方程组、不等式组实际应用
- 格式:doc
- 大小:61.00 KB
- 文档页数:11
二元一次方程组及不等式的综合应用崔莹莹2016-6-112.(2015•广东省,第22题,7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y .答:A ,B 两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.6.(2015·四川甘孜、阿坝,第26题8分)一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?考点:一元一次不等式的应用..分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.解答:解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).点评:此题考查一元一次不等式的运用,一次函数的实际运用,找出题目蕴含的不等关系与等量关系解决问题.7.(2015·山东潍坊第19 题9分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.解答:解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得.答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.12.(2015•四川眉山,第24题9分)某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)首先用未知数设出买一支钢笔和一本笔记本所需的费用,然后根据关键语“购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元”,列方程组求出未知数的值,即可得解.(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,根据总费用不超过1100元,列出不等式解答即可.解答:解:(1)设一支钢笔需x元,一本笔记本需y元,由题意得解得:答:一支钢笔需16元,一本笔记本需10元;(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,由题意得16x+10(80﹣x)≤1100解得:x≤50答:工会最多可以购买50支钢笔.点评:此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出等量关系,列出方程组和不等式.13. (2015•四川泸州,第21题7分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵。
2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)1.列方程组或不等式解决实际问题某汽车专卖店销售A,B两种型号的新能源汽车,上周和本周的销售情况如下表:A型B型销售额时间型号上周1辆2辆70万元本周3辆1辆80万元(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?2.某网店销售甲、乙两种书包,已知甲种书包每个售价比乙种书包每个售价2倍少30元,网购2个甲种书包和3个乙种书包共花费255元(免运费).请解答下列问题:(1)该网店甲、乙两种书包每个售价各是多少元?(列方程组解答此问)(2)根据消费者需求,该网店决定用不超过8900元购进甲、乙两种书包共200个,且甲种书包的数量超过87个,已知甲种书包每个进价为50元,乙种书包每个进价为40元,该网店有哪几种进货方案;(3)在(2)条件下,若该网店推出促销活动:一次性购买同一种书包超过10个,赠送1个相同的书包,该网店这次所购进书包全部售出,共赠送了4个书包,获利1250元,直接写出该网店甲、乙两种书包各赠送几个.3.北流市某初中为了改善教师办公条件,计划采购A、B两种型号空调,已知采购2台A 型空调和1台B型空调需要费用24000元,3台A型空调比4台B型空调的费用多3000元.(1)求A型空调和B型空调每台各需多少元?(2)若学校计划采购A、B两种型号空调共30台,B型空调的台数不多于A型空调台数的2倍,两型号空调的采购总费用不超过218000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?4.养牛场的李大叔分三次购进若干头大牛和小牛,其中有一次购买大牛和小牛的价格同时打折,其余两次均按原价购买,三次购买的数量和总价如表:大牛(头)小牛(头)总价(元)第一次439900第二次269000第三次678550(1)李大叔以折扣价购买大牛和小牛是第次;(2)每头大牛和小牛的原价分别为多少元?(3)如果李大叔第四次购买大牛和小牛共10头(其中小牛至少一头),仍按之前的折扣(大牛和小牛的折扣相同),且总价不低于8100元,那么他共有哪几种购买方案?5.在新冠肺炎疫情期间,为保证孩子们的身心健康发展,各级各类学校都进行了“停课不停学”活动,某校七年级开展了网上教学,并对学生的学习情况进行了调查.经过统计,我们发现:大约有二分之一的孩子是通过电脑进行学习,约四分之一的孩子是利用手机进行学习,约六分之一的孩子是利用P AD等其他电子设备进行学习,而在受访班级中,平均每个班都有不超过4名同学没有进行线上学习;若该校七年级每个班的学生总数都超过了40人,请你分析一下,该所学校七年级每个班学生人数的范围.6.便利店老板从厂家购进A、B两种香醋,A种香醋每瓶进价为5元,B种香醋每瓶进价为6元,共购进70瓶,花了390元,且该店A种香醋售价7元,B种香醋售价9元.(1)该店购进A、B两种香醋各多少瓶?(2)将购进的70瓶香醋全部售完可获利多少元?(3)老板计划再以原来的进价购进A、B两种香醋共150瓶,且投资不超过850元,仍以原来的售价将这150瓶香醋售完,且确保获利不少于398元,请问有哪几种购货方案?7.近日来,长江中下游连降特大暴雨.沿江两岸的群众受灾很严重.“一方有难、八方支援”我校某班准备捐赠一批帐篷和食品包共360个,其中帐篷比食品包多120个.(1)求帐篷和食品包各有多少个?(2)现计划租用甲、乙两种型号的货车共8辆.一次性将这批帐篷和食品包运往受灾地区,已知每辆甲种货车最多可装帐篷40个和食品包10个,每辆乙种货车最多可装帐篷30个和食品包20个.运输部门安排甲、乙两种型号的货车时,有几种方案?请你帮助设计出来.(3)在(2)的条件下.如果甲种型号的货车每辆需付运费1000元,乙种型号的货车每辆需付运费900元.假设你是决策者,应选择哪种方案可使运费最少?最少运费是多少元?8.