蒙特卡罗算法实验报告
- 格式:doc
- 大小:140.50 KB
- 文档页数:8
高性能计算实验报告引言高性能计算是计算机科学领域的一个重要研究领域,在许多科学和工程领域有着广泛的应用。
本实验旨在通过使用并行计算技术,在一个实际问题上展示高性能计算的能力和优势。
实验背景在本实验中,我们选择了一个经典的问题:计算圆周率(π)的近似值。
计算圆周率是计算机科学中的一个重要问题,也是高性能计算的一个经典案例。
我们将使用蒙特卡罗方法来近似计算圆周率。
实验步骤1.生成随机点:首先,我们需要生成大量的随机点。
我们选择使用伪随机数生成器来生成这些点。
在本实验中,我们将使用Python的random库来生成均匀分布的随机点。
2.判断点的位置:对于生成的每个随机点,我们需要判断它是否在一个圆内。
为了做到这一点,我们可以计算点到圆心的距离,并检查是否小于等于圆的半径。
如果是,则该点在圆内。
3.统计在圆内的点数:我们需要记录下在圆内的点的数量,以便进行进一步的计算。
在本实验中,我们使用一个计数器来实现这一功能。
4.计算圆周率的近似值:通过统计在圆内的点的数量和总生成的点数,我们可以计算圆周率的近似值。
根据蒙特卡罗方法的原理,圆的面积与正方形的面积的比例等于在圆内的点的数量与总生成的点数的比例。
根据圆的面积公式,我们可以得到一个近似的圆周率值。
5.重复实验:为了提高准确性,我们需要进行多次实验。
每次实验,我们都会使用不同的随机种子来生成随机点。
通过取多次实验的平均值,我们可以得到更接近真实圆周率的近似值。
实验结果与分析我们进行了10次实验,每次实验生成了1000000个随机点。
下表显示了每次实验的圆周率近似值:实验次数圆周率近似值1 3.1418742 3.1424813 3.1416224 3.1417865 3.1420406 3.1420127 3.1413368 3.1418329 3.14184410 3.141643通过计算上述结果的平均值,我们得到圆周率的近似值为3.141772。
结论本实验通过使用蒙特卡罗方法来计算圆周率的近似值,展示了高性能计算的能力。
实验八蒙特卡罗方法应用1.实验目的(1)理解随机数的概念及其重要特性。
(2)了解蒙特卡罗(Monte Carlo)方法的广泛应用。
(3)设计Raptor程序,使用蒙特卡罗方法求解问题。
2.实验准备(1)认真阅读第5.7节的内容,了解随机数和蒙特卡罗方法的基本概念。
(2)熟悉可视化计算工具Raptor的使用。
3.热身实验3.1基于蒙特卡罗方法对圆周率π的求解基于蒙特卡罗方法计算圆周率π(图8.1)。
Raptor求解程序如图8.2所示:图8.1蒙特卡罗方法计算π图8.2蒙特卡罗方法求π的程序示例问题1:Raptor程序中的随机数是如何生成的?问题2:在最后求圆周率的值的时候为什么要乘以4?根据上述的Raptor程序描述蒙特卡罗方法求圆周率的具体过程。
3.2基于蒙特卡罗方法对椭圆面积的求解已知一个椭圆的长轴长为12,短轴长为6(如图8.3),设计Raptor程序求这个椭圆的面积。
Raptor程序如图8.4所示。
图8.3长轴长为12,短轴长为6的椭圆图8.4 蒙特卡罗方法求椭圆的面积的程序示例问题1:Raptor程序中的Random函数产生随机数的范围是多少?如何使用Random函数生成[-5,5)范围内的随机数?问题2:最后求椭圆的面积的依据是什么?对变量A ,Area ,num ,n 之间具有的关系进行解释说明。
问题3:随机点的个数是否会影响计算结果的精确性?4.进阶实验4.1基于蒙特卡罗方法对简单曲线下面积的求解计算0≤x≤π/2区间内曲线y = sinx 下的近似面积(该区间内曲线与x 轴、y 轴所围成的区域的面积)。
4.2基于蒙特卡罗方法对球体在第一卦限体积的求解计算球体x 2 + y 2 + z 2 ≤ 2(图8.5)在第一卦限(x > 0,y > 0 ,z > 0)的体积。
图8.5 球体x 2 + y 2 + z 2 = 25.综合实验5.1基于蒙特卡罗方法对曲线下面积的求解 用蒙特卡罗方法求曲线()2f x x = (12)x ≤≤下的面积。
