂爆破所谓预裂爆破,就是沿露天矿设计边坡境界线,钻凿一排较密集的钻孔,每孔装入少量炸药,在采掘带主爆孔未爆之前先行起爆,从而炸出一条有一定宽度(一般大于1~2cm)并贯穿各钻孔的预裂缝。
由于有这条预裂缝将采掘带和边坡分隔开来,因而后续采掘带爆破的地震波在预裂带被吸收并产生较强的反射,使得透过它的地震波强度大为减弱,从而降低地震效应,减少对边坡岩体的破坏,提高边坡坡面的平整度,保护边坡的稳定性。
预裂爆破是保护露天矿边坡的有效措施,特别对于稳固性差或需要重点保护的边坡地段,更有必要精心使用预裂爆破。
当然,相对于正常的采掘爆破来说,预裂爆破的钻孔、爆破工作量大,施工工艺复杂,费用也较高,这是它的最大缺点。
图2 临近边坡预裂爆破炮孔布置1-预裂孔;2-缓冲孔;3-主爆孔;4-开采边界线二、光面爆破临近边坡的光面爆破和预裂爆破基本相似,也是沿边坡界线钻凿一排较密集的平行钻孔,往孔内装入少量炸药,在采区钻孔起爆之后再行起爆,从而沿密集钻孔中心连线形成平整的岩壁面。
图5采用光面爆破清理边坡的布孔示意图。
图5 光面爆破钻孔布置1-光面孔;2-缓冲孔;3-主爆孔临近边坡光面爆破的爆破参数是:钻孔直径、孔间距、最小抵抗线、不偶合系数和线装药密度等。
为了获得平整的岩壁面,应按预裂爆破的同样原则确定光面爆破的爆破参数。
表3和表4分别为瑞典兰格费尔斯及美国《爆破者手册》推荐的光面爆破参数值。
光面爆破和预裂爆破有许多相同之处,其根本区别是在于起爆的时间上。
由于光面爆破的孔间距可以稍大一些,穿孔爆破工作理可以稍少一些,但其降震效果不如预裂爆破。
1、案例2、理论收集(1)微差时间架崖山露天矿采用毫秒等时间间隔微差爆破技术。
为了改善爆破效果和降低爆破震动,炮孔之间实施孔外等间隔微差爆破。
各炮孔起爆顺序和延期时间通过计算并结合非电雷管各段别的标称时间确定。
从改善破碎效果着眼,前后排炮孔之间的微差时间t应等于或接近可使前排炮孔承担的受爆体已经移动,后排炮孔的临空面已经形成的时间t1 ,使前排抛体达到最大抛速后,后排炮孔始起爆,后排抛体尽可能地尾随撞击前排抛体,减少能量渗漏,改善破碎效果。
而从爆破震动安全上考虑,炮孔之间的微差时间应大于或等于可使相邻起爆炮孔爆炸引起的爆破震动主震相相互分离的微差时间t2 ,以使前后炮孔爆破地震波到达保护物时不叠加,以达到降低震动的目的。
即:t=t1 ,t≥t2 。
根据以往的经验和研究成果,t1>100~200 ms。
t2=100~150 ms,因此取t=100~ 150 ms。
架崖山露天矿爆破孔外采用5段延时时间雷管,时间间隔为110 ms。
(2)岩体的积压与碰撞通过预留碴体的方法来约束限制爆块的抛出,使岩块间产生挤压或碰撞作用,从而使岩块得到进一步的破碎。
这种挤压与碰撞作用的实质是将爆块获得的本来用于抛掷的动能转化为破碎岩块作功。
在采用毫秒微差爆破时,即使在自由面爆破条件下,如能使炮区中各部分炮孔爆破漏斗的倾斜方向尽量相对或相交时,也可使2部分岩块在位移时,相互碰撞与挤压,减少用于抛掷的能量损失使其用于破碎做功。
这种碰撞与挤压作用虽然是爆炸用来破坏岩石的次生作用,然而最终也会对岩石的破碎程度能产生一定的影。
毫秒微差爆破的诸多起爆顺序中,斜向楔形起爆能使2组补充自由面所决定的倾斜漏斗的轴向改变为斜向相对起来,因而碰撞挤压作用很好。
