含钛高炉渣综合利用技术的探讨
- 格式:ppt
- 大小:3.92 MB
- 文档页数:28
含钛高炉渣制备二氧化钛晶须的研究钛高炉炉渣是一种工业废弃物,然而,它可以通过一系列的研究和处理工艺转化为具有重要应用价值的材料,比如二氧化钛晶须。
二氧化钛是一种多功能的材料,具有广泛的应用潜力,包括催化剂,光催化剂,生物医学材料等。
为了制备二氧化钛晶须,首先需要对含钛高炉炉渣进行表征和分析。
炉渣的主要成分是富含二氧化钛的铁钛矿,同时还含有少量的杂质元素。
分析炉渣的成分和形态可以为后续的处理和制备工艺提供基础。
制备二氧化钛晶须的一种方法是通过热处理炉渣。
炉渣在一定温度下进行高温处理,使其转化为二氧化钛晶须。
研究表明,高温处理时,炉渣中的硅酸盐和钛酸盐会发生反应,生成二氧化钛晶须。
温度和时间是影响二氧化钛晶须生长的重要参数,可以通过调控这两个因素来控制二氧化钛晶须的尺寸和形态。
此外,添加剂的引入也是制备二氧化钛晶须的重要方法之一、添加剂可以改变炉渣的成分和结构,从而促进二氧化钛晶须的生长。
研究发现,一些添加剂,如氟化钠和氯化钠等,可以显著提高二氧化钛晶须的产率和质量。
在制备得到二氧化钛晶须后,需要对其进行表征和性能测试。
常用的技术包括扫描电子显微镜、透射电子显微镜、X射线衍射等。
这些技术可以提供关于二氧化钛晶须的形貌、尺寸、结构和晶体学信息。
此外,二氧化钛晶须的物理、化学和光学性质也需要进行测试,以评估其在不同领域的应用潜力。
根据以上的研究方法和步骤,可以制备出具有良好结晶性和表面形貌的二氧化钛晶须。
这些二氧化钛晶须可以被用作催化剂,在有机物降解和污水处理等领域具有潜在应用;同时,它们还可以用作光催化剂,用于光催化水分解、光催化降解有机物和抗菌等方面的研究。
此外,二氧化钛晶须还可以通过合适的处理方法制备成生物医学材料,用于骨的修复和组织工程等方面。
因此,通过对含钛高炉炉渣的研究和处理,可以制备出具有重要应用价值的二氧化钛晶须。
这种方法不仅可实现工业废弃物的有效利用,而且为二氧化钛晶须在催化、光催化和生物医学等领域的应用提供了新的研究和发展方向。
专题含钛高炉渣的利用(西安建筑科技大学冶金工程学院,西安710055)摘要:本文介绍了我国含钛高炉渣做了一个总体的介绍,并且从非提取钛与提取钛两个方面介绍了目前的研究对含钛高炉渣的利用方法,最后对含钛高炉渣的前景做了分析。
关键词:含钛高炉渣,成分,利用1.含钛高炉渣的概述含钛高炉渣是冶炼钒钛磁铁矿产生的高炉渣。
含钛高炉渣一般由CaO、MgO、Si02、A1203和Ti02等组成,根据渣中TiO2:含量由低到高可以分为:低钛含钛高炉渣(Ti02<10%)、中钛含钛高炉渣(Ti0210%-15%)和高钛含钛高炉渣(渣中TiO2达24%左右)。
含钛高炉渣经过富集形成一种含TiO2:较高的富钛料,TiO2含量一般大于90%。
这种富钛料便于分离或提取金属钛。
国外高炉冶炼使用的钛铁矿石含钛量较低,一般含Ti02不超过3%~4%,其高炉渣中所含的TiO2一般都低于10%。
因此,不需要特殊的加工处理,完全可按普通高炉渣加以利用。
我国铁矿石资源多为伴生矿,尤其在攀枝花和承德等地冶炼钒钛矿时产生的钒钛矿高炉渣,每年排出几百万吨,其中有部分含钛5%以下的矿渣用做水泥掺合料,还有一些生产矿渣碎石以及膨胀矿渣珠。
我国含钛高炉渣主要化学成分:2.高钛高炉渣非提取钛方面的利用2.1 用作建筑材料普通的炉渣由于TiO2含量低,可以直接用于生产水泥,而高炉渣中TiO2含量高,使它在这方面的应用变得困难。
有研究表明,活化的高钛高炉渣可用于生产钛矿渣硅酸盐水泥。
含钛高炉渣在建筑方面的另一个重要应用是作为普通混凝土的骨料。
含钛高炉渣分为重矿渣和水淬渣,重矿渣化学成分稳定,破碎后可用作普通混凝土的骨料,其性能满足使用要求。
水淬渣的物理性能和力学性能接近天然砂,且比天然砂的强度高、棱角完整,可代替天然砂配制水泥砂浆用于建筑工程,将活化后的含钛高炉渣也可用作水泥掺和料。
2.2 用含钛高炉渣制备光催化材料。
有资料显示,冶炼过程能够使钛资源进行一次富集,从而使一开始品位较低的钛资源得到了很好的富集。
