高中数学讲义 指对数比较大小
- 格式:doc
- 大小:462.95 KB
- 文档页数:4
高中数学—指对数比较大小方法标题:高中数学——指对数比较大小方法在数学的海洋中,我们经常需要比较数字的大小。
然而,当我们面对指对数时,比较大小的方法就变得相对复杂了。
指对数是一类特殊的函数,其特点是函数的值与实数之间存在一一对应的关系。
因此,比较指对数的大小实际上就是比较它们所对应的实数的大小。
一、理解指对数我们需要理解什么是指对数。
简单来说,指对数是一种特殊的函数,它可以将一个正实数映射到一个特定的实数。
对于任何一个正实数x,都有一个唯一的实数y与之对应,这个关系可以表示为log(x) = y。
其中,log是常用对数的简写形式,它通常用来表示以10为底的对数。
二、比较指对数大小的方法1、利用函数的单调性:对于任何一个底数大于1的指对数函数,它在定义域内都是单调递增的。
因此,如果log(a) > log(b),那么a 一定大于b。
同样地,如果log(a) < log(b),那么a一定小于b。
2、利用图象:我们可以通过画出指对数函数的图象来比较大小。
如果两个数的指对数值相等,那么它们对应的点应该在同一条直线上。
反之,如果两个数的指对数值不相等,那么它们对应的点一定不在同一条直线上。
3、利用中间值:当两个数的指对数值难以确定时,我们可以利用中间值来比较它们的大小。
假设log(a) > log(m) > log(b),那么我们可以推断出a > m > b。
三、注意事项在比较指对数大小的时候,一定要注意底数的范围。
如果底数小于1,那么函数在定义域内是单调递减的。
这时,比较大小的方法就需要根据具体情况来调整了。
总结来说,比较指对数大小的方法需要我们理解指对数的概念和性质,并利用函数的单调性、图象和中间值等方法来进行比较。
我们也要注意底数的范围对比较大小的影响。
通过不断地实践和练习,我们就能熟练掌握指对数比较大小的方法了。
在数学学习中,比较大小是非常基础且重要的一项技能。
高中数学函数对数大小教案
教学目标:
1. 了解函数和对数的基本概念;
2. 理解函数和对数的大小比较方法;
3. 掌握函数和对数大小比较的常见技巧。
教学重点:
1. 函数概念及大小比较方法;
2. 对数概念及大小比较方法;
3. 函数和对数大小比较综合应用。
教学难点:
1. 函数和对数的大小比较技巧的灵活运用;
2. 函数和对数大小比较问题的解决方法。
教学过程:
一、导入:
教师通过举例引导学生思考如何比较不同函数和对数的大小,激发学生的学习兴趣。
二、讲解函数大小比较方法:
1. 函数大小比较的基本原理;
2. 几种常见函数的大小比较规律;
3. 通过练习巩固函数大小比较技巧。
三、讲解对数大小比较方法:
1. 对数大小比较的基本原理;
2. 对数大小比较的常见规律;
3. 通过实例演练对数大小比较技巧。
四、综合应用:
通过综合性的例题,引导学生对函数和对数的大小比较方法进行综合运用,提高学生的解题能力。
五、总结:
让学生总结函数和对数大小比较的方法和技巧,巩固所学知识。
六、作业布置:
布置作业,要求学生练习函数和对数大小比较的题目,巩固所学知识。
教学反思:
1. 鼓励学生多练习、多思考,提高问题解决能力;
2. 注重培养学生的逻辑思维和数学分析能力;
3. 根据学生实际情况,调整教学方法,提高学生学习效果。
第20讲指对数比较大小8种常考题型总结【知识点梳理】指数和对数的比大小问题成为了高考和模拟题的一些拉档题,这里我们重点介绍几种比大小方法,让大家充分了解掌握一些指数对数大小比较的常用方法.(1)利用指数对数单调性比较大小;当底数一样或者可以化成一样,直接利用单调性比较即可(2)利用指数对数函数图象关系比较大小(2)比较与0,1的大小关系,此类题目一般会放在单选第5题左右位置,比如12.02.0003.0=<<,12.0log3.0log 1log 02.02.02.0=<<=(3)取中间值,比如遇到两个数都在0到1之间,我们可以比较它们与21的大小等(4)去常数再比大小当底数和真数出现了倍数关系时候,需要将对数进行分离常数再比较.例如:log log 1log log n a a a a ma m ma m n =+=+;.(5)当真数一样我们考虑用换底公式,换为底数一样,再比较分母,如2ln =a 和2log 3=b ,ea 2log 12ln ==,3log 12log 23==b ,因为e 22log 3log >,所以b a >(6)乘倍数比较数的范围比较大小,比如3log 2=a 和4log 3=b ,则()5,427log 3log 3322∈==a ,()4,364log 4log 3333∈==b ,所以b a 33>,所以ba >(7【题型目录】题型一:直接利用单调性比较大小题型二:比较与1,0的大小关系题型三:取中间值比较大小题型四:利用换底公式比较大小题型五:分离常数再比较大小题型六:利用均值不等式比较大小题型七:乘倍数比较数的范围比较大小题型八:构造函数比大小【典型例题】题型一:直接利用单调性比较大小【例1】已知222log 0.6,log 0.8,log 1.2a b c ===,则()A .c b a>>B .c a b>>C .b c a >>D .a b c>>【例2】已知2log 3a =,4log 6b =,8log 9c =,则a 、b 、c 的大小顺序为()A .a b c <<B .a c b<<C .c b a<<D .b c a<<【题型专练】1.