在采用排间起爆时,由于不利于克服抵抗,一般不能用后排先爆、或中排先爆而只能采用前排先爆的起爆顺序。
坚硬岩石尤其如此。
因此整个炮区的所有炮孔爆破漏斗的轴向都指向采空区,因此岩石位移方向完全一致,除了由于岩块间速度不同,有一定的碰撞外,几乎没有挤压作用。
爆破作用原理01 应力集中stress concentration物体内某一点的应力比相邻部分的应力积累显著增大的现象。
构造形变是应力或能量的释放过程,因而运动必将最先在那些应力积累最大而岩体强度又相对最小的地方发生。
因此,物体或岩体的不均一性或力学性质有突然改变的地方,为应力集中处。
02 应力差stress difference一般情况下,在岩石变形过程中,三个主应力是不相等的,最大主应力和最小主应力之差称应力差。
它是引起变形的因素,应力差愈大,引起的岩石变形愈明显。
03 应变分析strain analysis某点的应变分析,指分析该点所经历的任何微小线段的应变情况。
04 平面波plane wave波前是平面(无曲率)的波,可能是由非常远的震源产生的波,是地震和电磁波分析中通用的假设,并不绝对与现实情况一样。
05 平面波分解plane-wave decomposition求一组平面波的振幅、相位及传播方向,使它们相加的结果逼近给定的任意波前。
反过来说,就是把任意波前分解为合成它的一组平面波。
06 平面波前planar wavefront地震波的波前面为平面的波前。
实际平面波前是不存在的,但在远离震源的地方可以认为局部一段地震波前是平面。
07 柱面波cylindrical wave波前为圆柱面的一种波动。
08 球面波spherical wave波前为同心球面的波,是由点源产生的。
球面波的波前应力以距波源的距离成反比的速率衰减。
09 球面波前spherical wavefront在任意时间由点源产生的地震脉冲的给定相位所形成的曲面。
如果速度随位置而变化,则该面不一定是球面。
10 体波body waves通过介质体内部进行传播的纵波与横波。
11 纵波primary wave也称P波。
质点在波的传播方向运动的弹性体波,在常规地震勘探或声波测井中使用该波。
12 切变波shear wave也称横波,S波。
第六章 爆破基础知识第一节 爆破原理一、 炸药及爆炸的一般特征1、炸药及其主要特征 炸药是在外界能量作用下,自身进行高速的化学反应, 同时产生大量的高温高压气体和热量。
2、炸药爆炸及其三要素(1)反应过程中能放出大量的热。
放出大量的热是化 学爆炸进行所必须具备的首要条件。
(2)炸药反应速度快。
反应速度快是是形成爆炸的必 须条件。
( 3)能生成大量的气体立物。
总之,炸药爆炸必须同时具备三个要素,三者又是相互 相系的。
所以,高温、高压高速是炸药爆炸的重要特点 二、 炸药爆轰理论基础知识(一) 炸药的起爆和感度1、 炸药的起爆 炸药在未受外界能量作用时,处于相对稳定状态。
2、 炸药的感度第二部分 安全技术基础知识炸药材料在在外界能量作用下,引起炸药爆炸的难易程度称为感应度。
(二)炸药的殉爆炸药(主爆药)爆轰时引起与相隔一定距离的另一炸药受爆药)爆轰的现象称为殉爆。
