【免费下载】傅里叶级数的数学推导
- 格式:pdf
- 大小:398.03 KB
- 文档页数:6
傅里叶变换推导详解三角函数标准形式为公式2.1所示f\left( t \right) = Asin\left( \omega t + \varphi\right)\ \ \ \ \ \ \ \ \ \ \ (2.1)\ \在物理意义上这个函数又称之为正弦信号(正弦波),其中的t为时间变量,A为波幅, ω为角速度, φ为相位,我们可以通过公式2.2求得这个正弦波的频率。
f = \frac{\omega}{2\pi}\ (2.2)根据等式2.2,角速度和正弦波的频率是正相关的。
同时,因为三角函数是周期函数,其在-π到π的积分必定为0,由此性质可写出式2.3,2.4\int_{- \pi}^{\pi}{\sin\left( \text{nx} \right){dx =0\ \ \ \ \ \ \ \ \ (2.3)}}\int_{- \pi}^{\pi}{\cos\left( \text{nx} \right){dx =0\ \ \ \ \ \ \ \ \ (2.4)}}设某三角函数为f\left( x \right) = \sin\left( \text{nx} \right)\ \ \ \ \ \ \ \ \ (2.5)在式2.5两边同时乘以 \sin\left( \text{mx} \right) 同时,对两边在-π到π内进行积分,得出\int_{- \pi}^{\pi}{f\left( x \right)sin(mx)dx} =\int_{- \pi}^{\pi}{\sin\left( \text{nx}\right)sin(mx)dx}\ \ \ \ \ (2.6)由三角函数的积化和差公式,上式可变形为\int_{- \pi}^{\pi}{f( x )\sin( \text{mx} )\text{dx}} = \frac{1}{2}\int_{- \pi}^{\pi}{{ \cos\lbrack ( m - n )x \rbrack - \cos\lbrack ( m + n )x \rbrack }\text{dx}} = \frac{1}{2}\int_{- \pi}^{\pi}{\cos\lbrack ( m - n )x \rbrack\text{dx}} - \frac{1}{2}\int_{-\pi}^{\pi}{\cos\lbrack ( m + n )x \rbrack\text{dx}}\ \ \ (2.7)依据上述推导方法我们可以继续推导出下列公式:\int_{-\pi}^{\pi}{\cos( \text{mx} )\cos( \text{nx} )}dx =\frac{1}{2}\int_{- \pi}^{\pi}{{ \cos\lbrack ( m - n )x \rbrack + \cos\lbrack ( m + nx ) \rbrack }\text{dx}} = \frac{1}{2}\int_{- \pi}^{\pi}{\cos\lbrack ( m - n )x \rbrack\text{dx}} + \frac{1}{2}\int_{-\pi}^{\pi}{\cos\lbrack ( m + n )x \rbrack\text{dx}}\ (2.8)\int_{-\pi}^{\pi}{\sin( \text{mx} )\cos( \text{nx} )}dx =\frac{1}{2}\int_{- \pi}^{\pi}{{ \sin\lbrack ( m - n )x \rbrack + \sin\lbrack ( m + n )x \rbrack }\text{dx}} = \frac{1}{2}\int_{- \pi}^{\pi}{\sin\lbrack ( m - n )x \rbrack\text{dx}} + \frac{1}{2}\int_{-\pi}^{\pi}{\sin\lbrack ( m + n )x \rbrack\text{dx}}\ \ \ (2.9)因为三角函数在-π到π内的积分为0,因此当 m \neq n 时,式2.7、2.8、2.9的结果必定为0,因此可以得出以下结论,频率不同的三角函数相乘在一个周期内(-π到π)的积分必定为0。
傅里叶级数公式推导
傅里叶级数是一种将周期函数表示为无穷级数的方法,其基本思想是将周期函数表示为具有不同频率的正弦和余弦函数的无穷级数。
以下是傅里叶级数公式的推导过程:
设f(x)是一个周期为T的周期函数,即f(x+T)=f(x)。
第一步,将f(x)在一个周期内进行离散化,即f(x)=∑n=−NNf(xn)δ(x−xn),其中xn=nT/N,δ(x)是狄拉克δ函数。
第二步,利用三角恒等式sin2(θ)+cos2(θ)=1,将δ(x−xn)展开为正弦和余弦函数的无穷级数。
具体地,δ(x−xn)=2π1[cos(T2π(x−xn))+i sin(T2π(x−xn))]。