下列选项正确的是()A .22log 5.3log 4.7<B .0.20.2log 7log 9<C .3πlog πlog 3>D .log 3.1log 5.2(0a a a <>且1)a ≠2.已知2log 3a =,ln 2b =,2log πc =,则a ,b ,c 的大小关系为()A .a b c >>B .c a b>>C .a c b>>D .c b a>>3.已知1ln 3a=,33log 5log 2b =-,c =a ,b ,c 的大小关系为()A .a c b >>B .b c a >>C .c a b>>D .c b a>>4.已知0.919x =,2log 0.1y =,2log 0.2z =,则()A .x y z>>B .x z y>>C .z x y >>D .z y x>>题型二:比较与1,0的大小关系【例1】若1223a ⎛⎫= ⎪⎝⎭,1ln 2b =,0.20.6c -=,则a ,b ,c 的大小关系为()A .c b a>>B .c a b >>C .b a c >>D .a c b>>【例2】已知0.3123log 2,log 3,2a b c -===,则a ,b ,c 的大小关系是()A .a b c>>B .b a c>>C .c a b>>D .b c a>>【例3】已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则()A .a c b >>B .b c a >>C .a b c >>D .c a b>>【题型专练】1.若0.110a =,lg 0.8b =,5log 3.5c =,则()A .a b c>>B .b a c>>C .c a b>>D .a c b >>2.已知5lg 0.2,log 6,ln 2a b c ===,则a ,b ,c 的大小关系为()A .a b c<<B .c a b<<C .a c b<<D .c b a <<3.已知0.60.622e log 0.6a b c -===,,,则a ,b ,c 的大小关系为()A .b a c >>B .b c a >>C .a b c>>D .a c b>>题型三:取中间值比较大小【例1】已知32log 3a =,2log 3b =,139c =,则()A .c a b>>B .b a c >>C .b c a>>D .c b a >>【例2】已知5log 2a =,8log 3b =,12c =,则下列判断正确的是()A .c b a<<B .b a c<<C .a c b<<D .a b c<<【例3】已知6log 2a =,0.5log 0.2b =,0.30.6c =,则a ,b ,c 的大小关系为()A .a c b <<B .a b c <<C .b c a <<D .c a b<<【题型专练】1.已知3log 4a =,4log 5b =,32c =,则有()A .a b c>>B .c b a>>C .a c b >>D .c a b>>2.设0.61a =,0.6lg9b =,32log 8c =,则()A .b a c<<B .c b a<<C .a c b<<D .b c a<<3.已知52log 4a =,31log 72b =,4log 52c =,则a ,b ,c 的大小关系是()A .b c a<<B .b a c <<C .c a b<<D .a b c<<题型四:利用换底公式比较大小【例1】设x ,y ,z 为正数,且345x y z ==,则()A .x y z<<B .y x z<<C .y z x<<D .z y x<<【例2】设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .c >b >a【例3】设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .c >b >a【题型专练】1.设0.1log 4a =,50log 4b =,则()A .()22ab a b ab<+<B .24ab a b ab<+<C .2ab a b ab <+<D .2ab a b ab<+<2.设2log a π=,6log b π=,则()A .0a b ab-<<B .0ab a b<<-C .0ab a b <<-D .0a b ab<-<3.设0.20.3a =,20.3b =,则()A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+4.已知正数x ,y ,z 满足346x y z ==,则下列说法中正确的是()A .1112x y z+=B .346x y z >>C .22xy z>D .2x y z⎛+> ⎝题型五:分离常数再比较大小【例1】已知6log 3a =,8log 4b =,10log 5c =,则().A .b a c <<B .c b a<<C .a c b<<D .a b c<<【题型专练】1.