在六一儿童节到来之际,某校特举行书画大赛活动,准备购买甲、乙两种文具作为奖品,奖励在活动中获得优秀的同学.已知购买2个甲种文具、3个乙种文具共需花费45元;购买3个甲种文具、1个乙种文具共需花费50元.(1)问:购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共100个,投入资金不少于995元又不多于1050元,设购买甲种文具x个,则有多少种购买方案?(3)设学校投入资金w元,在(2)的条件下,哪种购买方案需要的资金最少?最少是多少元?9.随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需280万元;若购买A型公交车2辆,B型公交车1辆,共需260万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆车的年均载客量分别为60万人次和80万人次.若该公司购买A型和B型公交车的总费用不超过900万元,且确保这10辆公交车在该线路的年均载客量总和不少于670万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?10.基金会计划购买A、B两种纪念册共50册,已知B种纪念册的单价比A种的单价少10元,买3册A种纪念册与买4册B种纪念册的总费用310元.(1)求A、B两种纪念册的单价分别是多少元?(2)如果购买的A种纪念册的数量要大于B种纪念册数量的,但又不大于B种纪念册数量的,设购买A种纪念册m册.①有多少种不同的购买方案?②购买时A种纪念册每册降价a元(12≤a≤15),B种纪念册每册降价b元.若满足条件的购买方案所需的总费用一样,求总费用的最小值.参考答案1.解:(1)设每辆A型车的售价为x万元,B型车的售价为y万元,依题意,得:,解得:.答:每辆A型车的售价为18万元,B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得,解得:2≤m≤3.5,∵m为整数,∴m=2或3.∴有两种购车方案:购进A型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆.答:有两种购车方案:购进A型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆.2.解:(1)设甲种书包每个售价x元,乙种书包每个售价y元.根据题意得.解得.答:该网店甲种书包每个售价60元,乙种书包每个售价45元;(2)设购进甲种书包m个,则购进乙种书包(200﹣m)个,根据题意可得50m+40(200﹣m)≤8900.解得m≤90.∵m>87,∴87<m≤90.∵m为整数,∴m=88、89、90,200﹣m=112,111,110.∴该网店有3种进货方案:方案一、购进甲种书包88个,乙种书包112个;方案二、购进甲种书包89个,乙种书包111个;方案三、购进甲种书包90个,乙种书包110个;(3)分三种情况:①购进甲种书包88个,乙种书包112个时:设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,88×(60﹣50)﹣m×50+112×(45﹣40)﹣(4﹣m)×40=1250,解得,m=3,4﹣m=1,故甲书包赠送3个,乙书包赠送1个;②购进甲种书包89个,乙种书包111个时;设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,89×(60﹣50)﹣m×50+111×(45﹣40)﹣(4﹣m)×40=1250,解得,m=3.5,∵m是整数,故此种情况不成立;③购进甲种书包90个,乙种书包110个时;设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,90×(60﹣50)﹣m×50+110×(45﹣40)﹣(4﹣m)×40=1250,解得,m=4,4﹣m=0,故甲书包赠送4个,乙书包赠送0个.3.解:(1)设A型空调每台需x元,B型空调每台需y元,依题意,得:,解得:.答:A型空调每台需9000元,B型空调每台需6000元.(2)设购买A型空调m台,则购买B型空调(30﹣m)台,依题意,得:,解得:10≤m≤12.∵a为正整数,∴a可以取10,11,12,∴共有三种采购方案,方案1:采购A型空调10台,B型空调20台;方案2:采购A型空调11台,B型空调19台;方案3:采购A型空调12台,B型空调18台.(3)方案1所需费用为:9000×10+6000×20=210000(元);方案2所需费用为:9000×11+6000×19=213000(元);方案3所需费用为:9000×12+6000×18=216000(元).∵210000<213000<216000,∴采用方案1,采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.4.解:(1)第三次购买大牛和小牛的数量较多,但花费较少,所以李大叔以折扣价购买大牛和小牛是第三次;13230÷(9900+9000)=13230÷18900=0.7.故是打七折.故答案为:三.(2)设大牛的单价为x元,小牛单价为y元.根据题意得:,解得.故大牛的单价为1800元,小牛单价为900元.(3)设大牛买m头,小牛买(10﹣m)头.根据题意得:900m+450(10﹣m)≥8100,解得:m≥8.所以m=8或9.当m=8时,10﹣m=2;当m=9时,10﹣m=1;所以他共有两种购买方案.方案一:大牛买8头,小牛买2头;方案二:大牛买9头,小牛买1头.5.解:设该所学校七年级每个班学生人数为x,依题意,得:,解得:40<x≤48.答:该所学校七年级每个班学生人数的范围为40<x≤48.6.解:(1)设该店购进A种香醋X瓶,购进B种香醋Y瓶,根据题意得…..(1分)…………..(2分)解得.答:该店购进A种香醋30瓶,购进B种香醋40瓶;(2)(7﹣5)×30+(9﹣6)×40=60+120=180(元).答:70瓶香醋全部售完可获利180元;(3)设该店购进A种香醋a瓶,购进B种香醋(150﹣a)瓶,根据题意得,解得:50≤a≤52,因为a取正整数,所以a取50、51、52.购货方案为:(1)A种香醋购进50瓶,B种香醋购进100瓶.(2)A种香醋购进51瓶,B种香醋购进99瓶.(3)A种香醋购进52瓶,B种香醋购进98瓶.7.解:(1)设帐篷有x个,食品包有y个,依题意,得:,解得:.答:帐篷有240个,食品包有120个.(2)设安排甲种货车m辆,则安排乙种货车(8﹣m)辆,依题意,得:,解得:0≤m≤4.