含钛高炉渣资源化综合利用研究本文在全面总结回顾攀钢含钛高炉渣综合利用现状的基础上,提出含钛高炉渣资源化利用的有效途径,以期达到全面和高附加值利用含钛高炉渣的目的。
具体工艺路线是:首先采用简单、易操作的盐酸酸浸法处理含钛高炉渣,使含钛高炉渣中的钛元素富集到酸浸渣中,然后研究酸浸渣的光催化性能和吸附性能,从而获得具有光催化性的高效吸附材料。
本文具体开展了以下研究工作:首先,采用盐酸酸浸法制备出钛含量高的酸浸渣,研究不同工艺条件对酸浸渣中钛含量的影响,确定最佳的工艺条件。
结果表明:原料粒度为120-180μm;酸浸反应温度为95℃;酸渣比为1.5:1(mL:g);盐酸浓度为8mol·L-1;反应时间为4h;搅拌速度为1400r·min-1,可获得TiO2含量超过45%的酸浸渣。
酸浸反应动力学符合粒径不变的未反应收缩核模型,且浸出过程受内扩散控制。
另外,根据X射线衍射(XRD)、扫描电镜(SEM)、比表面积(BET)分析得出含钛高炉渣各物相的浸出速度由快到慢依次为:镁铝尖晶石、透辉石、钙钛矿,酸浸渣的比表面积较大,具有较好的吸附性能。
其次,以酸浸渣作为光催化材料降解甲基橙溶液,研究不同酸浸渣煅烧温度、酸浸渣投加量、光照时间、溶液初始浓度、溶液pH和添加强氧化剂H2O2等方面因素对光催化降解甲基橙的影响。
结果表明:酸浸渣煅烧温度为400℃;酸浸渣投加量为10mg;光照时间为1h;溶液初始浓度为10mg·L-1;pH为3,光催化效果最佳;添加强氧化剂H2O2效果非常明显,加入0.04mLH2O2,光催化效率就能达到95%以上。
酸浸渣光催化还原甲基橙遵循L-H动力学规律。
最后,以不同酸浸工艺获得的酸浸渣作为吸附材料,研究对甲醛吸附效果的影响,根据单因素分析法,吸附甲醛性能最佳的酸浸渣的制备工艺为:炉渣粒度为120-180μm;加热温度为95℃;酸渣比为1.5:1(mL:g);盐酸浓度为8mo1·L-1;反应时间为6h;搅拌速度为1400r·min-1,煅烧温度为600℃。
2019年·6·矿产综合利用Multipurpose Utilization of Mineral Resources高钛高炉渣综合利用现状及展望高洋,贵永亮,宋春燕,胡宾生(华北理工大学 冶金与能源学院,河北 唐山 063000)摘要:我国存在极为丰富的钒钛磁铁矿资源,主要集中在攀西地区和河北承德地区。
而高钛渣正是钒钛磁铁矿经过冶炼以后产生的废弃物,随着高炉渣的逐渐增多,环境的问题也越来越严重。
本文简介了几种从高钛渣中提取钛资源技术,高炉渣水淬之后制备混凝土材料、矿棉、矿渣砖等建筑材料。
阐述了高钛高炉渣综合利用的经济效益和环保效益,最后展望了未来高钛高炉渣开发利用的方向。
关键词:钒钛磁铁矿;高钛高炉渣;提钛;综合利用doi:10.3969/j.issn.1000-6532.2019.01.002中图分类号:TD989;X753 文献标志码:A 文章编号:1000-6532(2019)01-0006-05收稿日期:2017-07-08;改回日期:2018-08-12基金项目:国家自然科学基金资助项目(51404087);河北省留学回国人员科技活动项目(CL 201616)作者简介:高洋(1993-),男,硕士,主要从事高炉渣制作微晶玻璃工作。
通讯作者:贵永亮(1979-),男,教授。
Email :gyl@截止到2012年底,攀西地区钒钛磁铁矿已经探明储量超过100亿t ,其中铁矿石储备约达到60多亿t ,大约占国内铁矿总储量的10%;其中TiO 2的存储总量达13×105万t ,占国内已探明储量的90%以上。
随着矿产资源不断地开发利用,目前该地区已累积堆存6000多万t 高炉渣,并且每年还以360万t 的速度递增[1]。
大量的炉渣堆积如山,不仅对环境造成了污染,而且对钛资源造成了严重地浪费。
因此研究含钛高炉渣的回收利用问题,对于企业可持续发展的延续,以及政府倡导“资源节约型,环境友好型”的理念,具有相当重要的经济意义和社会效益。
专题与评论攀钢含钛高炉渣中钛组分的提取及综合利用进展李俊翰邱克辉龚银春(成都理工大学材料科学技术研究所,四川成都,610059)摘 要自20世纪70年代以来,攀钢炼铁产生了大量的含钛高炉渣,其T iO2含量达20%~29%,目前仍以每年300万吨的速度增加,是我国特有的二次钛资源。
