电缆载流量计算书
- 格式:doc
- 大小:130.50 KB
- 文档页数:12
长期载流量计算书:电缆导体上所通过的电流叫做电缆的载流量,有时也叫做电缆的“负载”或“负荷”。
电缆允许(长期)连续载流量是指电缆的负载为连续恒定电流(100%负载率)时的最大允许量。
电缆所允许的连续载流量,可用导体高于环境温度的稳态温升推导出来。
从电缆的等效热路图(图1)按热路欧姆定律,得:△θ= (W c+21W d)T1+[W c(1+λ1)+ W d]n T2 +[W c(1+λ1+λ2)+ W d]n (T3+ T4)进一步整理公式,可求得电缆长期载流量I:I={)T)(TnR(1)TnR(1RT)Tn(TT21W43212114321d++++++⎢⎢⎣⎡⎥⎥⎦⎤+++-λλλθ△(A)式中:△θ=θ-θa ———高于环境温度的导体温升(℃);θ——电缆(导体)的最高允许长期工作温度(℃);θa——环境温度(℃);W c=I2R——单位长度电缆的每相导体损耗(W/m);W d———单位长度电缆的每相介质损耗(W/m);I———电缆的允许连续工作电流(连续载流量)(A);R——在长期工作温度下每米电缆每相的导体交流有效电阻(Ω/m);T1 、T2 、T3 、T4———单位长度电缆的绝缘热阻、内衬层、外被层、周围媒质热阻(K·m/W);n——电缆的芯数;λ1、λ2———电缆的护套及铠装损耗系数。
从公式可以看出决定电缆载流量的因素有: 1.导电线芯损耗的影响导体的交流电阻的大小与其载流量有密切关系,导体交流电阻的大小取决于导体半径和导体的电导率,为了提高导体的传输容量,必须减少导体的杂质,提高纯度。
当然增大导体的截面对提高电缆的载流量有直接的影响。
一般电缆应在2.5A/mm 2的经济电流密度范围为宜。
2.介质损耗的影响对于10kV 及以下的低压系统,介质损耗占的比重较小,可忽略不计。
但随电压等级的提高,介质损耗W i =U 02ωCtg δ因有电压平方的关系,故其影响会随电压的增加而增大,即便tg δ较小的变化也引起介质损耗较大的变化。
电缆载流量计算书公司名称:DHAC_COMPM软件名称:道亨电力电缆计算系统版本号:(4.10.2016.0908)工程名称:设计员:设计时间:2016.12.22第一部分:载流量一、基本条件2.运行状况线路类型:三相交流电电压等级:110(kV)频率:50(Hz)共有1个回路当前回路是第1个回路3.电缆敷设方式、环境条件----------施工段1----------敷设方式:隧道敷设媒质温度:40(℃)不考虑隧道内的温升----------施工段1----------4.电缆排列方式、相序、接地方式、位置信息----------施工段1----------排列方式:垂直排列相序:ABC接地方式:单端接地位置:(500,-327.95), (500,-677.95), (500,-1027.95) ----------施工段1----------二、载流量计算所有回路、所有施工段的载流量结果汇总表(考虑环境温升\不考虑环境温升)(A):施工段11、交流电阻(1)最高温度下的直流电阻()[]201200-+⨯=θαR R'求得:R'=1.44086e-005(Ω/m)(2)集肤效应因数s s k R'f πx 72108-⨯⋅= 4480192s s s x .x y +=求得:X s 2=3.79382Y s =0.0707225(3)邻近效应因数p p k R'f πx 72108-⨯⋅=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+++⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+=27080192181312080192442244.x .x .s d .s d x .x y p p c c p p p不等距时21s s s ⋅=求得:X p 2=3.22693Y p =0.00366388(4)交流电阻求得:R=1.54804e-005(Ω/m)2、绝缘损耗(1)导体电容求得:C=2.15389e-010(F/m)(2)绝缘损耗求得:W d =0.277162(W/m)3、金属套和铠装中的功率损耗(1)最高工作温度下电缆单位长度金属套或屏蔽的电阻求得:单位长度金属套或屏蔽的电阻R s =3.3457e-005(Ω/m)(2)最高工作温度下电缆单位长度铠装的电阻已知:无铠装层。
载流量计算公式为:
I S
ρ
×
式中I为载流量,S为电缆动力线导体平方数,ρ为电流密度。
各平方数所对应的载流量为:Array
说明1:此表格为电工规范用表,可作为电缆选型和供电设计的参考值。
表中稳态电流载流量是指设备在功率完全稳定状态下的载流量,实际
选型当中有些浪费,比如采煤机,刮板机等负荷波动就较大,所以
实际选型中往往以一小时允许过载载流量作为长期选型的标准。
当
然,在选型时也可根据设备负荷是否有波动来进行调整。
说明2:对于不同电缆,由于其绝缘的耐温等级不同,所以不同电缆对电流过流时所能承受的载流量也不一样。
上海蓝昊电气有限公司。