第三步,将第二步中的δ(x−xn)代入第一步中的f(x),得到f(x)=2π1∑n=−NN f(xn)[cos(T2π(x−xn))+i sin(T2π(x−xn))]。
第四步,将第三步中的f(x)表示为傅里叶级数的形式。
由于f(x)是周期函数,因此可以将f(x)表示为无穷级数∑k=−∞∞ak cos(T2πkx)+bk sin(T2πkx),其
中ak和bk是傅里叶系数。
综上,傅里叶级数公式可以表示为:f(x)=∑k=−∞∞ak cos(T2πkx)+bk sin(T2πk x),其中ak和bk是傅里叶系数。
傅⾥叶级数推导物理意义:把⼀个⽐较复杂的周期运动看成是许多不同频率的简谐振动的叠加。
三⾓函数系cos x, sinx, cos2x, sin2x.…, cosnx, sinnx.…正交性在[-,]上正交,即其中任意两个不同的函数之积在[-,]上的积分等于0.可以证明:当m=n时设是周期为2的周期函数,且可逐项积分,利⽤三⾓级数得想要表达得求出 ,对两边进⾏积分得因为为常数,利⽤三⾓函数的正交性ππππcos nxdx =∫−ππsin nxdx =∫−ππcos mx cos nxdx =0(m =1,2,3,⋯,n =1,2,3,⋯m =n )∫−ππsin mx sin nxdx =0(m =1,2,3,⋯,n =1,2,3,⋯m =n )∫−ππsin mx cos nxdx ∫−π=0(m =1,2,3,⋯,n =1,2,3,⋯)(n =1⋅1d x =2π∫−ππcos nxdx =π∫−ππ2sin nxdx=π∫−ππ21,2,⋯)f (x )πf (x )=+2a 0a cos nx +b sin nx n =1∑∞(n n )f (x )a ,a ,b 0n n f (x )d x =∫−ππd x +a cos nx d x +b sin nx d x ]∫−ππ2a 0n =1∑[∫−ππn ∫−ππn a ,a ,b 0n n cos nxdx =∫−ππ得到为了求,在等式两边 当k=n时,由三⾓函数的正交性可知其余各项均为零.因此同理整理⼀下得:sin nxdx =∫−ππf (x )d x =∫−ππd x =∫−ππ2a 0πa 0a =0f (x )dx π1∫−ππa n cos kxf (x )cos kxdx ∫−π=cos kxdx ∫−π2a 0+I a cos kx cos nxdx n =1∑∞−ππn +b cos kx sin nxdx ]∫−ππn =a cos kx cos nxdx =a cos nxdx ∫−πn ∫−πn 2a dx =a πn ∫−ππ21+cos 2nx n a =n f (x )cos nxdx (n =π1∫−ππ1,2,3,⋯)b =n f (x )sin nxdx (n =π1∫−ππ1,2,3,⋯)⎩⎨⎧a =f (x )cos nxdx n π1∫−ππb =f (x )sin nxdx n π1∫−ππ(n =0,1,2,⋯)(n =1,2,3,⋯)称为傅⾥叶系数。
一、概述三角波是一种常见的周期信号,它具有周期性和对称性的特点,因此可以用傅里叶级数来表示。
傅里叶级数可以将周期信号分解成一系列正弦和余弦函数的和,从而更好地理解和分析周期信号的特性。
在本文中,我们将对三角波的傅里叶级数系数进行推导,以便更深入地理解三角波的频谱特性。
二、三角波的定义三角波是一种周期信号,其波形呈现出周期内上升和下降的锯齿状特点。
三角波的数学表达式可以写为:f(t) = a0 + Σ(an * cos(nωt) + bn * sin(nωt))其中,a0是直流分量,an和bn是三角波的傅里叶级数系数,n为正整数,ω为基本频率。
三、傅里叶级数系数的计算我们需要计算三角波的直流分量a0。
由于三角波的周期是T,可以利用傅里叶级数公式中的直流分量计算公式来求解:a0 = (1/T) * ∫[0, T] f(t) dt其中,f(t)为三角波的数学表达式,∫[0, T]表示在一个周期内对f(t)进行积分。
接下来,我们计算三角波的余弦系数an。
根据傅里叶级数公式,余弦系数的计算公式如下:an = (2/T) * ∫[0, T] f(t) * cos(nωt) dt类似地,我们还需要计算三角波的正弦系数bn。
正弦系数的计算公式如下:bn = (2/T) * ∫[0, T] f(t) * sin(nωt) dt四、三角波傅里叶级数系数的推导1. 计算直流分量a0首先计算三角波的直流分量a0。
根据三角波的定义,可以将f(t)代入直流分量计算公式中,然后对f(t)在一个周期内进行积分,即可求得直流分量a0的值。
2. 计算余弦系数an接下来计算三角波的余弦系数an。
根据余弦系数的计算公式,将f(t)和cos(nωt)代入公式中,然后对f(t) * cos(nωt)在一个周期内进行积分,即可求得余弦系数an的值。
需要注意的是,由于三角波在一个周期内只有一段时间是不为零的,因此在计算余弦系数时需要分段进行积分计算。