长期以来,许多学者和工程技术人员对其中钛的提取及其综合利用进行了大量的探索研究,虽然取得了一些进展,但或由于技术困难、经济效益差,或造成二次污染等原因难以实现工业化利用。
这些宝贵资源不仅未得到利用,而且由于大量堆积还严重污染环境。
因此,研究含钛高炉渣的综合利用不仅具有极大的经济效益,而且对于循环经济、节约型社会、环境保护和可持续发展具有重大的社会效益。
本文总结分析了近年来攀钢含钛高炉渣综合利用研究方面取得的一些进展和存在的主要问题,提出了今后研究的主要方向,不断推动实现攀钢含钛高炉渣的真正利用。
关键词:资源 含钛高炉渣 综合利用1 引言我国攀西地区蕴藏着丰富的钒钛磁铁矿,其中的钛主要与铁密切共生而以钛铁矿的形式存在。
经选矿后,钒钛磁铁矿中约50%的钛随铁精矿进入高炉炼铁后,钛基本上进入高炉渣中形成含钛高炉渣。
自20世纪70年代以来,攀钢含钛高炉渣已达数千万吨,目前每年还在以300万吨的速度增加。
由于利用问题未得到解决,处置方式是将其堆置于专门的渣场中。
但大量堆积遇到场地和环境污染的问题,不得以将其用来铺路或当做建筑材料的掺合料使用,但仍未将其中宝贵的钛资源利用起来。
含钛高炉渣综合利用的前提,必须是首先将其中经济价值高的钛等重要成分提取利用基础上的综合利用。
近年来,许多科技工作者在这方面进行了大量的探索研究工作。
2 攀钢含钛高炉渣的来源和组成攀西钒钛磁铁矿经过选矿后成为炼铁原料钒钛磁铁精矿。
在高炉炼铁的生产中,向其中加入燃料(焦粉或无烟煤)和熔剂(石灰石或石灰),使铁钛氧化物在弱还原或近中性 氧化性气氛中,经过高温焙烧造块,形成高炉炼铁所必须的熟料! 钒钛烧结矿。
2008年东区储备项目—高钛型高炉渣钛资源回收及综合利用新技术目录一、项目背景 (2)二、项目可行性研究 (6)三、经济效益核算 (10)四、环境保护 (13)五、结论 (14)一、项目背景攀枝花是世界著名的钒钛之都,其钛储量占国内已探明的储量的90.54%,世界已探明的储量的35.17%,潜在经济价值达8万亿美元。
但是,由于现有钢铁生产工艺的因素,只能利用钒钛磁铁矿中钛含量的20%,铁精矿中的二氧化钛经高炉冶炼,基本进入高炉渣中,最后随渣一起弃为废物。
攀钢高炉渣中的二氧化钛含量达22~23%,以攀钢年产400万吨铁计,每年产出的高炉渣320万吨,其中约有90万吨的TiO2,按目前市场价算直接经济损失达50多亿元,攀钢至今已累计排放5000多万吨含钛高炉渣,除其中一小部分用于作建筑材料外,其余部分都堆积在两个渣场内,目前钛资源的综合利用率还不到15%,应该说,攀钢钛资源主要在高炉渣中,潜在经济价值就这么白白的流失掉了,大量的含钛高炉渣堆积成山,既浪费了资源又污染了环境。
因此,合理有效地利用攀钢含钛高炉渣,将具有重大的经济价值和社会效益。
国外高炉冶炼使用的钛铁矿石,含钛量均较低,一般含TiO2量不超过3%~4%,其高炉渣中所含的TiO2量,一般都低于10%,因此,国外含钛高炉渣类似于普通高炉渣,在使用上没有多大的困难,不需要特殊的加工和处理,完全按普通的高炉渣加以利用。
国外没有类似攀钢含二氧化钛如此高的高炉渣,仅苏联卡契卡纳尔的高炉渣含TiO2达17%,但其对从高炉渣中提取二氧化钛的方法也没作过多研究。
德、美、日等国的一些专家曾对从攀钢高炉渣提钛进行过研究,结果几乎一致认为难度大,未形成有效的解决方案。
因此,从攀钢高炉渣中分离钛属世界性难题。
国家对攀枝花资源开发利用的最大期望是实现钛的提取和利用,对于提取二氧化钛国内作了大量的研究,开辟了一系列新方法。
1、用攀钢熔融状态的高炉渣加碳粉将渣中的二氧化钛(22%左右)还原碳化成碳化钛、碳氧化钛,冷却,破碎后,在氯化炉进行选择氯化,得到四氯化钛。
含钛高炉渣再资源化的一个启发性观点共3篇含钛高炉渣再资源化的一个启发性观点1含钛高炉渣作为一种常见的冶金废弃物,在传统意义上一般被视作一种废物并被抛弃或填埋,对环境造成严重污染。
然而,随着资源变得越来越稀缺,回收和再利用废弃物的概念得到了越来越多的关注。
对于含钛高炉渣这种废弃物,通过资源化处理,不仅可以减轻对环境的污染压力,还可以以更加环保和经济的方式,回收利用包括钛在内的其它有价值的金属元素。