电缆载流量计算书(示例)1、电缆结构名称所在层材料内径(mm)厚度(mm)外径(mm)截面积(mm ) 导体导体铜0.00.023.8368.0导体屏蔽绝缘半导电材料23.80.825.461.8绝缘绝缘交联聚乙烯25.40.626.649.0绝缘屏蔽绝缘半导电材料26.64.535.6102.0内护(导体)内护层铜带35.60.236.022.5内护(非金属)内护层聚氯乙烯护套36.00.236.422.7铠装外护层钢带铠装36.40.036.40.0外护外护层聚氯乙烯护套36.42.341.0112.62、运行状况电流类型:三相交流电压等级:35kV电缆数量:3中心点坐标(mm):X = 500.00, Y = 500.00回路间距(mm):100.00电缆间距(mm):100.003、电缆敷设方式、环境条件和运行状况敷设条件:空中干燥和潮湿土壤热阻系数之比率:1.0干燥土壤的热阻系数:1.0自然土壤的热阻系数:1.0土壤临界温度(℃):40.0 ℃环境温度(℃):40.0 ℃土壤临界温升(℃):40.0 ℃二、载流量计算1、交流电阻(1)导体最高工作温度下单位长度直流电阻已知:R0 = 0.000047 /m 20 = 0.003930 1/k = 90.0 ℃结果:R' = 0.000060 /m(2)集肤效应因数已知:f = 50 Hz R' = 0.000060 /m ks = 1.000结果:xs2 = 2.096852结果:ys = 0.022488(3)邻近效应因数已知:f = 50 Hz R' = 0.000060 /m kp = 0.80结果:xp2 = 1.677482不等距时已知:dc = 23.8 mm s = 100.0 mm结果:yp = 0.003418(4)交流电阻已知:R' = 0.000060 /m ys = 0.022488 yp = 0.003418结果:R' = 0.000061 /m2、绝缘损耗(1)导体电容已知: = 2.5 Di = 26.6 mm dc = 23.8 mm结果:c = 1.249e-009 F/m(2)绝缘损耗已知: = 314.2 rad/s c = 1.249e-009 F/m U0 = 20207.26 V tg = 0.004 结果:Wd = 0.640748 W/m3、金属套或屏蔽中的功率损耗(1)最高工作温度下电缆单位长度金属套或屏蔽的电阻已知:s = 1.724e-008 m As = 0.000022 m2 s = 0.003930 1/K= 90.0 ℃= 0.90结果:Rs = 0.000950 /m(2)1已知: = 314.159265rad/s s = 1.724100e-008 m结果:1 = 151.320805(3)gs已知:ts = 0.2mm Ds = 36.0mm 1 = 151.320805结果:gs = 1.000458(4)m已知: = 314.159265rad/s Rs = 0.000950/m结果:m = 0.033071(5)滞后相涡流损耗0、△1、△2已知:m = 0.033071 d = 35.8mm s = 100.0mm结果:0 = 0.000053 △1 = 0.022337 △2 = 0.000000 涡流损耗结果:1'' = 0.000831(6)中间电缆涡流损耗0、△1、△2已知:m = 0.033071 d = 35.8mm s = 100.0mm结果:0 = 0.000210 △1 = 0.000007 △2 = 0.000000 涡流损耗结果:1'' = 0.003248(7)越前相涡流损耗0、△1、△2已知:m = 0.033071 d = 35.8mm s = 100.0mm结果:0 = 0.000053 △1 = 0.013723 △2 = 0.000000 涡流损耗结果:1'' = 0.000824(9)金属套或屏蔽环流损耗结果:1' = 0(10)金属套或屏蔽功率损耗结果:三相中最大的1 = 0.0032484、铠装损耗因数已知:无铠装结果:2 = 05、电缆绝缘热阻T1已知:T = 3.5 Km/W t1 = 5.9 mm dc = 23.8 mm结果:T1 = 0.224299 Km/W6、金属套和铠装之间热阻T2已知:T = 6.0 Km/W t2 = 0.2 mm Ds = 36.0 mm结果:T2 = 0.010552 Km/W7、外护层热阻T3已知:T = 6.0 Km/W t3 = 2.3 mm Da' = 36.4 mm结果:T3 = 0.113640 Km/W8、电缆外部热阻T4(1)散热系数h已知:Z = 0.62 E = 1.95 g = 0.25De = 0.0410 m结果:h = 3.328(2)△d已知:Wd = 0.640748 W/m 1 = 0.003248 2 = 0.000000T1 = 0.224299 KW/m T2 = 0.010552 KW/mn = 1结果:△d = 0.071394 K(3)KA已知:T1 = 0.224299 KW/m T2 = 0.010552 KW/m T3 = 0.113640 KW/m 1 = 0.003248 2 = 0.000000n = 1 De = 0.0410 m结果:KA = 0.149066(4)超过环境温度以上的电缆表面温升△s已知:△= 50.0 K △d = 0.071394 KKA = 0.149066 △s0.25初值= 2.0结果:△s0.25 = 2.460223 K(5)T4结果:T4 = 0.948267 KW/m9电缆额定载流量I已知:交流电阻R = 0.000061 /m金属屏蔽损耗1 = 0.003248铠装损耗2 = 0.000000介质损耗Wd = 0.640748 W/m热阻T1 = 0.224299 Km/W热阻T2 = 0.010552 Km/W热阻T3 = 0.113640 Km/W热阻T4 = 0.948267 Km/W结果:I = 784.831854 A护套感应电压计算书1.计算护套感应电压的中间参数Xs已知:f = 50.000000 Hz Ds = 36.000000 mm S = 100.000000 mm 结果:Xs = 0.000108 /m2.计算护套感应电压的中间参数Xm已知:f = 50.000000 Hz结果:Xm = 0.000044 /m3.