设6log 3=a ,10log 5=b ,14log 7=c ,则()A.ab c >> B.b c a>> C.a c b>> D.a b c>>题型六:利用均值不等式比较大小【例1】73a =,4log 20b =,33log 2log 6c =+,则a ,b ,c 的大小关系是()A .a b c>>B .a c b >>C .c b a >>D .c a b>>【例2】若lg 2lg5a =⋅,ln 22b =,ln 33c =,则a ,b ,c 的大小关系为()A .a b c <<B .b c a <<C .b a c <<D .a c b<<【题型专练】1.已知910,1011,89m m m a b ==-=-,则()A .0a b>>B .0a b >>C .0b a >>D .0b a>>2.已知2log a =0.62b =,0.2log 6c =-,则实数a ,b ,c 的大小关系为()A .a c b>>B .a b c>>C .b a c>>D .b c a>>题型七:乘倍数比较小【例1】已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A .a <b <c B .b <a <cC .b <c <aD .c <a <b【题型专练】1.已知3log 2=a ,4log 3=b ,5log 4=c ,则实数a ,b ,c 的大小关系为()A .a <b <cB .a b c>>C .b a c>>D .b c a>>题型八:构造函数比大小【例1】设0a >,0b >,则下列叙述正确的是()A .若ln 2ln 2a b b a ->-,则a b >B .若ln 2ln 2a b b a ->-,则a b <C .若ln 2ln 2a a b b ->-,则a b >D .若ln 2ln 2a a b b ->-,则a b<【例2】若2e 2e x x y y ---<-,则()A .()ln 10y x -+<B .()ln 10y x -+>C .ln 0x y ->D .ln 0x y -<【题型专练】1.若1a b >>,且x y x y a a b b --->-,则()A .()ln 10x y -+>B .()ln 10x y -+<C .ln 0x y ->D .ln 0x y -<2.已知正实数x ,y 满足21211log log 22xyx y ⎛⎫⎛⎫+<- ⎪ ⎪⎝⎭⎝⎭,则()A .11x y<B .33x y <C .()ln 10y x -+>D .122x y-<。
指对数⽐较⼤小在填空选择题中我们会遇到一类比较大小的问题,通常是三个指数和对数混在一起,进行排序。
这类问题如果两两进行比较,则花费的时间较多,所以本讲介绍处理此类问题的方法与技巧一、一些技巧和方法1、如何快速判断对数的符号?八字真言“同区间正,异区间负”,容我慢慢道来:判断对数的符号,关键看底数和真数,区间分为()0,1和()1,+¥(1)如果底数和真数均在()0,1中,或者均在()1,+¥中,那么对数的值为正数(2)如果底数和真数一个在()0,1中,一个在()1,+¥中,那么对数的值为负数例如:30.52log 0.50,log 0.30,log 30<>>等2、要善于利用指对数图像观察指对数与特殊常数(如0,1)的大小关系,一作图,自明了3、比较大小的两个理念:(1)求同存异:如果两个指数(或对数)的底数相同,则可通过真数的大小与指对数函数的单调性,判断出指数(或对数)的关系,所以要熟练运用公式,尽量将比较的对象转化为某一部分相同的情况例如:1113423,4,5,比较时可进行转化,尽管底数难以转化为同底,但指数可以变为相同()()()11111143634212121233,44,55===,从而只需比较底数的大小即可(2)利用特殊值作“中间量”:在指对数中通常可优先选择“0,1”对所比较的数进行划分,然后再进行比较,有时可以简化比较的步骤(在兵法上可称为“分割包围,各个击破”,也有一些题目需要选择特殊的常数对所比较的数的值进行估计,例如2log 3,可知2221log 2log 3log 42=<<=,进而可估计2log 3是一个1点几的数,从而便于比较4、常用的指对数变换公式:(1)nm mn a a æö=ç÷èø(2)log log log a a a M N MN+=log log log a a aM M N N-=(3)()log log 0,1,0na a N n N a a N =>¹>(4)换底公式:log log log c a cb b a=进而有两个推论:1log log a b b a =(令c b =)log log m na a n N N m=二、典型例题:例1:设323log ,log log a b c p ===,则,,a b c 的大小关系是______________思路:可先进行0,1分堆,可判断出1,0b 1,0c 1a ><<<<,从而a 肯定最大,只需比较,b c 即可,观察到,b c 有相同的结构:真数均带有根号,抓住这个特点,利用对数公式进行变换:22311log