本科实验报告实验名称:《概率与统计》随机模拟实验随机模拟实验实验一设随机变量X 的分布律为-i P{X=i}=2,i=1,2,3......试产生该分部的随机数1000个,并作出频率直方图。
一、实验原理采用直接抽样法:定理:设U 是服从[0,1]上的均匀分布的随机变量,则随机变量-1()Y F U =与X 有相同的分布函数-1()Y F U =(为F(x)的逆函数),即-1()Y F U =的分部函数为()F x .二、题目分析易得题中X 的分布函数为1()1- ,1,0,1,2,3, (2i)F x i x i i =≤≤+=若用ceil 表示对小数向正无穷方向取整,则F(x)的反函数为产生服从[0,1]上的均匀分布的随机变量a ,则m=F -1(a)则为题中需要产生的随 机数。
三、MATLAB 实现f=[]; i=1;while i<=1000a=unifrnd(0,1); %产生随机数a ,服从【0,1】上的均匀分布 m=log(1-a)/log(1/2);b=ceil(m); %对m 向正无穷取整 f=[f,b]; i=i+1; enddisplay(f);[n,xout]=hist(f); bar(xout,n/1000,1)产生的随机数(取1000个中的20个)如下:-1ln(1-)()1ln()2a F a ceil ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦频率分布直方图实验二设随机变量X 的密度函数为24,0,()0,0x xe x f x x -⎧>=⎨≤⎩试产生该分布的随机数1000个,并作出频率直方图 一、实验原理取舍抽样方法,当分布函数的逆函数难以求出时,可采用此方法。
取舍抽样算法的流程为:(1) 选取一个参考分布,其选取原则,一是该分布的随机样本容易产生;二是存在常数C ,使得()()f x Cg x ≤。
(2) 产生参考分布()g x 的随机样本0x ; (3) 独立产生[0,1]上的均匀分布随机数0u ;(4) 若000()()u Cg x f x ≤,则保留x 0,作为所需的随机样本;否则舍弃。
本科生实验报告实验课程蒙特卡罗模拟学院名称核技术与自动化工程学院专业名称核技术及应用学生姓名王明学生学号**********指导教师邮箱****************实验成绩二〇一七年九月二〇一八年一月实验一、选择一种编程语言模拟出π的值一、实验目的1、理解并掌握蒙特卡罗模拟的基本原理;2、运用蒙特卡洛思想解决实际问题;3、分析总结蒙特卡洛解决问题的优缺点。
二、实验原理用蒙特卡洛思想计算π的值分为如下几部:第一步构建几何原理:构建单位圆外切正方形的几何图形。
单位圆的面积为S0=π,正方形的面积S1=4;第二步产生随机数进行打把:这里用MATLAB产生均匀随机数。
分别生产均匀随机数(x,y)二维坐标。
X,y的范围为-1到1.总共生成N个坐标(x,y).统计随机生成的坐标(x,y)在单位圆内的个数M。
第三步打把结构处理:根据S0/S1=M/N计算出π的值。
因此π=4*M/N。
第四步改变N的值分析π的收敛性:总数1000开始打把,依次增长10倍到1百万个计数。
三、实验内容1、用matlab编写的实验代码,总计数率为1000。
zfx_x=[1,-1,-1,1,1];zfx_y=[1,1,-1,-1,1];plot(zfx_x,zfx_y)axis([-3 3 -3 3]);hold on;r=1; theta=0:pi/100:2*pi;x=r*cos(theta); y=r*sin(theta);rho=r*sin(theta);figure(1)plot(x,y,'-')N=1000;mcnp_x=zeros(1,N);mcnp_y=zeros(1,N);M=0;for i=1:Nx=2*(rand(1,1)-0.5);y=2*(rand(1,1)-0.5);if((x^2+y^2)<1)M=M+1;mcnp_x(i)=x;mcnp_y(i)=y;endendplot(mcnp_x,mcnp_y,'.')PI1=4*M/N;2、用matlab绘制的图形四、实验结果1.当模拟总计数为1000时,某次计算结果: PI=3.128。