电缆护套感应电压U已知:I = 784.831854 A Xs = 0.000108 /m Xm = 0.000044 /m结果:U = 0.105874 /m电缆绝缘厚度计算书1.计算电缆绝缘厚度的中间参数老化系数已知:t = 30.000000 年n = 9.000000结果:K2 = 4.0011112.(按AC)计算电缆绝缘厚度已知:Eo = 20.207259 kV K1 = 1.100000 K2 = 4.001111 K3 = 1.100000 Elac = 30.000000 kV/mm结果:Tac = 3.261000 mm3.(按冲击电压)计算电缆绝缘厚度已知:BIL = 550.000000 kV I1 = 1.250000 I2 = 1.100000 I3 = 1.100000 EIimp = 60.000000 kV/mm结果:Timp = 13.865000 mm4.(最终结果)计算电缆绝缘厚度已知:Tac = 3.261000 mm Timp = 13.865000 mm结果:Timp = 14.900000 mm电缆导体短路电流计算书1.计算电缆导体短路电流中间参数(K)载流体常数已知:c = 3450000.000000 J/K.m3 = 254.452926 20 = 0.000000 .m结果:K = 741.075156 As1/2/mm22.计算电缆导体短路电流已知:K = 741.075156 As1/2/mm2 S = 368.000000 mm2 t = 3.000000 秒f = 250.000000 ℃i = 90.000000 ℃= 254.452926结果:I = 97.300000 KA/3S电缆金属屏蔽短路电流计算书1.计算电缆金属屏蔽短路电流中间参数(K)载流体常数已知: = 2500000.000000 J/K.m3 = 254.452926 = 0.000000结果:K = 630.8450672.计算电缆金属屏蔽短路电流已知:K = 630.845067 As1/2/mm2 S = 368.000000 mm2 t = 3.000000 秒f= 200.000000 ℃i = 90.000000 ℃= 254.452926 = 1.200000结果:I = 84.700000 KA/3S电缆使用过程中电动力计算书1.电缆使用过程中电动力最大值已知:S = 1.000000 mm lm = 97300.000000 A/1S cost - 31/2cost = 31/2(最大值)结果:F = 1420.093500 N/m2.电缆使用过程中电动力最小值已知:S = 1.000000 mm lm = 97300.000000 A/1S cost - 31/2cost = 31/2/2(最小值)结果:F = 710.046750 N/m电缆工井长度计算书1、电缆温升后电缆伸长量(1)临界温度t计算已知:A = 368.000000 mm2 E = 30000.000000 N/mm2 = 0.000020 l/℃= 0.300000W = 161.300000 N/m L = 150.000000 m f = 1000.000000 N结果:t = 41.930000 ℃(2)按电缆弯曲半径要求计算温升65℃时已知:t = 65 A = 368.000000 mm2 E = 30000.000000 N/mm2 = 0.000020 l/℃= 0.300000W = 161.300000 N/m L = 150.000000 m f = 1000.000000 N结果:m = 0.060000 m(3)按电缆弯曲半径要求计算温升25℃时已知:t = 25 A = 368.000000 mm2 E = 30000.000000 N/mm2 = 0.000020 l/℃= 0.300000W = 161.300000 N/m L = 150.000000 m f = 1000.000000 N结果:m = 0.000000 m2、工井内电缆弯曲段长度S计算(1)220KV单芯XLPE电缆允许最小施工弯曲半径R0已知:D = 0.041000 m结果:R0 = 0.820000 m(2)电缆工井试算长度S已知:R0 = 0.820000 m C = 0.500000 m结果:R0 = 1.200000 m(3)修正施工弯曲半径R0已知:S = 1.200000 m C = 0.500000 m(4)修正相邻工井间电缆距离La已知:S = 1.200000 m C = 0.500000 m结果:La = 1.300000 m(5)修正计算过程中间变量0已知:S = 1.200000 m C = 0.500000 m结果:0 = 0.789582(6)修正计算过程中间变量B0已知:R0 = 0.850000 m 0 = 0.789582结果:B0 = 0.065370 m(7)修正计算过程中间变量B1已知:m = 0.060000 m B0 = 0.065370 m La = 1.300000 m 结果:B1 = 0.110300 m(8)验证S是否合理的阶段性结果R1已知:B1 = 0.110300 m La = 1.300000 m结果:R1 = 0.533958 m(9)S本次试算时的取值已知:S = 1.200000 m(10)S下次试算时的取值(可能不采用)已知:S = 1.200000 m Step = 0.3 m结果:S = 1.500000 m(11)修正施工弯曲半径R0已知:S = 1.500000 m C = 0.500000 m结果:R0 = 1.250000 m(12)修正相邻工井间电缆距离La已知:S = 1.500000 