log 3,log log 222b c ====,从而可比较出32log 21log 3<<,所以c b <答案:c b a <<例2:设123log 2,ln 2,5a b c -===,则,,a b c 的大小关系是___________思路:观察发现,,a b c 均在()0,1内,,a b 的真数相同,进而可通过比较底数得到大小关系:a b <,在比较和c 的大小,由于c 是指数,很难直接与对数找到联系,考虑估计,,a b c 值得大小:125c -==<,可考虑以12为中间量,则331log 2log 2a =>=,进而12a c >>,所以大小顺序为b a c >>答案:b a c>>例3:设ln2ln3ln5,,,235a b c ===则,,a b c 的大小关系为()A.a b c >>B.a c b >>C.b a c >>D.b c a>>思路:观察到,,a b c 都是以e 为底的对数,所以将其系数“放”进对数之中,再进行真数的比较。
专题41指对数比较大小在数学中,对数是一种用来衡量数值大小的重要工具。
当我们需要比较两个数的大小时,对数就发挥了重要的作用。
在本篇文章中,我将详细介绍对数比较大小的原理和方法。
首先,让我们回顾一下对数的定义。
对数是指一个数以另一个数为底的幂的指数。
一般来说,我们常用的对数有两种常见的底数,即以10为底的对数(常用对数)和以自然常数e为底的对数(自然对数)。
常用对数用log表示,自然对数用ln表示。
对数比较大小的基本原理是,对数函数是严格递增函数,即随着自变量的增加,函数值也会增加。
因此,如果两个数的对数相等,那么这两个数本身一定相等。
如果两个数的对数不相等,可以通过比较对数的大小来判断原数的大小关系。
现在让我们来看一些实际例子,以更好地理解对数比较大小的方法。
例子1:比较两个正数的大小,其中一个数是另一个数的平方。
假设我们有两个正数a和b,且b是a的平方。
我们可以通过求两个数的对数来比较它们的大小。
假设a的对数是x,b的对数是y。
根据对数的定义,我们有a = 10^x,b = 10^y。
由于b是a的平方,我们有b = a^2 = (10^x)^2 = 10^(2x)。
因此,我们可以得到y = 2x。
现在我们可以比较x和y的大小,如果x < y,则a < b;如果x = y,则a = b;如果x > y,则a > b。
例子2:比较两个正数的大小,其中一个数是另一个数的指数。
假设我们有两个正数a和b,且b是以a为底的指数。
我们可以通过求两个数的对数来比较它们的大小。
假设a的对数是x,b的对数是y。
根据对数的定义,我们有a = 10^x,b = 10^y。
由于b是以a为底的指数,我们有b = a^b = (10^x)^y = 10^(xy)。
因此,我们可以得到y = xy。
现在我们可以比较x和y的大小,如果x < y,则a < b;如果x = y,则a = b;如果x > y,则a > b。
知识梳理一、对数的运算:1、互化:N b N a a b log =⇔=2、恒等:N a N a =log3、换底: ab bc c a log log log =推论1 ab b a log 1log =推论2 log log log a b a b c c •=推论3 log log mna a nb b m =)0(≠m4、N M MN a a a log log log += log log log a a a M M N N=-5、M n M a n a log log ⋅=二、常见对数此类习题应牢记对数函数的基本运算法则,注意○1常用对数:将以10为底的对数叫常用对数,记为N lg ○2自然对数:以e=2.71828…为底的对数叫自然对数,记为N ln ○3零和负数没有对数,且1log ,01log a==a a三、对数函数一般地,函数x y a log =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+)。
∞四、图像高低在第一象限内,“底大图低” 0<c<d<1<a<b.五、指数函数与对数函数指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 的图象与性质:注:指数函数y=a x 与对数函数y=log a x 互为反函数,它们的图象关于直线y=x 对称。
对数函数0<a<1 a>1图 象表达式 log a y x =定义域 (0,)+∞值 域 R过定点 (1,0)单调性 单调递减单调递增x=1x=1y=1y=1在(0,+∞)内是 减函数在(0,+∞)内是 增函数在(- ∞,+∞)内是 减函数在(- ∞,+∞)内是 增函数0<x<1时,y<0;x>1时,y>0.0<x<1时,y>0;x>1时,y<0.x<0时,0<y<1;x>0时,y>1.x<0时,y>1;x>0时,0<y<1.(1,0),即x=1时,y=0.(0,1),即x =0时,y=1.