实验报告信息学院(院、系) 电子信息工程 专业 班 通信原理教程 课蒙特卡罗方法论仿真和2PSK 调制一、编写2PSK 调制程序,任意给定一组二进制数,计算经过这种调制方式的输出信号。
1、实验目的(1)熟悉2PSK 调制原理。
(2)学会运用Matlab 编写2PSK 调制程序。
(3)会画出原信号和调制信号的波形图。
(4)掌握数字通信的2PSK 的调制方式。
2、实验原理分析二进制相移键控,简记为2PSK 或BPSK 。
2PSK 信号码元的“0”和“1”分别用两个不同的初始相位0和π 来表示, 而其振幅和频率保持不变。
故2PSK 信号表示式可表示为:s(t)=Acos(w 0t+θ)式中,当发送“0”时,θ=0;当发送“1”时,θ=π。
或者写成:这种以载波的不同相位直接去表示相应二进制数字信号的调制方式,称为绝对相移方式。
2PSK 信号的典型波形如图1所示。
图1 2PSK信号波形图2PSK信号的的产生方法主要有两种:(1)相称法:用二进制基带不归零矩形脉冲信号与载波相乘,得到相位反相的两种码元,如图2(a)所示。
(2)选择法:用此基带信号控制一个开关电路,以选择输入信号,开关电路的输入信号是相位相差π的同频载波,如图2(b)所示。
这两种方法的复杂程度差不多,并且都可以用数字信号处理器实现。
解调部分只能用相干解调,不可以用包络检波法等非相干解调的方法,因为其频谱和抑制载波双边带的频谱一样,因此不能采用包络检波,而不可采用相干解调。
图3 2PSK解调原理图对原理图分析:从图3可以看出调制信号经过本地载波相乘得到直流分量,若发送的事“1”,则有正直流分量,若发送的事“-1”,则有负直流分量的存在,经过低通滤波器后,就只剩下这些直流分量,然后进行抽样判决即可,因为其上下直流分量的幅度一样,我们最佳的判决电平时0V是最好的,这样使得我们判决出来的信号时误码率最低的。
3、程序设计思想和流程图根据上述的2PSK信号原理,输入基带信号高低电位各表示不同的相位。
四子棋详细实验报告实验算法:局部UCT算法对朴素的蒙特卡洛算法加速:更优化的算法,UCT算法。
以下是算法:给定一棵博弈树。
MCTNode nodes[MAXTREE];//蒙特卡洛树1) 从博弈树的根点开始向下搜索,执行2)。
2)遇到节点a(bestIndex)后,若a存在从未评估过的子节点,执行3),否则执行4)。
3) 通过蒙特卡洛方法imitate(int bestIndex) //模拟对局评估该子节点,得到收益值后更新该子节点至根节点路径上所有节点的平均收益值nodes[bestIndex].winRound++;//相应层的胜盘数加一nodes[bestIndex].totRound++;//总盘数加一,执行1)。
4)计算每个子节点的UCB值,将UCB值最高的子节点作为节点a,执行2)。
UCB=(double)nodes[index].winRound/((double)nodes[index].totRound +epsilon)+C*((double)log((double)nodes[fIndex].totRound+1)/((double )nodes[index].totRound+epsilon))+rand()*epsilon;5)算法可随时终止,达到给定时间后终止。
{int Best()//选择最佳落子点}根节点下平均收益值最高的子节点作为算法的输出。
(对于这个算法,有几点需要解释:1)博弈树的根节点指的是当前的局面。
2)评估过的节点及其平均收益值将在程序运行过程中保存及更新。
3)收益值设定合适的值。
做法是将其设为1(胜)或0(负)。
)详细说明蒙特卡洛算法:利用一维中的掷点法完成对围棋盘面的评估。
具体来讲,当我们给定某一个棋盘局面时,程序在当前局面的所有可下点中随机选择一个点摆上棋子,并不断重复这个随机选择可下点(掷点)的过程,直到双方都没有可下点(即对弈结束),再把这个最终状态的胜负结果反馈回去,作为评估当前局面的依据。
实验三:检测性能的蒙特卡罗仿真背景检测性能是通信系统中非常重要的参数之一。
在通信系统中,数据传输的正确性和可靠性都需要检测性能的支持。
在实际应用过程中,我们需要对检测算法进行仿真,以了解该算法在实际场景下的性能表现。
本篇文档将介绍一种基于蒙特卡罗仿真的检测性能测试方法。