m C = 0.500000 m结果:La = 1.581000 m(13)修正计算过程中间变量0已知:S = 1.500000 m C = 0.500000 m结果:0 = 0.643501(14)修正计算过程中间变量B0已知:R0 = 1.250000 m 0 = 0.643501结果:B0 = 0.064130 m(15)修正计算过程中间变量B1已知:m = 0.060000 m B0 = 0.064130 m La = 1.581000 m(16)验证S是否合理的阶段性结果R1已知:B1 = 0.117100 m La = 1.581000 m结果:R1 = 0.725598 m(17)S本次试算时的取值已知:S = 1.500000 m结果:S = 1.500000 m(18)S下次试算时的取值(可能不采用)已知:S = 1.500000 m Step = 0.3 m结果:S = 1.800000 m(19)按电缆弯曲半径要求试算的结果S已知:S = 1.500000 m结果:S = 1.500000 m按保护层疲劳限制核算畸变量并根据结果再次试算S(20)按保护层疲劳限制核算畸变量已知:S = 1.500000 m C = 0.500000 m d = 0.035800 m m = 0.000000 m 结果: = 0.000000 m(21)S本次试算时的取值已知:S = 1.500000 m结果:S = 1.500000 m(22)S下次试算时的取值(可能不采用)已知:S = 1.500000 m Step = 0.3 m结果:S = 1.800000 m(23)按保护层疲劳限制试算的结果S已知:S = 1.500000 m结果:S = 1.500000 m3、工井长度已知:S = 1.500000 m 电缆接头长= 2.000000 m 结果:工井长度= 5.600000 m。
电缆允许载流量计算书三相电动机电流计算方法:电流=功率除以(根号3乘以电压乘以电动机的功率因素乘以电动机的效率)功率因素和效率在未知的情况下定为0.8515KW计算法为15000/380*根号3*0.85*0.85=31.6安经验公式:铜导线面积等于负载功率千瓦数乘以0.65,得数小于或等于导线实际截面的就选其值,大于的选粗一级的导线,铝线在算出铜线结果的基础上粗一级。
如:1、15Kw电机求导线截面?千瓦数15×0.65=9.75。
这时就要选择10mm²铜线,铝线则选16mm²。
2、3500 W空调求导线面积?千瓦数3.5×0.65=2.275。
这时应选择2.5mm²铜线足矣,铝线则选4mm²。
导线一般是:1.5m㎡、2.5m㎡、4m㎡、6m㎡、10m㎡、16mm²、25mm²、35mm²、50mm²、70mm²、95mm²、120mm²、150mm²、185mm²一、电缆允许载流量的计算公式1)根据《电线电缆手册》第三篇 3 .4.1 关于电缆允许载流量的计算,当已知需要传输的负载设计所需的电缆时,往往给出的是负载的功率(容量)。
输电线路的功率又分视在功率、有功功率、无功功率三种量,如果线路的电流为I(安),线路电压为U(千伏),负载功率因数为COSφ,则有如下关系:视在功率 P S=√3 UI(千伏安)有功功率 P =√3 UICOSφ无功功率Pq=√3 UISINφP S=√ P2+Pq2I= Pq/√3 USINφP S—输电线路视在功率 P--输电线路有功功率Pq--输电线路无功功率 COSφ---负载功率因数U---输电线路电压 I---输电线路电流二、各种电缆的最高允许长期工作温度三、各种电缆的连续负荷允许载流量一、油浸纸绝缘电力电缆连续负荷允许载流量1-3千伏有外护层的三芯电缆载流量(空气敷设)电缆型号ZQ、ZLQ、ZL、ZLL导线最高允许温度80℃环境温度25℃6千伏有外护层的三芯电缆载流量(空气敷设)电缆型号ZQ、ZLQ、ZL、ZLL导线最高允许温度80℃环境温度25℃二、聚氯乙烯绝缘及护套电力电缆连续负荷允许载流量1千伏无铠装聚氯乙烯电缆载流量(空气敷设)电缆型号VV、VLV导线最高允许温度65℃环境温度25℃1千伏聚氯乙烯铠装电缆载流量(空气敷设)电缆型号VV、VLV导线最高允许温度65℃环境温度25℃6千伏聚氯乙烯铠装电缆载流量(空气敷设)电缆型号VV、VLV导线最高允许温度65℃环境温度25℃三、交联聚氯乙烯绝缘电缆连续负荷允许载流量10千伏交联聚氯乙烯绝缘电缆载流量(空气敷设)电缆型号VV、VLV导线最高允许温度90℃环境温度25℃。
电缆载流量计算书2023/1/27量计算使用条具体计交流电 R=R'R '=R 0[1+其中:其中:d c:导体s:各导对于分2.介质损耗W d的W d=ω其中:ωC:电容U0:对地其中:ε=2.3 D i为绝缘 d c为内屏3.金属屏蔽损λ1=λ1' 其中:λ1λ1〃为λ1〃的计算:其中:ρ:金R:金属D:金属t:金属D oc:皱D it:皱2b.平行排列时1)中心电缆△2=0其中:2)外侧滞后相损耗λ2 λ2=05热阻的计算5.1热阻T 1的计算热阻ρT1 — dc— 导体t 1— 导体5.2热阻T 2的计算 热阻T 2=05.3外护中:t s -ρT3-外5.4外部热阻T 4计5.4.1空气中敷其中:D e *:电 h:令,求出为止,此时的当空气中敷设5.4.2土壤中敷5.4.2.1管道敷5.4.2.1 .1电缆其中:U 、V和Y D e 为电缆 θm 为电缆5.4.2.1o 为管道 D d为管道ρT4为管5.4.2.1.3管道 系数其中:N 为管道ρe管道ρc为水泥其中:x其中:L为地表D e 为电缆k T4为系5.4.2.2其中:p根电缆其它参2.交联电缆非2.1金属屏蔽的绝热状态下短式中:I AD 为绝 t 为短路34.29kAK 为常数, S 为金属θf短路θi短路β为常金属屏蔽的截 式中:D in 92.8mmD oc 为铝103.4mmt s 为铝护 2.3mm当电缆处于非式中:σ2,σ3 2.4, 2.4ρ2,ρ3为金属 3.5, 3.5σ1为金属屏蔽 2.5δ为金属屏蔽 2.3F为常数,一因此因数ε=1.1044 式中:t为金属屏蔽非绝I=I AD×ε=37.87kA式中:I为2.2导体非绝热绝热状态下短=99.13k这里,考虑到非绝热=1.01式中:X、s为导体t为时间导体非绝热状=100.16kAXLPE电缆连续载流量主要计算参数数据表。