又∵m为非负整数,∴m可以取0,1,2,3,4,相对应的8﹣m为8,7,6,5,4,∴共有5种运输方案,方案1:安排8辆乙种货车;方案2:安排1辆甲种货车,7辆乙种货车;方案2:安排1辆甲种货车,7辆乙种货车;方案3:安排2辆甲种货车,6辆乙种货车;方案4:安排3辆甲种货车,5辆乙种货车;方案5:安排4辆甲种货车,4辆乙种货车.(3)设总运费为w元,则w=1000m+900(8﹣m)=100m+7200,∵k=100>0,∴w随m的增大而增大,∴当m=0时,w取得最小值,最小值=100×0+7200=7200.∴选择方案1,可使运费最少,最少运费是7200元.8.解:(1)设购买一个甲种文具a元,一个乙种文具b元,由题意得:,解得.答:购买一个甲种文具需15元,一个乙种文具需5元;(2)根据题意得:995≤15x+5(100﹣x)≤1050,解得49.5≤x≤55,∵x是整数,∴x=50,51,52,53,54,55,∴有6种购买方案;(3)w=15x+5(100﹣x)=10x+500,∵10>0,∴W随x的增大而增大,当x=50时,W=10×50+500=1000(元),最小∴100﹣50=50.答:购买甲种文具50个,乙种文具50个时需要的资金最少,最少是1000元.9.解:(1)设购买A型新能源公交车每辆需x万元,购买B型新能源公交车每辆需y万元,由题意得:,解得,答:购买A型新能源公交车每辆需80万元,购买B型新能源公交车每辆需100万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:5≤a≤6.5,因为a是整数,所以a=5,6;则共有两种购买方案:①购买A型公交车5辆,则B型公交车5辆:80×5+100×5=900(万元);②购买A型公交车4辆,则B型公交车6辆:80×4+100×6=920(万元);购买A型公交车5辆,则B型公交车5辆费用最少,最少总费用为900万元.10.解:(1)设A种纪念册的单价为x元,B种纪念册的单价为y元,依题意,得:,解得:.答:A种纪念册的单价为50元,B种纪念册的单价为40元.(2)①设购买A种纪念册m册,则购买B种纪念册(50﹣m)册,依题意,得:,解得:<m≤.又∵m为正整数,∴m可取15,16,17,18,∴共有4种不同的购买方案.②设总费用为w元,则w=(50﹣a)m+(40﹣b)(50﹣m)=(10﹣a+b)m+2000﹣50b.∵满足条件的购买方案所需的总费用一样,∴10﹣a+b=0,∴b=a﹣10.∵12≤a≤15,∴2≤b≤5.∵﹣50<0,∴w随b的增大而减小,∴当b=5时,w取得最小值,最小值=2000﹣50×5=1750,即总费用的最小值为1750元.。
北京中考复习——方程(组)与不等式(组)的应用一、解答题1、李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟,他骑自行车的平均速度是250米/分,步行的平均速度是80米/分,他家离学校的距离是2900米,求他骑行和步行的时间分别是多少?答案:骑行了10分钟,步行了5分钟解答:设他步行了x分钟,则骑行了15-x分钟,依题意得:80x+250(15-x)=2900,解得,x=5.15-x=10答:他骑行了10分钟,步行了5分钟.2、自从2012年9月1日昌平区首批50辆纯电动出租车正式运营以来,电动出租车以绿色环保受到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶15公里以内普通燃油出租车和纯电动出租车的运营价格:老张每天从家去单位打出租车上班(路程在15公里以内),结果发现正常情况下乘坐纯电动出租车比燃油出租车平均每公里节省0.8元,求老张家到单位的路程是多少公里?答案:小明家到单位的路程是8.2千米.解答:设小明家到单位的路程是x千米.依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.解这个方程,得x=8.2.答:小明家到单位的路程是8.2千米.3、某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?答案:每天加工大齿轮的有20人,每天加工小齿轮的有64人.解答:设每天加工大齿轮的有x人,则每天加工小齿轮的有(84-x)人,根据题意可得;2×16x=10(84-x),解得:x=20,则84-20=64(人).答:每天加工大齿轮的有20人,每天加工小齿轮的有64人.4、根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2013年4月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:2013年5月份,该市居民甲用电100度,交电费60元;居民乙用电200度,交电费122.5元.(1)上表中a=______,b=______.(2)试行“阶梯电价”收费以后,该市一户居民2013年8月份平均电价每度为0.63元,求该用户8月用电多少度?答案:(1)0.6;0.65(2)该市一户居民月用电为375度.解答:(1)根据2013年5月份,该市居民甲用电100度时,交电费60元,得出:a=60÷100=0.6,居民乙用电200度时,交电费122.5元.则(122.5-0.6×150)÷(200-150)=0.65,故答案为:0.6,0.65.(2)设居民月用电为x度,依题意得:150×0.6+0.65(x-150)=0.63x,整理得:90+0.65x-97.5=0.63x,解得:x=375,答:该市一户居民月用电为375度.5、北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?答案:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次. 解答:设轨道交通日均客运量为x 万人次,地面公交日均客运量为y 万人次.依题意得:1696469x y y x +=⎧⎨=-⎩, 解得:3531343x y =⎧⎨=⎩.答:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次.6、体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.求商店购进篮球,排球各多少个.答案:购进篮球12个,购进排球8个.解答:设购进篮球x 个,购进排球y 个,由题意得:()()2095806050260x y x y +=⎧⎨-+-=⎩, 解得:128x y =⎧⎨=⎩.答:购进篮球12个,购进排球8个.7、水上公园的游船有两种类型,一种有4个座位,另一种有6个座位.这两种游船的收费标准是:一条4座游船每小时的租金为60元,一条6座游船每小时的租金为100元.某公司组织38名员工到水上公园租船游览,若每条船正好坐满,并且1小时共花费租金600元,求该公司分别租用4座游船和6座游船的数量.