(0,+∞)(0,+∞)(- ∞,+∞)(- ∞,+∞) 单调性y 值区域过定点值 域定义域图象a>10<a<1a>10<a<1a y=log a xy=a x函数11O OOO1axy1a xy1axy1a xy专题精讲类型一、对数运算1.2-3=18化为对数式为( )A .32log 81-= B .2)3(log 81=- C .381log 2-= D .81)3(log 2=- 2.log 63+log 62等于( )A .6B .5C .1D .log 653.如果c b a x lg 3lg 2lg lg ⋅-⋅+=,则x 等于( ) A .a +2b -3c B .a +b 2-c3C.ab 2c 3 D.2ab 3c4.已知2log 3=a ,那么6log 28log 33-用a 表示为( ) A .a -2 B .5a -2 C .3a -(1+a )2 D .3a -a 2-15.)5log 211(22+ 的值等于( )A .2+ 5B .2 5C .2+52D .1+526.Log 22的值为( ) A .- 2B. 2 C .-12D.127.在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2<a <3或3<a <5 C .2<a <5 D .3<a <48.方程4123log =x 的解是( )A .x =19B .x =x3C .x = 3D .x =99.若0)(log log )(log log )(log log 244332===z y x ,则x +y +z 的值为( ) A .9 B .8 C .7 D .6 10.若102x =25,则x 等于( )A .lg 15B .lg5C .2lg5D .2lg 1511.计算32log 9log 98⋅的结果为( )A .4 B.53 C.14 D.3512.已知2log =x a ,1log =x b ,4log =x c (a ,b ,c ,x >0且≠1),则=)(log abc x ( ) A.47 B.27 C.72D.7413、已知32a =,那么33log 82log 6-用a 表示是…………………………( ) A 、2a - B 、52a - C 、23(1)a a -+ D 、 23a a -14、若log 2,log 3,a a m n ==则32m n a -=_________15、log 2(3+2)+log 2(2-3)16、已知16log log 8log 4log 4843=⋅⋅m ,求m 的值.17、(1) 9lg 2lg 008.0lg 3181.0lg 212+++(2) ()20lg 5lg 2lg 2⋅+(3) ())2log 2(log )5log 5(log 3log 3log 2559384+⋅+⋅+类型二、对数函数的定义域与解析式注意复合函数的定义域的求法,形如[])(x g f y =的复合函数可分解为基本初等函数)(),(x g u u f y ==,分别确定这两个函数的定义域。
指对数函数比较大小一、前言对数函数是高中数学中的重要内容,它在数学中有着广泛的应用。
在比较大小时,我们经常需要比较对数函数的大小。
本文将介绍如何比较对数函数的大小。
二、对数函数的定义对数函数是指以某个正实数为底的幂函数的反函数。
设a为正实数且a≠1,则以a为底的对数函数f(x)定义为:f(x) = log<sub>a</sub>x其中,x为正实数。
三、对数函数的性质1. 对于任意正实数x和y,有以下性质:(1)log<sub>a</sub>(xy) = log<sub>a</sub>x +log<sub>a</sub>y(2)log<sub>a</sub>(x/y) = log<sub>a</sub>x -log<sub>a</sub>y(3)log<sub>a</sub>x<sup>n</sup> = nlog<sub>a</sub>x2. 对于任意正整数n,有以下性质:(1)log<sup>n</sup><sub>a</sub>x = (log<sup>n-1</sup><sub>a</sub>log<sup>n-2</sup><sub>a</sub>...log<sup>0</sup><sub>a</sub>x) (2)当n=2时,有log(logx)<leqslant logx-1四、比较两个对数函数大小的方法在比较两个对数函数大小时,我们可以使用以下方法:1. 换底公式设f(x) = log<sub>a</sub>x,g(x) = log<sub>b</sub>x,则有:f(x) = log<sub>a</sub>x = ln(x)/ln(a)g(x) = log<sub>b</sub>x = ln(x)/ln(b)因此,我们可以将两个对数函数都转化为以e为底的对数函数,然后比较它们的大小。
从一道高考题例谈指对数式大小比较的几种方法在高考数学试卷中,时常会出现涉及对数的大小比较题目。
对数是数学中常用的一种表示方式,具有广泛的应用领域,因此理解对数式大小比较方法具有重要意义。
本文将以一道典型的高考题为例,介绍几种可行的对数式大小比较方法。
题目如下:已知正数a,b满足log2^a = log8^b = log64^81,那么下列结论正确的是()A. a=2, b=3B. a=3, b=2C. a=81, b=9D. a=9, b=81首先,我们来理解一下题目中的对数式。