35kV电⼒电缆计算书1、电缆持续载流量计算本项⽬每10MWP ⼀条汇集线路送出,汇集线路电压等级为35kV ,功率因数按1考虑,则线路最⼤⼯作电流为:θcos 732.1a e U PI ==164.96A则电缆额定载流量I L 应满⾜:a ·I I K L ≥式中,K 为载流量校正系数,满⾜:43t ··K K K K =式中:K t -环境温度下的载流量校正系数;K 3-不同⼟壤热阻系数时,载流量校正系数; K 4-多根电缆并⾏敷设时,载流量校正系数。
2、环境温度载流量校验系数K t 选取环境温度载流量校验系数K t 满⾜下式:12t θθθθ--=m m K式中:m θ为电缆导体最⾼⼯作温度,本⽂取90℃;1θ为对应于额定载流量的基准环境温度,本⽂取20℃;2θ为实际环境温度,地下0.8m 处取30℃则计算可得本项⽬所⽤电缆环境温度校验系数K t =0.933、⼟壤热阻校正系数K 3选取《GB50217-2007电⼒⼯程电缆设计规范》中不同⼟壤热阻系数时电缆载流量校正系数如下表:不同⼟壤热阻系数时电缆载流量的校正系数(K 3)项⽬所在地江西新余市分宜县属亚热带湿润性⽓候,⾬量充沛,且光伏场区紧邻袁河,⼟壤较为湿润,故取⼟壤热阻系数K 3=1。
4、并⾏敷设校正系数K 4选取《GB50217-2007电⼒⼯程电缆设计规范》中⼟中直埋多根电缆并⾏敷设时载流量校正系数如下表:⼟壤中直埋多根并⾏敷设时电缆载流量校正系数(K 4)本项⽬光伏区35kV 电缆最⼤并⾏敷设数量为3根,由上表可得并⾏敷设校正系数K 4=0.87。
5、电缆截⾯选择由以上计算可得汇集电缆载流量L I 为:43t a··K K K I I L=203A本项⽬计划采⽤电缆为ZR-YJV22-26/35型,该型号下各截⾯电缆对应载流量如下表:26/35kv 三芯交联聚⼄烯绝缘电⼒电缆连续负荷参考载流量(A )本项⽬35kV 电缆均采⽤直埋敷设,则根据各截⾯电缆载流量可得,本期选择35kV 电缆(箱变⾄升压变段)截⾯建议不⼩于70mm 2。
电缆载流量计算书2/143212114321}))(1()1()](5.0[{T T nR T nR RT T T T n T W I d +++++++++-∆=λλλθ其中:I :载流量 (A ):θ∆ 导体温度与环境温度之差(℃)R :90℃时导体交流电阻(Ω/m ) n: 电缆中载流导体数量 W d : 绝缘介质损耗 λ1: 护套和屏蔽损耗因数 λ2: 金属铠装损耗因数T 1: 导体和金属护套间绝缘层热阻(k.m/w ) T 2: 金属护套和铠装层之间内衬层热阻(k.m/w ) T 3: 电缆外护层热阻(k.m/w )T 4: 电缆表面与周围媒质之间热阻(k.m/w ) 1.1导体交流电阻R 的计算 R=R /(1+y s +y p )R /=R 0[1+α20(θ-20)] 其中:R ‘:最高运行温度下导体直流电阻(Ω/m ) Y s :集肤效应因数 Y p :邻近效应因数R 0:20℃时导体直流电阻,(Ω/m) θ:最高运行温度90℃α20:20℃铜导体的温度系数,0.00393 1/℃448.0192ss s X X y +=s s k fX R 72108-'=π其中:圆形紧压导体k s =1}27.08.019218.1312.0{8.0192442244+++⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=ppc c p pp XXs d s d X X y 其中:d c : 导体直径,(mm )S: 各导体轴心之间距离,(mm ) 对于圆形紧压导体k s =1 1.2 介质损耗w d 的计算 W d =ωCUo 2tg δ其中: ω=2πf f:频率,50Hz C: 电容 F/mUo: 对地电压,64000(V) tg δ:介质损耗角正切,0.001 91018-⎪⎪⎭⎫ ⎝⎛=×εc id D Ln C F/m 其中: ε=2.3Di: 为绝缘外径(mm) dc 内屏蔽外径(mm) 1.3 金属屏蔽损耗λ1的计算 "+'=111λλλ '1λ-为环流损耗"1λ -为涡流损耗1.3.1'1λ 的计算'1λ=0 1.3.2 "1λ的计算()⎥⎦⎤⎢⎣⎡⨯+∆+∆+="12421011012)(1s i s st g RRβλλ 6.110(1374.1-⎪⎪⎭⎫⎝⎛+=-s i s s s D D t g β)2/17104⎪⎪⎭⎫⎝⎛=s i ρπωβ其中:R :导电线芯交流电阻( Ω.m )ρs :金属屏蔽电阻率1.7241×10-8( Ω.m ) R s :金属屏蔽电阻 ( Ω.m ) D s :金属屏蔽外径 (mm ): t S : 金属屏蔽厚度,(mm ) 金属屏蔽电阻的计算 []m A R s s sss /)20(1Ω-+=θαρA s =π(Dit+2C+t )tm 2其中: A s :金属屏蔽面积,mm 2αs :温度系数4.03×10-3 1/℃ θs :运行时金属屏蔽温度,60℃ 平行排列时: 1)中心电缆22201)2/(6m s d m +=λ()7.4.108.312/86.0o