近年来,随着社会的进一步发展和经济的蓬勃发展,含钛高炉渣在钢铁行业中的产生量也逐年增加。
据统计,我国每年产生的含钛高炉渣数量约为8000-10000万吨,由于其钛的含量不同,可分为低钛高炉渣、中钛高炉渣和高钛高炉渣三种,其中低钛高炉渣的钛含量在2%以下,中钛高炉渣的钛含量在2%-5%之间,而高钛高炉渣的钛含量更高,可以达到5%-20%不等。
目前,对含钛高炉渣的处理大多采用填埋、堆放等传统方式,这种处理方式既浪费了重要的冶金资源,也增加了环境污染的风险,因此,加强对含钛高炉渣的资源化利用已经成为了当下的一个重要课题。
含钛高炉渣的资源化利用技术主要包括以下几种:1.磨粉处理技术:将含钛高炉渣进行磨粉后再进行球磨,利用氧化还原反应还原出一部分钛、铁等金属元素,同时脱除其它杂质,得到高品位含钛铁粉或含钛钢材;2.热法浸出技术:采用熔融盐浸出、氯化浸出、硫酸浸出等方法,可以将含钛高炉渣中所含的钛、铝等金属元素高效地分离出来,得到高纯度的钛酸盐和氧化铝等产品;3.湿法萃取技术:采用盐酸萃取、氟化物萃取、碳酸钠浸出等方法,可以高效地从含钛高炉渣中提取出钛、铁、锆、锂等宝贵金属元素,以生产粉末冶金材料、天然石墨电极等产品。
通过以上资源化利用技术,可以将含钛高炉渣转化为有用、有价值的产品,最大限度地实现资源的回收和利用,对于改善环境和推动经济发展都具有非常积极的意义。
此外,对于含钛高炉渣的资源化利用,政府和企业在技术研发、资金投入等方面也应加大支持力度,创造良好的政策和环境条件,引导和推动钢铁企业加强对废弃物的回收利用,推动经济的绿色可持续发展含钛高炉渣是钢铁企业废弃物中重要的资源,实现其资源化利用具有重要的经济和环境意义。
含钛高炉渣综合利用的研究进展景建发;郭宇峰;郑富强;谢小林;杨凌志;陈凤【摘要】我国钒钛磁铁矿经高炉法冶炼后钛资源基本都富集在渣相中,结构复杂,无法进一步回收利用,造成钛资源无法有效利用和环境污染等问题.归纳了国内外含钛高炉渣综合利用方面的研究成果,从整体利用和提钛2方面分别讨论了目前已开发的利用方法所存在的问题.整体利用含钛高炉渣(如制作建筑材料、特种功能材料等)法虽然能解决堆积产生的环境问题,但经济附加值低,且大量的钛资源被浪费,对钛资源的利用率低.在含钛高炉渣提钛利用方法中,直接酸解法或者碱法处理制备的产品品质低,经济性差,还会带来二次污染;含钛高炉渣制备含钛合金的方法成本高、产品应用范围窄;选择性富集分选法提钛时含钛矿物的转变不彻底,并且能耗高、添加剂消耗量大,钛的回收率不高;高温碳化—低温氯化工艺中高温碳化过程可以利用液态炉渣的物理热,大幅降低了碳化工序的能耗,低温氯化过程可在400~550 ℃实现TiC的选择性氯化,避免了钙镁等杂质的影响,且氯化产物杂质含量低,钛回收率高,产品价值高、市场大.在此基础上,指出高温碳化—低温氯化处理含钛高炉渣具备工业化应用前景,值得进一步开展研究.%The titanium resources of vanadium titanomagnetite concentrate are enriched in the Ti-bearing blast furnace slag after the blast furnace smelting in China.The Ti-bearing blast furnace slag has complex compositions so that it can′t be comprehensive utilized.The Ti-bearing blast furnace slag not only brings a huge environment pollution but also lead to the waste of titanium resource.The development of study on comprehensive utilization of Ti-bearing blast furnace slag were summa-rized,emphases the problems existing on the direct-utilization methods and extraction of