蒙特卡罗仿真蒙特卡罗仿真是一种基于统计学方法的仿真方法。
它通过一系列随机抽样得到一组样本,然后通过这组样本进行数值运算、模拟计算等操作,得出需要研究的系统的性能指标。
蒙特卡罗仿真是一种模拟实验方法,用于对复杂系统的性能进行评估。
检测性能的蒙特卡罗仿真通信系统中常见的检测算法有最大似然检测、线性解调检测、非线性检测等。
在进行检测算法性能测试时,我们需要对输入信号、噪声等参数进行随机取值,确保测试结果具有代表性。
考虑到实际数据往往很大,这样的测试不可能在实验室中进行。
因此,我们可以利用蒙特卡罗仿真来进行这样的测试。
具体来说,我们需要进行以下步骤:1.定义检测算法模型,包括输入信号、噪声、检测算法等。
2.通过蒙特卡罗方法,产生一组随机输入信号和噪声。
3.以这组输入信号和噪声为输入,进行检测算法的运算,得到输出结果。
4.对生成的输出结果进行分析和评估,得出系统的性能指标。
示例下面是一个简单的最大似然检测算法模型:import numpy as npdef maximum_likelihood_detection(signal, noise):SNR =10** (SNR_dB/10) # 把信噪比从分贝转化为线性值N = len(signal)noise_var =1/SNR # 计算噪声方差noise_sample = np.sqrt(noise_var)*np.random.randn(N) # 产生噪声样本received_signal = signal + noise_sample # 产生接收信号detection_result = np.sum(received_signal)/N # 最大似然检测结果return detection_result我们可以利用该函数进行最大似然检测算法的性能测试。
Monte Carlo方法计算Pi一、实验要求以OpenMP实现Monte Carlo计算Pi的并行程序注意:制导循环编译共享变量的处理编译运行比较修改测试点数,提高计算精度。
利用OpenMP实现积分法,比较。
二、实验原理通过蒙特卡罗算法计算圆周率的主导思想是:统计学(概率)1.一个正方形有一个内切圆,向这个正方形内随机的画点,则点落在圆内的概论为P=圆面积/正方形面积。
2. 在一个平面直角坐标系下,在点(1,1)处画一个半径为R=1的圆,以这个圆画一个外接正方形,其边长为R=1(R=1时,圆面积即Pi)。
3. 随机取一点(X,Y)使得0<=X<=2R并且0<=Y<=2R,即随机点在正方形内。
4. 判断点是否在圆内,通过公式(X-R)(X-R)+(Y-R)(Y-R)<R*R计算。
5. 设所有点的个数为N,落在圆内的点的个数为M,则P=M/N=4*R*R/Pi*R*R=4/PiPi=4*N/M▪当实验次数越多(N越大),所计算出的Pi也越准确。
▪但计算机上的随机数毕竟是伪随机数,当取值超过一定值,也会出现不随机现象,因为伪随机数是周期函数。
如果想提高精度,最好能用真正的随机数生成器(需要更深的知识)。
三、实验步骤1.利用蒙特卡洛方法实现求PI值(利用OpenMP)思路:根据所给的串行程序,只需根据OpenMp的用法将其转换。
源码:#include"stdafx.h"#include<stdio.h>#include<time.h>#include<omp.h>#include<iostream>using namespace std;int _tmain(int argc, _TCHAR* argv[]){long max=1000000;long i,count=0;double x,y,bulk,starttime,endtime;time_t t;cout<<"请输入测试点的个数:"<<endl;cin>>max;starttime=clock();// 产生以当前时间开始的随机种子srand((unsigned) time(&t));#pragma omp parallel for num_threads(8) default(shared) private(x,y) reduction(+:count)for(i=0;i<max;i++){x=rand();x=x/32767;y=rand();y=y/32767;if((x*x+y*y)<=1)count++;}bulk=4*(double(count)/max);endtime= clock();printf("所得PI的值如下:%f \n", bulk);printf("计算PI的过程共用时间: %f 秒\n",(endtime-starttime)/ CLOCKS_PER_SEC);return 0;}2.利用积分法实现求PI(利用OpenMP)思路:与上同样道理。