(三)炸药爆炸的稳定性传播(四)炸药的氧平衡三、炸药爆炸的主要性能参数主要有以下 5 种参数1、爆力2、猛度3、含水率4、密度5、炸药爆炸的热力学参数四、爆破的内部作用和外部作用(一)自由面和最小抵抗线(1)自由面的概念。
自由面是指某种介质与空气接触的界面。
爆破时,位于药包附近被爆破的岩(煤)体与空气接触的界面叫爆破自由面。
(2)最小抵抗线的概念(3)自由面的作用。
(4)《煤矿安全规程》对最小抵抗线的规定(二) 爆破的内部作用和外部作用1、 爆破的内部作用和外部作用表现形式装药爆破时, 其爆破作用的表现形式与埋置药量和深度有 关。
2、爆破内部作用的形成 3、 爆破漏斗的要素及形式第二节 矿用炸药一、 矿用炸药的种类1、 按不主要组成成分分类按主要组成成分将矿用炸药分为硝酸铵类炸药、 含水类炸 药和硝化甘油类炸药三大类。
2、 按应用范围和使用条件分类 按炸药是否允许在井下的瓦斯或煤尘爆炸危险的采掘工 作面使用,可分为煤矿许用炸药和非煤矿许用炸药两类。
1.爆破方法:按敷设炸药方式分:1 炮孔法2 药室法3 药壶法4 裸露药包法.2.按药包形状分类:1 集中药包2 延长药包3 平面药包4异性药包3.现代爆破技术:延时,光面和预裂,定向,拆除控制,水下,地下掘进爆破4.爆炸分类(按原因):物理,核,化学5.炸药爆炸三要素:反应过程的高速性,反应的放热性,生成大量气体产物。
6.炸药的化学变化:缓慢分解,燃烧,爆炸.7.爆轰:以最大速度传播稳定的爆炸过程.8.氧平衡关系:炸药内含氧量与可燃元素充分氧化所需氧量之间的关系.9.爆容:1kg炸药爆炸生成的气体产物换算到标准状态下的体积。
10.爆热:单位质量炸药爆炸时所释放的热量。
11.爆温:是指炸药爆炸时放出的能量将爆炸产物加热到的最高温度。
12.爆压:当炸药爆炸结束,爆炸产物在炸药初始体积内达到热平衡后的流体静压值。
13.波:扰动的传播.14.弱扰动:外界作用引起状态参量变化很小的扰动。
15.三大方程:16.压缩波:受扰动后波阵面上介质的压力,密度,温度等状态参量增加的波。
17.冲击波:冲击波是一种在介质中以超声速传播的并具有压力突然跃升,然后缓慢下降特征的高强度的压力波。
18.冲击波的特性:19.爆轰波与冲击波的异同:20.间隙效应:混合炸药细长连续装药时,在炮孔中如果药柱与炮孔孔壁间存在间隙,常常会发生爆轰中断或爆轰转变为爆燃的现象。
21.起爆:激发炸药爆炸的过程。
(机械能,热能,爆炸能)22.感度:炸药在外界作用下发生爆炸的难易程度。
23.冲击波感度:在冲击波作用下,炸药发生爆炸的难易程度.24.爆轰感度:炸药在爆轰波的作用下发生爆炸的难易程度。
25.殉爆:炸药爆炸后引起其周围一定距离处炸药发生爆轰的现象。
26.炸药的爆破作用:炸药爆炸对周围介质的各种机械破坏作用(动,静作用)27.猛度:炸药动作用的强度。
28.炸药的做功能力:炸药爆炸对周围介质所做的机械功的总和(铅铸法,弹道臼炮法,爆破漏斗法)29.聚能效应:利用爆炸产物运动方向与装药表面垂直或大致垂直的规律,做成特殊形状的装药,能使爆炸产物聚集起来,提高能流密度,增强爆炸作用的现象。
爆破器材:一】:爆炸现象分类:三类、1、物理爆炸、2、化学爆炸、3、核爆炸重点学化学爆炸二】:炸药爆炸三要素:1、化学反应过程大量放热、2、反应过程极快、3、产生大量气体三】:炸药化学变化的基本形式:1热分解、2、燃烧、3、爆炸炸药的起爆和感度什么叫起爆能:使炸药起爆所需的外能。