log2^a表示以2为底,a为真数的对数。
同理,log8^b表示以8为底,b为真数的对数,log64^81表示以64为底,81为真数的对数。
题干中要求找出符合这三个对数式关系的a和b的值。
方法一:换底公式换底公式是求解对数式大小的常用方法之一。
根据换底公式可以将对数式转化为同一个底数的对数形式,进而比较大小。
换底公式的表达式为:loga^x = logb^x / logb^a。
利用换底公式,我们可以将题目中的三个对数式统一为以底数2为底的对数式。
首先,将log8^b转换为以2为底的对数形式。
根据换底公式,有:log2^b = log8^b / log8^2由于log8^2 = log2^3,所以:log2^b = log8^b / log2^3 = 3log2^b可以得到b = 3。
接下来,将log64^81转换为以2为底的对数形式,同样应用换底公式:log2^81 = log64^81 / log64^2由于log64^2 = log2^6,所以:log2^81 = log64^81 / log2^6 = 6log2^81可以得到81 = 6log2^81,进一步简化为log2^81 = 81 / 6。
再进一步可以得到log2^81 = log2^2^4.5,因此81 = 2^4.5。
进一步计算得到2^4.5 ≈ 18.38。
高中数学对数大小教案
教学目标:
1. 了解对数的概念和性质;
2. 掌握对数大小的比较方法;
3. 提高解题能力,能够灵活运用对数进行问题解决。
教学内容:
1. 对数的定义和换底公式;
2. 对数大小的比较方法;
3. 对数的运算性质。
教学步骤:
一、导入(5分钟)
教师通过实际生活中的问题引入对数的概念,并让学生尝试解决问题,引发学生学习兴趣。
二、讲解(15分钟)
1. 对数的定义和性质;
2. 对数的换底公式;
3. 对数大小的比较方法。
三、练习与讨论(20分钟)
1. 请学生完成一些简单的对数大小比较题目;
2. 学生用自己的语言解释对数大小比较方法,与同学讨论交流。
四、拓展(10分钟)
教师给学生提供更复杂的对数大小比较题目,引导学生灵活运用对数进行问题解决。
五、总结(5分钟)
教师总结当天的教学内容,强调对数大小比较方法的重要性,并鼓励学生多多练习。
教学方法:
1. 教师讲解与学生互动结合,引导学生主动思考;
2. 多样化的练习方式,激发学生学习兴趣;
3. 拓展训练,帮助学生总结归纳,提高解题能力。
教学评估:
1. 课堂练习成绩;
2. 对学生对数大小比较方法的掌握情况进行观察;
3. 学生在课后的作业表现。
教学反思:
在教学过程中,应该注意引导学生主动思考和参与讨论,激发学生学习兴趣,提高对数大小比较的解题能力。
同时,及时总结反思,不断优化教学方法,提高教学效果。
对数指数幂函数比大小技巧对数指数幂函数是高中数学中的重要内容之一,其中比大小技巧是必须掌握的基本技能,本文将围绕“对数指数幂函数比大小技巧”展开讨论。
一、对数函数比大小技巧对数函数的比大小主要有以下两个步骤:1、若底数相同,则指数大的数值大;2、若指数相同,则底数大的数值大。
例如,比较$log_2 3$和$log_2 5$的大小,由于它们的底数相同,所以比较它们的指数即可,显然$log_2 5>log_2 3$,因此$log_25$比$log_2 3$大。
二、指数函数比大小技巧指数函数的比大小主要有以下两个步骤:1、若底数相同,则指数大的数值大;2、若指数相同,则底数大的数值大。
例如,比较$2^{0.1}$和$3^{0.1}$的大小,由于它们的指数相同,所以比较它们的底数即可,显然$3^{0.1}>2^{0.1}$,因此$3^{0.1}$比$2^{0.1}$大。
三、幂函数比大小技巧幂函数的比大小主要有以下两个步骤:1、若底数相同,则指数大的数值大;2、若指数相同,则底数大的数值大。
例如,比较$2^{0.1}$和$3^{0.1}$的大小,由于它们的指数相同,所以比较它们的底数即可,显然$3^{0.1}>2^{0.1}$,因此$3^{0.1}$比$2^{0.1}$大。
四、对数、指数和幂函数比大小综合技巧对于对数、指数和幂函数的混合比较,我们要根据具体情况来决定采用哪一种比较技巧,具体方法如下:1、若比较的两个函数中只有同一种函数,则按该函数的比较规则比较大小。
例如,比较$2^{0.1}$和$3^{0.1}$的大小,由于它们都是指数函数,所以按照指数函数的比较规则比较大小,结果为$3^{0.1}>2^{0.1}$。
2、若比较的两个函数中包含不同种类的函数,则利用对数函数将它们都化为幂函数,再比较大小。
例如,比较$log_2 3$和$2^{0.5}$的大小,由于它们是不同种类的函数,所以需要利用对数函数将它们都化为幂函数,化简后为$2^{log_2 3}$和$2^{0.5}$,由于它们的底数相同,所以只需比较指数的大小,即$log_2 3>0.5$,因此$2^{log_2 3}>2^{0.5}$,即$log_2 3>2^{0.5}$。