m s d m +=∆02=∆其中 710-⨯=sR m ωd :金属屏蔽平均直径mm S :电缆中心轴之间的距离mm2)外侧超前相22201)2/(5.1m s d m +=λ216.07.01)2/(7.4+=∆m s d m△2=21m3..3(d/2s)1.47m+5.063)外侧滞后相22201)2/(5.1m s d m +=λ125.01)2/()3.0(2)2(74.0+-++=∆m s d m m m△2=0.92m 3.7(d/2s)m+2三角形排列时2220213⎪⎭⎫⎝⎛+=S D m m s λ )66.192.0(45.212)33.014.1(+⎪⎭⎫ ⎝⎛+=∆m s s D m02=∆ 710-=Rsw m 1.4铠装损耗λ2的计算 钢带电阻的计算20℃时钢带电阻率:ρs= 0.0000007Ω·m 电阻温度系数αs=0.005 ℃-1金属套或铠装层工作温度(实际温度要低)θs=70℃ 铠装层截面积 AS=π*(dl+ts)*ts/2/0.7*10^(-6)工作温度下铠装层的电阻Rs :Rs=ρs/As[1+αs(θs-θ0)]钢带铠装层的损耗λ2 (金属套两端互连)电缆导体轴间距离S 铠装层直径:Ds 角频率:ω=314则: X=2ω10-7Ln (2*2(1/3)*S/Ds )环流损耗由下式给出λ2'=Rs/R/(1+Rs2/X2)由于金属套两端互连:λ2''=铠装层的损耗λ2 :λ2=λ2'+λ2''1.5热阻的计算 1.5.1热阻T 1的计算T 1=ρ1/(2π)Ln(1+2t 1/d c ) k ·m/w其中: ρ1: 材料热阻系数,3.5 (k..m/w) d c : 导体直径, (mm)t 1 : 导体和护套之间的绝缘厚度, (mm) 1.5.2热阻T 2的计算金属屏蔽与铠装之间内衬层热阻T 2的计算已知: 内衬层厚度:til 金属屏蔽(成缆)外径:Dh 隔离套或内衬层热阻系数:ρt金属屏蔽与铠装之间热阻T 2由下式给出T 2= (ρt/2π)ln(1+2til/Dh)1.5.3外护套热阻T 3的计算⎥⎦⎤⎢⎣⎡+++=s it oc oc t D D t D T 2/)(2ln 2333πρ k ·m/wρ3: 材料热阻系数,3.5(k..m/w) t 3: 外护套厚度,mm Doc :铠装层外径,mm Dit :铠装层内径mm t s :铠装层厚度mm 1.5.4外部热阻T4的计算 1.5.4.1 土壤中敷设 eT D LT 4ln244πρ=k ·m/w其中:4T ρ:土地热阻系数, k ·m/w L :敷设深度,mm D e :电缆外径,mm 1.5.4.2.管道敷设1.5.4.2.1.电缆和管道之间的'4T : ))(1.01/(4e m D v U T γθ++='k ·m/w其中:U 、v 、γ是与条件有关的常数,分别为5.2,1.1,0.11 D e 为电缆外径,cmm θ为电缆与管道之间介质的平均温度,50℃ 1.5.4.2. 2管道本身的热阻)2/()/ln(44πρDd Do T T ="k ·m/w其中:Do 为管道外径,mm Dd 为管道内径,mm4T ρ为管道材料的热阻系数,(k..m/w) 1.5.4.2. 3管道外部热阻b c e p c NG Fe D L T πρρπρ24ln 24-+⎪⎪⎭⎫ ⎝⎛="k ·m/w 其中:N 为管道内有负荷电缆根数,e ρ管道周围土壤的热阻系数,(k..m/w) c ρ排管混凝土的热阻系数,(k..m/w)D p :管道外径, mm Fe=NkNk k k k k S S S S S S '⋅⋅⋅'⋅'2211r b 管道等效半径,由下式表示:⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=2145.022x Ln x y Ln y x y x Lnr b π其中:x 和y 分别表示管道的长边和短边,分别为100cm ,30cm L b 为地表面到电缆轴线的间距,100cm ⎥⎥⎦⎤⎢⎢⎣⎡-+=1ln 22b bbb br L r L G 所以外部热阻为: T 4="+"+'444T T T 1.5.4.3空气中敷设:()25.041ns Deh T θπ∆=其中:E Deh g+Z=其中,Z, g ,E 是常数,查表()()[]2131211111λλλλπ++++++=T T T DehK A 112111T W d d ⎥⎦⎤⎢⎣⎡-+=∆λθ()()25.025.025.011⎥⎥⎦⎤⎢⎢⎣⎡∆+∆+∆=∆+n S A d n s K θθθθ(迭代计算)。
电缆长期载流量计算书YJV22 8.7/10kV 3 x 240mm 电缆连续负荷载流量的计算第一节 电缆电气性能参数的计算1. 电阻1.1线芯直流电阻R'=R'' [1 心-20)]其中:R''――20r 导体直流电阻•取国标要求a ――导体电阻温度系数.取0.00393 1/ r9 ――电缆线芯允许最高工作温度,取90 r.-3R'=0.0754 x [1+0.393 x (90-20)] x 103=0.0961 x 10 Q /m1.2导电线芯有效电阻的计算其中f ――为电源频率,工频为 50H Z ;R'――为工作温度下单位长度电缆导体线芯交流电阻,单位为 Ks ――导体为圆形紧压,非干燥,取 1。
计算得出:Xs 2=1.307,集肤效应因数 Ys= 0.0088351.2.2邻近效应因数卡+ 2 8汉兀二式中,X p 10 k pp R' p其中f ――为电源频率,工频为50H Z ;R'――为工作温度下单位长度电缆导体线芯交流电阻,单位为 Q /m; 1.2.1集肤效应因数 y s 4192 0.8 X s式中, X 2 8::: f 10J k sQ /m; 匚D C 2 192 0.8 X S 1.18X :4 192 0.8 X p0.270.312& ――导体为圆形紧压,非干燥,取1。