用蒙特卡罗方法计算π值实验报告蒙特卡罗方法是一种通过随机过程来解决数学、物理和工程问题的数值方法。
在本实验中,我们将利用蒙特卡罗方法计算圆周率π的的值。
以下是实验报告。
1.实验目的本实验的主要目的是利用蒙特卡罗方法计算圆周率π的值,并分析蒙特卡罗方法的可靠性和准确性。
2.实验原理蒙特卡罗方法的基本原理是通过随机采样来估计未知参数的值。
对于圆周率π的计算,我们可以利用正方形和内切圆的关系来实现。
具体步骤如下:(1)在一个给定的单位正方形中,以原点为中心,半径为1的圆。
(2)在正方形中随机生成大量的点,然后计算这些点在圆内的个数。
(3)根据圆的面积与正方形的面积的关系,可以利用这个比例来估计圆周率π的值。
3.实验过程(1)创建一个给定边长的正方形,圆的半径为正方形边长的一半。
(2)随机生成大量坐标点,并计算这些点距离原点的距离。
(3)统计在圆内的点的个数。
(4)根据统计结果计算圆周率π的估计值。
4.实验结果我们进行了多次实验,每次实验生成了100万个点。
然后我们计算每次实验中在圆内的点的个数,并利用这些数据计算圆周率π的估计值。
实验结果如下:实验次数点个数估计π值通过这些实验数据,我们可以计算出平均圆周率π的估计值为3.14085.实验分析通过对多次实验数据的统计分析,我们可以看到蒙特卡罗方法在估计圆周率π的值上具有较高的准确性和可靠性。
实验结果的稳定性较好,不同实验的结果都接近真实值π,而且相对误差较小。
然而,虽然得到的结果接近真实值,但是实验结果的准确性仍然受到概率分布的随机性的限制。
如果我们增加实验次数,可以提高结果的准确性,但是计算的时间也会相应增加。
此外,在计算π的过程中,我们使用了随机生成的数据,因此需要进行大量的计算。
若在实际应用中需要计算更复杂的问题,计算资源和时间消耗将会更大。
6.实验总结本实验使用蒙特卡罗方法计算了圆周率π的估计值。
通过多次实验的数据统计和分析,我们可以得出蒙特卡罗方法在计算π值上的准确性和可靠性较高。
陕西科技大学实验报告课 程: 数理金融 实验日期: 2015 年 6 月 11 日 班 级: 数学122交报告日期: 2015 年 6 月 12 日姓 名: 报告退发: (订正、重做) 学 号: 201212010119教 师: 刘利明实验名称:标准欧式看涨期权定价的蒙特卡洛模拟一、实验预习:1.标准欧式看涨期权的定价模型。
2.标的资产到期日价格的运动轨迹或分布.3.蒙特卡洛模拟的过程 二、实验的目的和要求:通过对标准的欧式期权进行定价模拟,掌握标的资产到期日价格的分布,会熟练运用蒙特卡洛模拟进行期权的定价模拟,并学会分析模拟次数、模拟精度之间的关系,最后和标准的欧式期权的解析解比较给出相对误差。
三、实验过程:(实验步骤、原理和实验数据记录等)参数:起初(或0时刻)S 取学号后3位除以10取整,然后加上学号最后一位(例如:201212010119,S=[119/10]+9=20);X 取S 加3;r 取0.03;T 取0.25; σ取0.5。
(模拟100次取最后结果平均值) 注意:实验为标准的欧式看涨期权。
实验步骤、原理蒙特卡罗模拟进行期权定价的核心在于生成股票价格的随机过程。
模型假定在期权到期的T 时刻。
标的股票价格的随机方程为: 其中,随机变量ε服从标准正态分布,即服从N(0,1),随机变量YT 服从正态分布,其均值为()T u u T 25.0σ-=,方差为T T σσ=,u 为股票的收益率,σ为股票的波动率。
期权的收益依赖于ST 在风险中性世界里的期望值,因此对于风险中性定价,股票的收益率u 可以用无风险利率r 减去连续红利收益率q 代替,也就是(r-q )。