答案:该公司租用4座游船5条,6座游船3条.解答:设租用4座游船x 条,租用6座游船y 条.依题意得463860100600x y x y +=⎧⎨+=⎩解得53 xy=⎧⎨=⎩答:该公司租用4座游船5条,6座游船3条.8、小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.答案:到甲超市购买这种cc饮料便宜,证明见解答.解答:设甲超市cc饮料每瓶的价格为x元,乙超市cc饮料每瓶的价格为y元,依题意,得:1065112818x yy x+=⎧⎨-=⎩,解得:33.5xy=⎧⎨=⎩,∵3<3.5,∴到甲超市购买这种cc饮料便宜.9、台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.答案:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品.解答:设北京故宫博物院约有x万件藏品,台北故宫博物院约有y万件藏品.依题意,列方程组得:245250 x yx y+=⎧⎨=+⎩,解得18065xy=⎧⎨=⎩.答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品.10、某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?答案:(1)小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,销售完后,该水果商共赚了3200元.(2)大樱桃的售价最少应为41.6元/千克.解答:(1)设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元,根据题意可得: 200200800020x y y x +=⎧⎨-=⎩, 解得:1030x y =⎧⎨=⎩, 小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40-30)+(16-10)]=3200(元),∴销售完后,该水果商共赚了3200元.(2)设大樱桃的售价为a 元/千克,(1-20%)×200×16+200a -8000≥3200×90%,解得:a ≥41.6,答:大樱桃的售价最少应为41.6元/千克.11、小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.A 套餐:一份盖饭加一杯饮料B 套餐:一份盖饭加一份凉拌菜C 套餐:一份盖饭加一杯饮料与一份凉拌菜(1)他们点了______份A 套餐,______份B 套餐,______份C 套餐(均用含x 或y 的代数式表示).(2)若x =6,且A 、B 、C 套餐均至少点了1份,则最多有______种点餐方案. 答案:(1)(10-y );(10-x );(x +y -10)(2)5解答:(1)根据题意,有(10-y )份套餐,只点了饮料,故有(10-y )份A 套餐.有(10-x )份套餐,点了凉拌饭,故有(10-x )份B 套餐.则C 套餐有10-(10-y +10-x )=(x +y -10)份.(2)若x =6,则10-6=4份点了B 套餐,∵A 、B 、C 套餐均至少点了1份,∴共有以下5种点餐方案.如下表:12、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?答案:甲工厂每天加工40件产品,乙工厂每天加工60件产品.解答:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品,依题意得120012001.5x x-=10, 解得:x =40.经检验:x =40是原方程的根,且符合题意.所以1.5x =60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.13、某市计划建造80万套保障性住房,用于改善百姓的住房状况.开工后每年建造保障性住房的套数比原计划增加25%,结果提前两年保质保量地完成了任务.求原计划每年建造保障性住房多少万套?答案:原计划每年建造保障性住房8万套.解答:设原计划每年建造保障性住房x 万套,根据题意可得:()8080125%x x-+=2,解方程,得x =8.经检验:x =8是原方程的解,且符合题意.答:原计划每年建造保障性住房8万套.14、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工产品的数量是甲工厂每天加工产品数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?答案:甲、乙两个工厂每天分别能加工新产品40件、60件.解答:设甲工厂每天加工x件新产品,则乙工厂每天加工1.5x件新产品.依题意,得120012001.5x x-=10.解得x=40.经检验,x=40是所列方程的解,且符合实际问题的意义.当x=40时,1.5x=60.答:甲、乙两个工厂每天分别能加工新产品40件、60件.15、某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A、B两个制衣车间,A车间每天加工的数量是B车间的1.2倍,A、B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20天完成,求A、B两车间每天分别能加工多少件.答案:A车间每天生产384件,B车间每天生产320件.解答:设B车间每天生产x件,则A车间每天生产1.2x件.由题意得44001.2x x++4400x=20.解得x=320.经检验x=320是方程的解.此时A车间每天生产320×1.2=384(件).答:A车间每天生产384件,B车间每天生产320件.16、为应对雾霾天气,使师生有一个更加舒适的教学环境,学校决定为南北两幢教学楼安装空气净化器.南楼安装的55台由甲队完成,北楼安装的50台由乙队完成.已知甲队比乙队每天多安装两台,且两队同时开工,恰好同时完成任务.甲、乙两队每天各安装空气净化器多少台?答案:甲队每天安装空气净化器22台,乙队每天安装20台.解答:设甲队每天安装空气净化器x台,则乙队每天安装(x-2)台,依题意得,55x=502x-,解方程得,x=22.经检验,x=22是原方程的解,且符合实际意义.x-2=22-2=20(台).答:甲队每天安装空气净化器22台,乙队每天安装20台.17、列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫.但每件进价比第一批衬衫的每件进价少了10元,且进货量是第一批进货量的一半.求第一批购进这种衬衫每件的进价是多少元?答案:第一批衬衫每件进价为150元.