De ----- 为导体外径,S ------ 为线芯中心轴间距离。
计算得出:X6=1.3O7,邻近效应因数Yp=0.01341.2.3 90 C电缆线芯的有效电阻为:计算得出:R' (1 Ys Yp) =9.828 X 10-5 Q /m2.电缆电容对于三芯圆形芯电缆,三芯联在一起对金属屏蔽层的电容10~F/m18 In」d e其中:£---- 为绝缘材料的相对介电常数,对交联聚乙烯£ =2.5D i ------------ 为绝缘层外径(屏蔽层除外)(mm)D e 导体直径包括屏敝层(mm)计算得出:C= 0.367 X 10-9 F/m3.金属屏蔽的电感对于三芯分相屏蔽型圆形芯电缆,金属屏蔽的电抗X=2X w X 10-7 X LN(2X( S-d) /d)其中:S为导体轴向间距,单位为mmd 为金属套平均直径,单位为mm计算得出:X=1.01 X 10-6 Q /m第二节损耗因数的计算2.1对于三芯分相屏蔽型圆形芯电缆,金属屏蔽损耗因数的计算公式为:—1^ 11 R ]后訂.IX 丿一公式中:R为在最高工作温度下电缆单位长度交流电阻,单位为Q /m;Q /m;R S为在最高工作温度下电缆金属屏蔽单位长度交流电阻,单位为R S = R S' X [1+ a X (屮-20)] X( 1 + Ys+ Yp)R S' = P/ S其中:p为金属屏蔽电阻系数,17.241 Q • mr i/mS 为金属屏蔽截面积,单位为mr^计算得出R S'二17.241 /(30X 0.1 X 3)= 1.916 X 10-3 Q/m;<为导体在最高温度下金属屏蔽的工作温度,假设为85°C;Ys、Yp的意义和计算方法同上;X 为电缆单位长度金属屏蔽的电抗,单位为Q /m。
电缆载流量计算书1、载流量计算使用条件及必要系数:具体计算公式如下:()[]()()()4321211432115.0T T nR T nR RT T T T n T W I d +++++++++-∆=λλλθ其中:I:载流量(A)△θ:导体温度与环境温度之差(℃)R:90℃时导体交流电阻(Ω/m)n:电缆中载流导体数量W d:绝缘介质损耗λ1:护套和屏蔽损耗因数λ2:金属铠装损耗因数T1:导体与金属护套间绝缘层热阻(k·m/w)T2:金属护套与铠装层之间内衬层热阻(k·m/w) T3:电缆外护层热阻(k·m/w)T4:电缆表面与周围媒介之间热阻(k·m/w) 1.导体交流电阻R的计算R=R'(1+y s+y p)R'=R0[1+α20(θ-20)]其中:R':最高运行温度下导体直流电阻(Ω/m)y s:集肤效应因数y p:邻近效应因数R0:20℃时导体直流电阻(Ω/m)θ:最高运行温度90℃α20:20℃时铜导体的温度系数448.0192sss X X y +=s s k R fX 72108-⨯=π其中:对于分割导体ks=0.435。
⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+++⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+=27.08.019218.1312.08.0192442244p p c c p p s X X s d s d X X ys p k R fX 72108-⨯=π其中:d c :导体直径(mm ) s:各导体轴心之间距离(mm ) 对于分割导体ks=0.37。
2.介质损耗W d 的计算W d =ωCU 02tg δ 其中:ω=2πf C:电容F/m U 0:对地电压(V )91018-⨯⎪⎪⎭⎫ ⎝⎛=c id D Ln c ε其中:ε=2.3D i 为绝缘外径(mm ) d c 为内屏蔽外径(mm )3.金属屏蔽损耗λ1的计算λ1=λ1'+λ1〃 其中:λ1'为环流损耗 λ1〃为涡流损耗 λ1〃的计算:()()⎥⎦⎤⎢⎣⎡⨯+∆+∆+=1241210110121s s st g RR βλλ()6.11013174.1-⎪⎪⎭⎫⎝⎛+=-ss s s D D t g βsρπϖβ71104=其中:ρ:金属护套电阻率(Ω·m) R :金属护套电阻(Ω/m) D :金属护套外径,对于皱纹铝护套sitoc t D D D ++=2(mm)t :金属护套厚度(mm) D oc :皱纹铝套最大外径(mm) D it :皱纹铝套最小内径(mm) a.三角形排列时2220213⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+=s d m m λ()66.192.045.21233.014.1+⎪⎭⎫⎝⎛+=∆m s d m△2=0 b.平行排列时1)中心电缆2220216⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+=s d m m λ7.04.108.31286.0+⎪⎭⎫⎝⎛=∆m s d m△2=0其中:710-=sR m ϖ2)外侧超前相2220215.1⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+=s d m m λ216.07.0127.4+⎪⎭⎫⎝⎛=∆m s d m 06.547.13.32221+⎪⎭⎫⎝⎛=∆m s d m3)外侧滞后相2220215.1⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+=s d m m λ()()125.0123.02274.0+⎪⎭⎫⎝⎛-++=∆m s d m m m27.32292.0+⎪⎭⎫⎝⎛=∆m s d m4.