起爆能的分类:热能、机械能、爆炸能炸药的分类:按用途分:1、起爆药2、猛炸药3、火药按组成分类:1、单质炸药2、混合炸药四】:炸药的感度:什么叫炸药的感度:炸药在外界能量的作用下发生的爆炸的难易程度。
分类:1、热感度2、机械感度3、爆轰感度。
炸药的氧平衡的分类:正氧平衡、零氧平衡、负氧平衡什么叫炸药殉爆】:炸药爆炸时激起于它不相接触的临近炸药发生爆炸的现象。
什么叫殉爆距离】:被发药包连续三次都被殉爆时的两药包最大间距就是该炸药的殉爆距离。
(库房之间的安全距离)殉爆距离越大,该炸药的爆炸冲能感度愈高。
五】:什么叫起爆器材:进行爆破作业引爆工业炸药的一切点火和起爆工具。
按其作用分为:起爆材料、传爆材料。
各种雷管属于起爆材料。
导火索、导爆管属于传爆材料。
继爆管、导爆管即可起爆,又可传爆,起爆器材的具体要求:1、具有足够的起爆能力和传爆能力2、能适应多种作业环境3、延时精确4、便于储存和运输。
雷管】:的分类:按管壳材料分为金属壳—铜、铁铝壳等。
非金属壳—塑料、纸壳等。
按点火方式分为:火雷管、电雷管、非电雷管。
电雷管分为:瞬发雷管、延期雷管、秒或半秒延期雷管、毫秒延期雷管电雷管的起爆电源有:照明或动力交流电源、蓄电池、干电池和电起爆器等导通电流】:输出工作电流≤30MA。
给电雷管通180MA的电流持续5分钟不爆的说明为合格产品。
第四章、爆破技术基础知识1、什么叫自由面:通常指被爆岩石与空气的交界面,也是对爆破作用能发生影响并能使爆后岩石发生移动的那个界面。
2、什么叫最小抵抗线:是指爆破时岩石产生抵抗力最小的方向。
通常将药包中心或重心到最近自由面的最短距离。
一、选填题1、炸药三种不同形式的化学变化是缓慢分解、燃烧、爆炸与爆轰。
2、氧平衡值:炸药内含氧量与所含可燃元素充分氧化所需氧量差值相比之间的差值,分为正氧平衡、负氧平衡和零氧平衡。
3、爆轰产物主要有等,若炸药中含硫、氯和金属等产物中还会有硫化氢、氯化氢和金属氧化物、金属氯化物等。
4、炸药爆炸产生的有毒气体主要有CO和氮氧化合物。
5、感度:在外界能量的作用下,炸药发生爆炸的难易程度。
6、列出炸药的几种感度:炸药热感度、炸药机械感度(包括撞击感度和摩擦感度)。
7、殉爆距离:主发药包爆炸时,引爆被发药包的两药包间的最大距离,单位一般是厘米。
8、影响殉爆距离的因素:装药密度、药量和药包直径、药包外壳和连接方式。
9、随着药包直径的增大,爆速相应增大,一直到药包直径增大到d极时,药包直径虽然继续增大,爆速将不再升高而趋于一恒定值,亦即达到了该条件下的最大爆速。
d极称为药包极限直径。
随着药包直径的减小,爆速逐渐下降,一直到药包直径降到d临时,如果继续缩小药包直径,即d<d临,则爆轰完全中断,d临称为药包临界直径。
10、炸药爆炸性能有爆速、威力、猛度、聚能效应。
11、炸药做功能力是衡量炸药威力的重要指标之一。
(威力的表示方法)12、测定威力的实验方法有铅铸扩孔法、弹道臼炮法、爆破漏斗法。
13、按炸药组成分类:单质炸药、混合炸药按炸药作用特性分类:起爆药、猛炸药、发射药、烟火剂按工业炸药主要化学成分分类:硝铵类炸药、硝化甘油类炸药、芳香族硝基化合物类炸药14、硝铵类炸药主要有硝酸铵、铵梯炸药、铵油炸药、乳化炸药等含水炸药。