titanium from Ti-bearing blastfurnace slag.Directly utilize the slag(such as make building material and function material) have a disappoint results of titanium utili-zation efficiency and has little beneficiation value,although it can solve the environmental problems caused by the accumula-tion.The methods of extracting titanium,via direct acid preparation or alkalinetreatment,product quality and economical effi-ciency is low,can cause secondary pollution;blast furnace slag containing titanium produce titanium alloy cost is high,the product application range is narrow;titanium minerals shift not thoroughly by selective enrichment and separation method to ex-tractive titanium,and high energy consumption,large consumption of additives,titanium recovery rate is not high;High temper-ature carbonization and low temperature chlorination process,the high temperature carbonization process can make use of physi-cal heat of liquid slag,greatly reduce the carbonization process of energy consumption,low temperature chlorination process can be realized in 400 ~ 550 ℃ TiC selective chlorination,avoid the influence of impurities such as calcium,magnesium,and chloride products of low content of impurities,titanium recovery rate is high,the product value is high.On this basis,points out that the high temperature carbonization and low temperature chlorination method has industrialization prospect,deserves further research.【期刊名称】《金属矿山》【年(卷),期】2018(000)004【总页数】7页(P185-191)【关键词】钒钛磁铁矿;含钛高炉渣;综合利用;提钛【作者】景建发;郭宇峰;郑富强;谢小林;杨凌志;陈凤【作者单位】中南大学资源加工与生物工程学院,湖南长沙410083;中南大学资源加工与生物工程学院,湖南长沙410083;中南大学资源加工与生物工程学院,湖南长沙410083;中南大学资源加工与生物工程学院,湖南长沙410083;中南大学资源加工与生物工程学院,湖南长沙410083;中南大学资源加工与生物工程学院,湖南长沙410083【正文语种】中文【中图分类】TD925世界钒钛磁铁矿资源储量丰富,现已探明储量超过400亿t,保有储量300亿t[1],而我国的钒钛磁铁矿资源储量约为98.3亿t,占世界钒钛资源储量的33%[2]。