解答:设第一批衬衫每件进价为x 元, 依题意,得12·4500x =210010x -, 解得x =150.经检验x =150是原方程的解,且满足题意.答:第一批衬衫每件进价为150元.18、某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.答案:每人每小时的绿化面积2.5平方米.解答:设每人每小时的绿化面积x 平方米,由题意,得()180180662x x-+=3,解得:x =2.5.经检验,x =2.5是原方程的解,且符合题意.答:每人每小时的绿化面积2.5平方米.19、小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动汽车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费. 答案:新购买的纯电动汽车每行驶1千米所需的电费为0.18元.解答:设A 、B 两地距离为x 千米, 由题意可知:10827x x-=0.54,解得:x =150. 经检验:x =150是原方程的解,且符合题意. ∴纯电动汽车每行驶一千米所需电费为:27150=0.18(元/千米). 答:新购买的纯电动汽车每行驶1千米所需的电费为0.18元.20、京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的37.小王用自驾车方式上班平均每小时行驶多少千米.答案:小王用自驾车方式上班平均每小时行驶27千米.解答:设小王用自驾车方式上班平均每小时行驶x千米.依题意,得1829x=37×18x,解得:x=27,经检验,x=27是原方程的解,且符合题意.答:小王用自驾车方式上班平均每小时行驶27千米.。
1 某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同.若购买2个足球和3个篮球共需340元;购买4个排球和5个篮球共需600元.(1)求购买一个足球、一个篮球分别需要多少元?(2)该中学根据实际情况,需从该体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球? 答案:解(1)设购买一个足球需要x 元,购买一个篮球需要y 元 根据题意,得2334045600x y x y +=⎧⎨+=⎩解这个方程组得:5080x y =⎧⎨=⎩答:购买一个足球需要50元,购买一个篮球需要80元(2)设该中学购买篮球m 个根据题意,得8050(100)6000m m +-≤ 解这个一元一次不等式得:1333m ≤m 是整数33m ∴≤(或m 的最大整数解是33)答:这所中学最多可以购买33个篮球。
2.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A 、B 两种设备,已知:购买1台A 种设备和2台B 种设备需要3.5万元;购买2台A 种设备和1台B 种设备需要2.5万元. (1)求每台A 种、B 种设备各多少万元?(2)根据学校实际,需购进A 种和B 种设备共30台,总费用不超过30万元,请你通过计 解:(1)设每台A 种、B 种设备各x 万元、y 万元,根据题意得出:,解得:,答:每台A 种、B 种设备各0.5万元、1.5万元;(2)设购买A 种设备z 台,根据题意得出: 0.5z+1.5(30﹣z )≤30, 解得:z≥15,答:至少购买A 种设备15台.3.暑期临近,本溪某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人.(1)旅游团中成人和儿童各有多少人?(2)旅行社为了吸引游客,打算给游客准备一件T恤衫,成人T恤衫每购买10件赠送1件儿童T恤衫(不足10件不赠送),儿童T恤衫每件15元,旅行社购买服装的费用不超过1200元,请问每件成人T恤衫的价格最高是多少元?4某校九年级有三个班,其中九年一班和九年二班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九年一班的满分率为70%,九年二班的满分率为80%. (1)求九年一班和九年二班各有多少名学生.(2)该校九年三班有45名学生,若九年级体育成绩的总满分率超过75%,求九年三班至少有多少名学生体育成绩是满分.5.学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?6.某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男女两种款式的书包。
不等式组与方程组的关系在数学中,不等式与方程都是常见的数学表示形式。
不等式组与方程组是由多个不等式或方程组成的集合,它们在数学问题的建模和解决中起着重要的作用。
本文将探讨不等式组与方程组之间的关系,并分析其在实际问题中的应用。
一、不等式组的定义与特点不等式组是由多个不等式组成的集合,通常用符号“≤”或“≥”来表示。
不等式组中的每个不等式都是一个条件,通过满足这些条件,我们可以得到一组解或一组满足特定条件的值。
不等式组与方程组的主要区别在于,不等式组的解不一定是精确的数值,而是一组可能的解范围。
不等式组的解可以用区间或集合来表示,而方程组的解则是精确的数值。
二、方程组的定义与特点方程组是由多个方程组成的集合,通常用符号“=”来表示。
方程组中的每个方程都是表示等式的条件,通过满足这些条件,我们可以得到一组精确的数值解。
与不等式组不同,方程组的解只有一个或者没有解。
方程组的解可以用具体的数值表示,或者用变量表示。
三、1. 联立问题不等式组与方程组之间存在联立的问题。
当我们在解决实际问题时,常常需要同时考虑多个条件,这时就需要联立不等式组与方程组。
通过联立不等式组与方程组,可以得到满足所有条件的解。
例如,在求解一个实际问题中,我们可能需要考虑某个物品的价格与折扣的关系,这时就可以使用一个不等式组来表示物品价格的范围,再联立一个方程来表示折扣情况,从而得到合适的购买方案。
2. 不等式组的应用不等式组在实际问题中有很广泛的应用。
例如,在线性规划中,我们常常需要求解满足一组约束条件的最优解,这时就可以将约束条件表示为不等式组,通过解不等式组来求解最优解。
此外,在经济学、生物学和工程学等领域,不等式组也被广泛应用于模型的建立和解决中。
3. 方程组的应用方程组在实际问题中同样有着重要的应用。
例如,在电路分析中,我们常常需要联立多个方程来描述电路中的电流和电压关系,从而求解电路中的未知量。
方程组也被广泛应用于数学建模和计算机科学中。