15、含水炸药包括:浆状炸药、水胶炸药和乳化炸药。
16、铵梯炸药有硝酸铵、梯恩梯和木粉三种成分组成铵油炸药:以硝酸铵和燃料油为主要成分的粒状或粉状(添加适量木粉)爆炸性混合物称为铵油炸药,简称ANFO爆破剂。
17、爆破器材的销毁方法:爆炸销毁法、焚烧销毁法、溶解销毁法、化学分解法。
18、按引爆方式和起爆能源的不同,工程爆破中常用的工业雷管有火雷管、电雷管和非电雷管等。
岩石爆破中冲击波参数计算概论雷管或其它强烈的激发源在连续性介质中,如在空气、水、炸药或岩石中爆炸时,由于外部冲击载荷作,使介质某一局部状态,如压力、密度、速度等发生往复变化(或叫做扰动),这种变化(扰动)在介质小的传播形成波,这种波称为机械波,它不同于电磁波。
冲击波:当激发源的威力很大,促使介质的压力、密度、速度等参数的变化急剧,产生陡立的波阵面,形成非周期性的脉冲,并以超声速传播时,这种波称之为冲击波。
冲击波在空气中或在水中传播形成空气冲击波或水中冲击波,如裸露药包爆破成药室大爆破易产生空气冲击披,水下药包爆破则产生水中冲击波。
冲击波在炸药中的传播形成爆轰波,它是一种特殊形式的冲击波。
它与一般冲击波的根本区别在丁爆轰波阵而之后附有化学反应区,释出能量足以维持爆轰波沿未反应的炸药稳定传播,从而构成炸药的稳定爆轰。
弹性波求助编辑百科名片当某处物质粒子离开平衡位置,即发生应变时,该粒子在弹性力的作用下发生振动,同时又引起周围粒子的应变和振动,这样形成的振动在弹性介质中的传播过程称为“弹性波”。
目录编辑本段横波的特点质点的振动方向与波的传播方向相互垂直。
电磁波、光波就是横波。
波长的定义沿着波的传播方向,在波的图形中相对平衡位置的位移时刻相同的两个质点之间的距砻。
横波与纵波的波长---- 在横波中波长通常是指相邻两个波峰或波谷之间的距离。
在纵波中波长是指相邻两个密部或疏部之间的距离。
编辑本段应力波的一种扰动或外力作用引起的应力和应变在弹性介质中传递的形式。
弹性介质中质点间存在着相互作用的弹性力。
某一质点因受到扰动或外力的作用而离开平衡位置后,弹性恢复力使该质点发生振动,从而引起周围质点的位移和振动,于是振动就在弹性介质中传播,并伴随有能量的传递。
在振动所到之处应力和应变就会发生变化。
弹性波理论已经比较成熟,广泛应用于地震、地质勘探、采矿、材料的无损探伤、工程结构的抗震抗爆、岩土动力学等方面。
某一弹性介质内的弹性波在传播到介质边界以前,边界的存在对弹性波的传播没有影响,如同在无限介质中传播一样,这类弹性波称为体波。
岩石爆破中冲击波参数计算概论雷管或其它强烈的激发源在连续性介质中,如在空气、水、炸药或岩石中爆炸时,由于外部冲击载荷作,使介质某一局部状态,如压力、密度、速度等发生往复变化(或叫做扰动),这种变化(扰动)在介质小的传播形成波,这种波称为机械波,它不同于电磁波。
冲击波:当激发源的威力很大,促使介质的压力、密度、速度等参数的变化急剧,产生陡立的波阵面,形成非周期性的脉冲,并以超声速传播时,这种波称之为冲击波。
冲击波在空气中或在水中传播形成空气冲击波或水中冲击波,如裸露药包爆破成药室大爆破易产生空气冲击披,水下药包爆破则产生水中冲击波。
冲击波在炸药中的传播形成爆轰波,它是一种特殊形式的冲击波。