第五节对数与对数函数[考纲要求]1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象.3.体会对数函数是一类重要的函数模型.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).突破点一对数的运算[基本知识]1.对数的概念、性质及运算概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x =log a N,其中a叫做对数的底数,N叫做真数,log a N叫做对数式性质对数式与指数式的互化:a x=N⇔x=log a Nlog a1=0,log a a=1,a log a N=_N_运算法则log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0 log aMN=log a M-log a Nlog a M n=n log a M(n∈R)(1)换底公式:log a b=log c blog c a(a>0,且a≠1,c>0,且c≠1,b>0);(2)log a b=1log b a,推广log a b·log b c·log c d=log a d.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)(-2)3=-8可化为log(-2)(-8)=3.()(2)log2x2=2log2x.()(3)存在这样的M,N使得log2(MN)=log2M·log2N.()答案:(1)×(2)×(3)√二、填空题1.已知log62=p,log65=q,则lg 5=________(用p,q表示).解析:lg 5=log65log610=qlog62+log65=qp+q.答案:q p +q2.计算:2312log +lg 8+32lg 25+⎝⎛⎭⎫925-12=________. 解析:原式=13+3(lg 2+lg 5)+53=5.答案:53.已知4a =2,lg x =a ,则x =________. 解析:∵4a =22a =2,∴a =12.∴lg x =12,∴x =10.答案:104.log 225·log 34·log 59=________.解析:原式=lg 25lg 2·lg 4lg 3·lg 9lg 5=2lg 5lg 2·2lg 2lg 3·2lg 3lg 5=8.答案:8[典例感悟]计算下列各式的值: (1)log 535+2log 122-log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64.解:(1)原式=log 535+log 550-log 514+2log 12212=log 535×5014+log 122=log 553-1=2.(2)原式=[(log 66-log 63)2+log 62·log 6(2×32)]÷log 64=⎣⎡⎦⎤⎝⎛⎭⎫log 6632+log 62·(log 62+log 632)÷log 622 =[(log 62)2+(log 62)2+2log 62·log 63]÷2log 62 =log 62+log 63=log 6(2×3)=1.[方法技巧]解决对数运算问题的常用方法(1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.(4)利用常用对数中的lg 2+lg 5=1.[针对训练]1.计算:⎝⎛⎭⎫lg 14-lg 25÷100-12=________. 解析:原式=lg ⎝⎛⎭⎫14×125×10012=lg 10-2×10=-2×10=-20. 答案:-202.计算:lg 5(lg 8+lg 1 000)+(lg 23)2+lg 16+lg 0.06=________.解析:原式=lg 5(3lg 2+3)+3(lg 2)2+lg ⎝⎛⎭⎫16×0.06 =3lg 5·lg 2+3lg 5+3(lg 2)2-2= 3lg 2(lg 5+lg 2)+3lg 5-2=3lg 2+3lg 5-2=1.答案:13.(2019·宁波期末)已知4a =5b =10,则1a +2b =________.解析:∵4a =5b =10,∴a =log 410,1a =lg 4,b =log 510,1b =lg 5,∴1a +2b =lg 4+2lg 5=lg 4+lg 25=lg 100=2.答案:2突破点二 对数函数的图象及应用[基本知识]1.对数函数的图象 函数y =log a x ,a >1y =log a x,0<a <1图象图象特征 在y 轴右侧,过定点(1,0)当x 逐渐增大时,图象是上升的当x 逐渐增大时,图象是下降的2.底数的大小决定了图象相对位置的高低不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大,如图,0<c <d <1<a <b .在x 轴上侧,图象从左到右相应的底数由小变大; 在x 轴下侧,图象从右到左相应的底数由小变大. (无论在x 轴的上侧还是下侧,底数都按顺时针方向变大) 3.指数函数与对数函数的关系指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象不在第二、三象限.( )(2)函数y =log 2(x +1)的图象恒过定点(0,0).