分式方程、方程组、不等式组实际应用1.(2015•XX)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?2.(2015•XX)XX火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?3.(2015•XX)华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?4.(2014•XX)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?5.(2015•XX)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.6.(2015•达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?7.(2014•XX)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.8.(2014•XX)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:x(元/件)38 36 34 32 30 28 26t(件) 4 8 12 16 20 24 28假定试销中每天的销售量t(件)与销售价x(元/件)之间满足一次函数.(1)试求t与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价)9.(2015春•X家港市期末)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号销售收入第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?10.(2014•XX)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)1100 1400销售价格(元)今年的销售价格200011.(2014•XX)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?12.(2014•XX)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?13.(2014•XX)今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值X 围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.14.(2014•XX)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和薰衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)种植户玫瑰花种植面积(亩)薰衣草种植面积(亩)卖花总收入(元)甲 5 3 33500乙 3 7 43500(1)试求玫瑰花,薰衣草每亩卖花的平均收入各是多少?(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和薰衣草,根据市场调查,要求玫瑰花的种植面积大于薰衣草的种植面积(两种花的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127500元,则他们有几种种植方案?15.(2014•资阳)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.16.(2014•XX)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.17.(2015•XX)XX市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A、B两种品牌的龟苓膏共1000包.(1)若小王按需购买A、B两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式.(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本(运算结果取整数)?18.(2015•XX)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.(1)每个气排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?19.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?20.(2015•资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.21.(2015•XX)南海地质勘探队在南沙群岛的一小岛发现很有价值的A,B两种矿石,A矿石大约565吨,B矿石大约500吨,上报公司,要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1000元,乙货船每艘运费1200元.(1)设运送这些矿石的总费用为y元,若使用甲货船x艘,请写出y和x之间的函数关系式;(2)如果甲货船最多可装A矿石20吨和B矿石15吨,乙货船最多可装A矿石15吨和B矿石25吨,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.22.(2015•德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.23.(2015•XX)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.24.(2015•XX)小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?25.(2015•莱芜)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?26.(2011•XX)海峡两岸林业博览会连续六届在XX市成功举办,XX市的林产品在国内外的知名度得到了进一步提升.现有一位外商计划来我市购买一批某品牌的木地板,甲、乙两经销商都经营标价为每平方米220元的该品牌木地板.经过协商,甲经销商表示可按标价的9.5折优惠;乙经销商表示不超过500平方米的部分按标价购买,超过500平方米的部分按标价的9折优惠.(1)设购买木地板x平方米,选择甲经销商时,所需费用为y1元,选择乙经销商时,所需费用为y2元,请分别写出y1,y2与x之间的函数关系式;(2)请问该外商选择哪一经销商购买更合算?27.(2010春•海安县期末)为迎接2010年海安经贸洽谈会,园林部门决定利用现有3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧.已知搭配一个A种造型所需甲种花卉盆数是乙种花卉盆数的2倍,且搭配一个A种造型所需甲种花卉是搭配一个B种造型所需甲种花卉盆数的1.6倍;搭配一个B种造型乙种花卉的盆数是搭配一个A种造型乙种花卉盆数的2倍多10盆,搭配一个B种造型共需甲、乙两种花卉140盆.(1)求搭配一个A种造型、一个B种造型各需甲乙两种花卉多少盆?(2)某校七年级(1)班艺术兴趣小组承接了这个园艺造型搭配方案的设计,那么符合题意的搭配方案有几种?请你帮助设计出来.(3)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(2)中哪种方案成本最低?最低成本是多少元?28.(2011•XX)我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)- - -29.(2011•XX)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?30.(2013春•沙坪坝区校级期中)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,商场有哪几种进货方案?(3)商场决定甲种玩具的售价为20元,乙种玩具售价为35元,试问该商场在(2)的条件下如何进货利润最大?最大利润是多少?- .可修编.。
押成都卷第24题押题方向一:方程(组)、不等式(组)与函数的实际应用3年成都真题考点命题趋势2023年成都卷第24题方程组、不等式与一次函数性质从近年成都中考来看,方程、不等式与函数的实际应用考查内容主要以方程、不等式基本应用为主,结合一次函数的增减性解决相关问题,整体难度中等,是很多同学B 卷相对容易拿分的考点;预计2024年成都卷还将重视方程(组)、不等式(组)与函数的实际应用的考查。
2022年成都卷第24题不等式与一次函数2021年成都卷第26题一元一次方程与不等式1.(2023·四川成都·中考真题)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A ,B 两种食材制作小吃.已知购买1千克A 种食材和1千克B 种食材共需68元,购买5千克A 种食材和3千克B 种食材共需280元.(1)求A ,B 两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A 种食材千克数不少于B 种食材千克数的2倍,当A ,B 两种食材分别购买多少千克时,总费用最少?并求出最少总费用.2.(2022·四川成都·中考真题)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h ,乙骑行的路程()km s 与骑行的时间()h t 之间的关系如图所示.(1)直接写出当00.2t ≤≤和0.2t >时,s 与t 之间的函数表达式;(2)何时乙骑行在甲的前面?3.(2021·四川成都·中考真题)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A 型和10个B 型预处置点位进行初筛、压缩等处理.已知一个A 型点位比一个B 型点位每天多处理7吨生活垃圾.(1)求每个B 型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,现在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A 型、B 型点位共5个,试问至少需要增设几个A 型点位才能当日处理完所有生活垃圾?方程(组)的应用题以实际问题为背景,一般为生活中常见的分析决策问题,且情境真实、贴近学生生活。
二元一次方程组与不等式实际问题结合二元一次方程组是高中数学中的重要内容之一,它可以帮助我们解决各种实际问题。
在此,我们将通过几个实际问题来结合二元一次方程组和不等式的内容,来说明它们的应用。
问题一:小明去超市购买香蕉和苹果。
已知香蕉的价格是每斤2元,苹果的价格是每斤3元。
小明共购买了10斤水果,总共花费了24元。
问小明购买了多少斤香蕉和苹果?解答:设小明购买的香蕉的斤数为x,购买的苹果的斤数为y。
根据题意,可以得到如下二元一次方程组:x + y = 10 (方程一)2x + 3y = 24 (方程二)我们可以通过解这个方程组来求得x和y的值。
首先,我们可以从方程一中得到x = 10 - y;然后,我们将x的值代入方程二中,得到2(10 - y) + 3y = 24;化简得到20 - 2y + 3y = 24;继续化简得到y = 4;将y的值代入方程一中可以求得x = 10 - 4 = 6。
因此,小明购买了6斤香蕉和4斤苹果。
问题二:一条钢筋工厂共生产两种规格的钢筋,每根重量为x 千克和y千克。
已知钢筋工厂每天生产的重量总和为1000千克,共生产了300根。
已知钢筋的总价值为10000元,且每根x千克的钢筋价格为20元,每根y千克的钢筋价格为30元。
问x和y的值分别是多少?解答:设每根重量为x千克的钢筋的数量为a,每根重量为y千克的钢筋的数量为b。
根据题意可以得到如下二元一次方程组:a +b = 300 (方程三)20ax + 30by = 10000 (方程四)由于每天生产的钢筋的重量总和为1000千克,所以可以得到方程:x*a + y*b = 1000。
为了求得x和y的值,我们可以先解方程三,得到b = 300 - a;将b的值代入方程四中,得到20ax + 30(300 - a)y = 10000;化简得到20ax + 9000y - 30ay = 10000;继续化简得到y = (10000 - 20ax)/(9000 - 30a)。
分式方程、方程组、不等式组实际应用1.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?2.(2015•宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?3.(2015•哈尔滨)华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?4.(2014•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?5.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.6.(2015•达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?7.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.8.