它与一般冲击波的根本区别在丁爆轰波阵而之后附有化学反应区,释出能量足以维持爆轰波沿未反应的炸药稳定传播,从而构成炸药的稳定爆轰。
弹性波求助编辑百科名片当某处物质粒子离开平衡位置,即发生应变时,该粒子在弹性力的作用下发生振动,同时又引起周围粒子的应变和振动,这样形成的振动在弹性介质中的传播过程称为“弹性波”。
目录编辑本段横波的特点质点的振动方向与波的传播方向相互垂直。
电磁波、光波就是横波。
波长的定义沿着波的传播方向,在波的图形中相对平衡位置的位移时刻相同的两个质点之间的距砻。
横波与纵波的波长---- 在横波中波长通常是指相邻两个波峰或波谷之间的距离。
在纵波中波长是指相邻两个密部或疏部之间的距离。
编辑本段应力波的一种扰动或外力作用引起的应力和应变在弹性介质中传递的形式。
弹性介质中质点间存在着相互作用的弹性力。
某一质点因受到扰动或外力的作用而离开平衡位置后,弹性恢复力使该质点发生振动,从而引起周围质点的位移和振动,于是振动就在弹性介质中传播,并伴随有能量的传递。
在振动所到之处应力和应变就会发生变化。
弹性波理论已经比较成熟,广泛应用于地震、地质勘探、采矿、材料的无损探伤、工程结构的抗震抗爆、岩土动力学等方面。
某一弹性介质内的弹性波在传播到介质边界以前,边界的存在对弹性波的传播没有影响,如同在无限介质中传播一样,这类弹性波称为体波。
体波传播到两个弹性介质的界面上,即发生向相邻弹性介质深部的折射和向原弹性介质深部的反射。
此外,还有一类沿着一个弹性介质表面或两个不同弹性介质的界面上传播的波,称为界面波。
如果和弹性介质相邻的是真空或空气,则界面波称为表面波。
弹性波绕经障碍物或孔洞时还会发生复杂的绕射现象。
编辑本段体波按传播方向和质点振动方向之间的关系,体波可分为:①纵波,又称为胀缩波,在地震学中也称为初波或P波。
它的传播方向同质点振动方向一致,波速为式中ρ为弹性介质密度;λ和G为弹性介质的拉梅常数。
②横波,又称畸变波或剪切波,在地震学中也称为次波或S波。
它的传播方向同质点振动方向相垂直,波速为,小于纵波波速。
波传播中所有质点均作水平振动的横波称为SH波;所有质点均作竖直振动的横波称为SV波。
横波是偏振波,所谓偏振是指横波的振动矢量垂直于波传播方向但偏于某些方向的现象。
纵波只沿波的传播方向振动,故没有偏振。
在弹性介质内,从波源发出的扰动,向四方传播,在某一瞬间,已被扰动部分和未被扰动部分之间的界面称为波面或波阵面。
波面呈封闭的曲面。
波面为球面的波称为球面波,波面为柱面的波称为柱面波。
波面曲率很小的波可近似地看作平面波。
编辑本段界面波界面波的一个特征是,质点扰动振幅随着质点离界面距离的增大而迅速衰减,所以界面波实际上只存在于表面或界面附近。
常见的界面波有瑞利波、乐甫波和斯通利波三种:编辑本段瑞利波沿着半无限弹性介质自由表面传播的波,因瑞利于1887年首先指出这种波的存在而得名。
瑞利波是偏振波,质点在垂直于传播方向的平面内运动。
在表层附近,质点的运动轨迹为一个椭圆。
在离表面为0.2个波长的深度以下,质点的运动轨迹仍为椭圆,但质点沿椭圆的运动方向与表层相反。
在自由表面上,质点沿表面法向的位移大约为切向位移的一倍半。
瑞利波的波速与频率无关,只与介质的弹性常数有关,为同介质中横波波速的0.862~0.955倍。