铠装损耗λ2的计算λ2=05.热阻的计算5.1热阻T 1的计算热阻⎪⎪⎭⎫⎝⎛+=c Td t Ln T 112121πρ式中:ρT1—绝缘材料热阻系数(k ·m/w) d c —导体直径(mm)t 1—导体和护套之间的绝缘厚度(mm)5.2热阻T2的计算热阻T2=05.3外护套热阻T3的计算()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=s it oc oc T t D D t D Ln T s 22233πρ其中:t s -外护套厚度ρT3-外护套(非金属)热阻系数5.4外部热阻T4计算5.4.1空气中敷设()25.0*41s e h D T θπ∆=()ED Zh ge +=*其中:D e *:电缆外径(mm) h:散热系数()41θ∆计算:()()41141411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆+∆+∆=∆+n s A dn K θθθθ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++-⎪⎪⎭⎫ ⎝⎛-++=∆212212112111λλλλλθT n T W d d()()⎥⎦⎤⎢⎣⎡+++++++=21312121*111λλλλλπT T n T hD K e A令()241=∆n s θ,求出()411+∆n s θ,反复叠代直至()411+∆n s θ-()41n s θ∆≤0.001时为止,此时的()411+∆n s θ值即为()41n s θ∆值。
当空气中敷设时,回路数对载流量基本没有影响。
5.4.2土壤中敷设5.4.2.1管道敷设,有水泥槽。
5.4.2.1.1电缆和管道之间的热阻T 4′:()e m D Y V UT θ++=1.014其中:U 、V 和Y 是与条件有关的常数。
D e 为电缆外径。
θm 为电缆与管道之间介质的平均温度。
5.4.2.1.2管道本身的热阻⎪⎪⎭⎫⎝⎛=d o T D D Ln T πρ24"4其中:D o 为管道外径。
D d 为管道内径。
ρT4为管道材料的热阻系数。
5.4.2.1.3管道外部热阻系数()1224---=u u Ln Nk ce T πρρ其中:N 为管道内有负荷电缆根数。
ρe 管道周围土壤的热阻系数。
ρc 水泥的热阻系数。
b Gr L U =rb 为水泥槽等效半径,由下式表示:()⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=2142122x Ln x y Ln y x y x r Ln b π 其中:x 和y 分别表示管道的短边和长边。
()422114''''1224T p p p p p p p p T k d d d d d d d d u u Ln T qq k k ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-+=πρ其中:e D L u 2=L 为地表面到电缆轴线的间距。
D e 为电缆的外径。
k T4为系数。
5.4.2.2多回土壤敷设直埋()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-+=qq k k p p p p p p p p T d d d d d d d d u u Ln T ''''122211424πρ共有(q-1)项,而ppppd d '项除外。
其中:d pk 和d pk '分别为第p 根电缆的中心至第k 根电缆的中心和第p 根电缆的中心至第k 根电缆在大地一空气的镜象中心距离。
其它参数的含义见5.4.2.1。
2 交联电缆非绝热状态下短路电流的计算 2.1金属屏蔽的短路电流绝热状态下短路电流的计算公式如下:⎪⎪⎭⎫ ⎝⎛++=βθβθif ADLn S K t I 222式中:I AD 为绝热状态下金属屏蔽的短路电流,A ; t 为短路时间,sec.,这里t 为3秒;K 为常数,对于金属铝为148,A.s 1/2/mm 2; S 为金属屏蔽截面,679.9mm 2θf 短路终止温度,180℃; θi 短路起始温度,60℃; β为常数,对于金属铝为228,℃。
金属屏蔽的截面积sitoc t D D S ⨯+=214.3式中:D it 为铝护套内径,mm ; D oc 为铝护套外径,mm ;t s 为铝护套厚度,mm ;当电缆处于非绝热状态下时,应考虑如下系数:FM 313322102-⨯+=δσρσρσ式中:σ2,σ3为金属屏蔽层四周媒质的比热,J/K ·m 3; ρ2,ρ3为金属屏蔽层四周媒质的热阻,k ·m/W ; σ1为金属屏蔽的比热,J/K ·m 3; δ为金属屏蔽的厚度,mm ; F 为常数,一般取0.7。
因此因数ε为:()()1.1044=0043.0069.061.0131211t M t M t M +-+=ε式中:t 为短路时间,3sec.金属屏蔽非绝热状态下的短路电流为:I=I AD ×ε=37.87kA 式中:I 为非绝热状态下的短路电流。
2.2导体非绝热状态下的短路电流的计算绝热状态下短路电流的计算公式如下:99.13kA =222⎪⎪⎭⎫ ⎝⎛++=βθβθif ADLn S K t I这里,各参数的含义见2.1条。
考虑到非绝热状态,1.01=1⎪⎭⎫⎝⎛++=s t Y s t Xε式中:X 、Y 为计算常数,分别为0.41mm2/s 和0.12mm2/s s 为导体截面 t 为时间3s导体非绝热状态下的短路电流I=I AD ×ε=100.16kAXLPE 电缆连续载流量主要计算参数数据表。