成绩()()T T T T u S Y S S εσ+==ex p ex p陕西科技大学理学院实验报告风险中性定价的随机方程为:()[]T T q r S S T εσσ+--=25.0ex p 其中ε服从标准正态分布。
实验数据记录 表1 期权基本信息股票现价期权执行价格无风险连续复利有效期年波动率(标准差度量)股票每年红利期权类型代码期权类型20.00 23.003.00%0.25 50.00% 3.00%1看涨期权表2 蒙特卡洛参数μτσSqrt(τ)Exp(-rT)Nsim-0.03130.25000.9925100表3 期权价格期权价格0.78表4 蒙特卡洛模拟表模拟次数均匀分布随机数标准正态随机变量值股票价格期权收益1 0.3650 -0.3451 17.7822 0.0000 2 0.4899 -0.0253 19.2623 0.0000 3 0.1557 -1.0124 15.0499 0.0000 4 0.4745 -0.0641 19.0767 0.0000 5 0.2573 -0.6518 16.4699 0.00006 0.6288 0.3285 21.0441 0.00007 0.5421 0.1057 19.9035 0.00008 0.1563 -1.0098 15.0600 0.00009 0.9385 1.5427 28.5070 5.5070 10 0.6545 0.3975 21.4100 0.0000 11 0.5061 0.0153 19.4588 0.0000 12 0.3905 -0.2781 18.0828 0.0000 13 0.1074 -1.2406 14.2155 0.0000 14 0.7840 0.7858 23.5923 0.5923 15 0.4596 -0.1013 18.8997 0.0000 16 0.75370.6861 23.01200.0120数理金融实验报告17 0.5961 0.2433 20.6001 0.000018 0.8327 0.9650 24.6736 1.673619 0.0188 -2.0801 11.5243 0.000020 0.2104 -0.8051 15.8504 0.000021 0.0740 -1.4470 13.5007 0.000022 0.1055 -1.2511 14.1783 0.000023 0.3317 -0.4352 17.3861 0.000024 0.1282 -1.1347 14.5969 0.000025 0.0002 -3.4903 8.1003 0.000026 0.5368 0.0924 19.8375 0.000027 0.6571 0.4044 21.4472 0.000028 0.5440 0.1106 19.9279 0.000029 0.8274 0.9440 24.5443 1.544330 0.0819 -1.3924 13.6860 0.000031 0.1919 -0.8708 15.5922 0.000032 0.6789 0.4647 21.7725 0.000033 0.4542 -0.1150 18.8351 0.000034 0.3570 -0.3664 17.6878 0.000035 0.1500 -1.0365 14.9596 0.000036 0.7044 0.5371 22.1703 0.000037 0.9288 1.4668 27.9715 4.971538 0.5302 0.0758 19.7555 0.000039 0.0896 -1.3430 13.8563 0.000040 0.7577 0.6990 23.0862 0.086241 0.4018 -0.2486 18.2167 0.000042 0.4619 -0.0957 18.9263 0.000043 0.4922 -0.0196 19.2897 0.000044 0.2076 -0.8147 15.8127 0.000045 0.3297 -0.4406 17.3627 0.000046 0.0954 -1.3080 13.9778 0.000047 0.5898 0.2270 20.5166 0.000048 0.1699 -0.9547 15.2689 