但如果在弹性介质表面上面有一层疏松覆盖层,瑞利波便有频散现象,即波速随频率而改变的现象。
在地震学中,瑞利波记作R波或LR波。
瑞利波的发现,对地震科学的发展起了推动作用。
在地震过程中,瑞利波按R1/2而衰减,R 为波传播的距离。
瑞利波在震中附近不出现,在离开震中一段距离后才能形成。
从震源射出的纵波形成瑞利波的距离为:从震源射出的横波形成瑞利波的距离为:式中cR为瑞利波波速;h为震源深度;α和β分别为纵波和横波的波速。
编辑本段乐甫波如果弹性介质界面上存在一层等厚度的低波速的弹性覆盖层,则在低波速覆盖层内部和分界面上就会产生SH波,称为乐甫波,因A.E.H.乐甫建立了这种波的数学模型而得名。
乐甫波是有频散的波。
波长很长的乐甫波的波速与下层弹性介质中的横波波速接近,波长很短的乐甫波的波速与上面低波速覆盖层中的横波波速接近。
在有频散时,扰动不是以相速度传播,而是以群速度传播。
相速度是指单色波中对应任一振动相位的状态(如波峰)向前传播的速度,而群速度是指各单色波叠加后的调制振幅的传播速度,它也是合成波传播能量的速度。
编辑本段斯通利波在两种不同介质的半空间体的交界面上传播的波称为斯通利波,因斯通利首先发现并研究这种波而得名。
它是一种波速与两个介质的性质有关的变态瑞利波。
斯通利波的存在与介质的弹性拉梅常数和介质密度有关。
在两个介质的拉梅常数λ1、G1和λ2、G2满足λ1/G1=λ2/G2=1的情况下,存在条件如图所示,如果两个介质的密度ρ1和ρ2之比ρ1/ρ2和G1/G2在图示坐标系中对应的点落在曲线A和曲线B之间,斯通利波就存在。
在地震学中,理论上已证明斯通利波是存在的,但尚未观测到。
编辑本段弹性波的反射和折射弹性波到达界面后,一部分返回到原来的弹性介质内,即发生反射现象;另一部分穿过界面进入相邻的另一弹性介质内,即发生折射现象。
在同一弹性介质中,介质本身不均匀引起的弹性波传播方向改变也称为弹性波的折射(若传播方向改变后与原来的传播方向相反则为反射)。
纵波入射到平面交界面上会产生一个反射纵波和一个反射横波;横波入射到平面交界面上,也会发生同样的现象。
编辑本段弹性波的绕射弹性波在传播过程中遇到障碍物边缘或孔洞时所发生的弯折现象称为波的绕射。
障碍物或孔洞越小,波长越长,则绕射现象越显著。
绕射现象反映出波的特性。
在地震学中,研究震源附近区域内弹性波的传播时需要考虑波的绕射。
编辑本段弹性波的研究弹性波传播问题的研究可分为理论研究和实验研究两方面。
理论研究主要是从波动方程出发进行研究。
经典波动方程在直角坐标系中可表示为:式中为拉普拉斯算符;α 和β 分别为纵波波速和横波波速;嗞=嗞(x,y,z,t)为标量势;ψx=ψx(x,y,z,t)、ψy=ψy(x,y,z,t)、ψz=ψz(x,y,z,t)为矢量势φ(x,y,z,t)的三个分量。
ψx、ψy、ψz统称为波函数,它们和嗞同坐标系中的三个位移分量u、v、w的关系为:上述波动方程是根据下面的假设导出的:①弹性介质中各质点间的相对位移为无穷小量;②介质是完全线弹性的,即应力和应变之间呈均匀线性关系,服从胡克定律;③介质是各向同性的;④不计外力(如重力、体积力、摩擦力等)。
理论上解决弹性波问题就是要在定解条件下解出波函数。
波动方程是一个二阶常系数线性偏微分方程,可用线性体系的叠加原理、数学变换和分离变量等解析方法求解。