(2014•常州)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与假定试销中每天的销售量t(件)与销售价x(元/件)之间满足一次函数.(1)试求t与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价)9.(2015春•张家港市期末)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?10.(2014•烟台)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?11.(2014•梅州)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?12.(2014•南宁)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?13.(2014•南充)今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值范围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.14.(2014•黄石)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和薰衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和薰衣草,根据市场调查,要求玫瑰花的种植面积大于薰衣草的种植面积(两种花的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127500元,则他们有几种种植方案?15.(2014•资阳)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.16.(2014•包头)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.17.(2015•梧州)梧州市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A、B两种品牌的龟苓膏共1000包.(1)若小王按需购买A、B两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式.(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本(运算结果取整数)?18.(2015•钦州)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.(1)每个气排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?19.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?20.(2015•资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.21.(2015•绵阳)南海地质勘探队在南沙群岛的一小岛发现很有价值的A,B两种矿石,A矿石大约565吨,B矿石大约500吨,上报公司,要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1000元,乙货船每艘运费1200元.(1)设运送这些矿石的总费用为y元,若使用甲货船x艘,请写出y和x之间的函数关系式;(2)如果甲货船最多可装A矿石20吨和B矿石15吨,乙货船最多可装A矿石15吨和B矿石25吨,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.22.(2015•德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.23.(2015•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运8箱/辆,其运往A、B两村的运费如下表:(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.24.(2015•济宁)小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?25.(2015•莱芜)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?26.(2011•福建)海峡两岸林业博览会连续六届在三明市成功举办,三明市的林产品在国内外的知名度得到了进一步提升.现有一位外商计划来我市购买一批某品牌的木地板,甲、乙两经销商都经营标价为每平方米220元的该品牌木地板.经过协商,甲经销商表示可按标价的9.5折优惠;乙经销商表示不超过500平方米的部分按标价购买,超过500平方米的部分按标价的9折优惠.(1)设购买木地板x平方米,选择甲经销商时,所需费用为y1元,选择乙经销商时,所需费用为y2元,请分别写出y1,y2与x之间的函数关系式;(2)请问该外商选择哪一经销商购买更合算?27.(2010春•海安县期末)为迎接2010年海安经贸洽谈会,园林部门决定利用现有3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧.已知搭配一个A种造型所需甲种花卉盆数是乙种花卉盆数的2倍,且搭配一个A种造型所需甲种花卉是搭配一个B种造型所需甲种花卉盆数的1.6倍;搭配一个B种造型乙种花卉的盆数是搭配一个A种造型乙种花卉盆数的2倍多10盆,搭配一个B种造型共需甲、乙两种花卉140盆.(1)求搭配一个A种造型、一个B种造型各需甲乙两种花卉多少盆?(2)某校七年级(1)班艺术兴趣小组承接了这个园艺造型搭配方案的设计,那么符合题意的搭配方案有几种?请你帮助设计出来.(3)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(2)中哪种方案成本最低?最低成本是多少元?28.(2011•本溪)我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)29.(2011•本溪)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?30.(2013春•沙坪坝区校级期中)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,商场有哪几种进货方案?(3)商场决定甲种玩具的售价为20元,乙种玩具售价为35元,试问该商场在(2)的条件下如何进货利润最大?最大利润是多少?. .。