0.000049 0.9276 1.4583 27.9118 4.9118陕西科技大学理学院实验报告50 0.0979 -1.2934 14.0289 0.000051 0.4439 -0.1412 18.7124 0.000052 0.2729 -0.6039 16.6682 0.000053 0.8725 1.1385 25.7674 2.767454 0.7507 0.6767 22.9575 0.000055 0.2729 -0.6039 16.6681 0.000056 0.6736 0.4500 21.6929 0.000057 0.2566 -0.6538 16.4617 0.000058 0.0899 -1.3414 13.8618 0.000059 0.0310 -1.8670 12.1549 0.000060 0.3227 -0.4601 17.2783 0.000061 0.7901 0.8069 23.7172 0.717262 0.2973 -0.5323 16.9693 0.000063 0.2353 -0.7216 16.1851 0.000064 0.4805 -0.0490 19.1488 0.000065 0.2546 -0.6601 16.4358 0.000066 0.3406 -0.4108 17.4926 0.000067 0.0449 -1.6961 12.6855 0.000068 0.4824 -0.0441 19.1723 0.000069 0.2060 -0.8203 15.7904 0.000070 0.8645 1.1009 25.5264 2.526471 0.5886 0.2240 20.5013 0.000072 0.7549 0.6900 23.0344 0.034473 0.9279 1.4602 27.9253 4.925374 0.3310 -0.4371 17.3780 0.000075 0.5429 0.1078 19.9144 0.000076 0.0807 -1.4004 13.6587 0.000077 0.6344 0.3435 21.1227 0.000078 0.4100 -0.2275 18.3132 0.000079 0.9604 1.7556 30.0657 7.065780 0.1146 -1.2023 14.3523 0.000081 0.9234 1.4286 27.7058 4.705882 0.6202 0.3060 20.9260 0.0000数理金融实验报告83 0.3477 -0.3915 17.5774 0.000084 0.1492 -1.0397 14.9478 0.000085 0.4800 -0.0502 19.1429 0.000086 0.2194 -0.7742 15.9736 0.000087 0.9937 2.4966 36.1850 13.185088 0.1304 -1.1244 14.6345 0.000089 0.0289 -1.8974 12.0628 0.000090 0.3454 -0.3978 17.5497 0.000091 0.5477 0.1198 19.9739 0.000092 0.9230 1.4252 27.6822 4.682293 0.5382 0.0960 19.8556 0.000094 0.4064 -0.2368 18.2706 0.000095 0.8472 1.0247 25.0445 2.044596 0.8262 0.9394 24.5159 1.515997 0.6724 0.4466 21.6746 0.000098 0.7219 0.5885 22.4570 0.000099 0.9968 2.7236 38.2975 15.2975100 0.3398 -0.4130 17.4831 0.0000由上表格可以求得模拟100次取最后结果平均值为19.312534,期权收益为0四、实验总结:(实验数据处理和实验结果讨论等)此次试验是通过对标准的欧式期权进行定价模拟,采用蒙特卡洛模拟标的资产到期日价格的分布,对期权的定价进行模拟,此次共模拟了100数、期权收益为0。