如果问题中的几何形状或介质的性质比较复杂,可利用大型电子计算机进行数值求解。
编辑本段实验研究它是理论研究的基础。
在电子技术出现以前,介质中弹性波传播的实验主要用于地震波的侦测和声学中可闻频率振动的研究。
现代电子技术的发展,推动了弹性波的实验研究。
下面是两个最早的而且目前仍普遍使用的实验装置:①霍普金森压杆B.霍普金森是最早在实验室条件下应用电子技术研究弹性波传播的学者之一。
为了纪念他的工作,把他在实验中所用的试件命名为霍普金森压杆。
他通过实验研究炸药爆炸或子弹撞到坚硬表面时,压力随时间变化的规律。
霍普金森压杆为一圆柱形钢杆,长约1米,直径为2.5厘米,由四条线挂成水平位置,这些线可以在垂直面内摆动。
在杆的一端加上一个短的柱形颗粒称为测时器,而瞬变压力作用在杆的另一端。
测时器和杆直径相同,并且是用同一种钢材制造的。
当压缩脉冲由一端传至测时器一端时,在测时器的自由端面上反射成拉伸脉冲,使测时器飞离杆端。
测出测时器的动量,就可算出压力与时间的关系。
②戴维斯压杆R.M.戴维斯首先设计了包括一个压杆(后称为戴维斯压杆)的电测实验装置,该装置能连续记录由压力脉冲引起的自由端的纵向位移,并可直接测到位移-时间曲线,再经微分,即可得到脉冲压力-时间曲线。
霍普金森压杆和戴维斯压杆都要满足两个条件:一是压杆内任何点的应力不能超过所用钢材的弹性极限;二是压力变化引起的压缩脉冲的波长同压杆半径相比要足够大。
编辑本段研究简史1821年,C.-L.-M.-H.纳维建立了弹性体平衡和运动的一般方程,弹性波的研究随之展开。
1829年,S.-D.泊松在研究弹性介质中波的传播问题时,发现在远离波源处有纵波和横波两种类型的波。
到1845年,弹性波传播的数学理论已经发展成熟,G.G.斯托克斯证明纵波是胀缩波,1849年又证明横波是畸变波。
后来学者们对拉压、扭转和弯曲三种类型的无限长弹性杆中弹性波的传播问题进行了研究,并得到了精确解。
瑞利、H.兰姆等人给出了无限平板中的波动方程的解。
兰姆在1904年建立了半无限弹性体表面和内部由于扰动线源和点源的作用而引起的波动问题的理论,并得到了问题的解,故该问题称为兰姆问题。
在地震学里,兰姆问题应用广泛,但只适用于远场(远离扰动源的地方)。
50年代后,弹性波绕射问题的研究取得成果,但主要限于无限弹性介质内球形、圆柱形空腔等方面。
不规则孔洞和结构以及半无限介质中波的绕射问题的解析解较难找到,主要是不规则的边界条件很难满足。
弹性波在粘弹性介质中传播是一个重要课题,可以用来解释许多地球物理、声学和工程力学现象。
复合材料力学的迅速发展,推动了对复合材料中波的传播理论的研究。
多孔介质中波的传播理论的研究工作业已开始,它对地球物理学、材料工程、石油勘探等方面有重要实际意义。
在精确理论发展的同时,近似解理论也得到发展。
有限差分方法先被用于解决短杆中弹性波的传播问题,后被推广到一些复杂结构中波的传播问题。
有限元法近年来逐步用于研究弹性波问题,开始用于分析细杆中弹性波的传播,后用于分析各种结构(柱、板、壳体)中的波的传播以及层状介质、正交异性介质中的波的传播等。
非线性弹性波的传播问题的研究也取得初步成果。
至2011年采深超过史元伟等著.国内外煤矿深部开采岩层控制技术[M].北京:煤炭工业出版社,2009。