( ) 答案:(1)√ (2)√ 二、填空题1.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是________. 解析:y =log a x 的图象恒过点(1,0),令x -3=1,得x =4,则y =-1. 答案:(4,-1)2.函数y =log 3|2x -m |的图象关于x =12对称,则m =________.答案:13.若f (x )=log 2x ,则f (x )>0的x 的范围是________. 答案:(1,+∞)[全析考法]考法一 对数函数图象的辨析[例1] (2019·海南三市联考)函数f (x )=|log a (x +1)|的大致图象是( )[解析] 法一:函数f (x )=|log a (x +1)|的定义域为{x |x >-1},且对任意的x ,均有f (x )≥0,结合对数函数的图象可知选C.法二:||y =log a (x +1)的图象可由y =log a x 的图象左移1个单位,再向上翻折得到,结合选项知选C.[答案] C [方法技巧]研究对数型函数图象的思路研究对数型函数的图象时,一般从最基本的对数函数的图象入手,通过平移、伸缩、对称变换得到.特别地,要注意底数a >1或0<a <1这两种不同情况.考法二 对数函数图象的应用[例2] (2019·辽宁五校联考)已知函数f (x )=|ln x |.若0<a <b ,且f (a )=f (b ),则a +4b 的取值范围是( )A .(4,+∞)B .[4,+∞)C .(5,+∞)D .[5,+∞)[解析] 由f (a )=f (b )得|ln a |=|ln b |,根据函数y =|ln x |的图象及0<a <b ,得-ln a =ln b,0<a <1<b ,1a =b .令g (b )=a +4b =4b +1b ,易得g (b )在(1,+∞)上单调递增,所以g (b )>g (1)=5. [答案] C [易错提醒]应用对数函数图象求解问题时易出现作图失误导致求解错误,要记准记牢图象的变换规律.[集训冲关]1.[考法一]函数f (x )=log a |x |+1(0<a <1)的图象大致为( )解析:选A由函数f(x)的解析式可确定该函数为偶函数,图象关于y轴对称.设g(x)=log a|x|,先画出x>0时,g(x)的图象,然后根据g(x)的图象关于y轴对称画出x<0时g(x)的图象,最后由函数g(x)的图象向上整体平移一个单位即得f(x)的图象,结合图象知选A.2.[考法二]已知函数f(x)=|log12x|的定义域为⎣⎡⎦⎤12,m,值域为[0,1],则m的取值范围为________.解析:作出f(x)=|log12x|的图象(如图),可知f⎝⎛⎭⎫12=f(2)=1,f(1)=0,由题意结合图象知:1≤m≤2.答案:[1,2]3.[考法二]使log2(-x)<x+1成立的x的取值范围是________.解析:在同一坐标系中分别画出函数y=log2(-x)和y=x+1的图象(如图所示),由图象知使log2(-x)<x+1成立的x的取值范围是(-1,0).答案:(-1,0)突破点三对数函数的性质及应用[基本知识]对数函数的性质函数y=log a x(a>0,且a≠1)a>10<a<1性质定义域(0,+∞)值域R单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值变化规律当x=1时,y=0当x>1时,y>0;当x>1时,y<0;当0<x <1时,y <0当0<x <1时,y >0[基本能力]一、判断题(对的打“√”,错的打“×”) (1)当x >1时,log a x >0.( )(2)函数y =lg(x +3)+lg(x -3)与y =lg[(x +3)(x -3)]的定义域相同.( ) (3)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( ) 答案:(1)× (2)× (3)× 二、填空题1.函数y =log 2x -1的定义域为________. 答案:[2,+∞)2.函数y =log 12(3x -1)的单调递减区间为________.答案:⎝⎛⎭⎫13,+∞3.函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________. 答案:2或12[全析考法]考法一 与对数有关的函数定义域问题[例1] (2018·西安二模)若函数y =log 2(mx 2-2mx +3)的定义域为R ,则实数m 的取值范围是( )A .(0,3)B .[0,3)C .(0,3]D .[0,3][解析] 由题意知mx 2-2mx +3>0恒成立.当m =0时,3>0,符合题意;当m ≠0时,只需⎩⎪⎨⎪⎧m >0,Δ=(-2m )2-12m <0,解得0<m <3.综上0≤m <3,故选B.[答案] B [方法技巧]已知f (x )=log a (px 2+qx +r )(a >0,且a ≠1)的定义域为R ,求参数范围时,要注意分p =0,p ≠0讨论.同时p ≠0时应结合图象说明成立条件.考法二 与对数有关的比较大小问题[例2] (2019·湖北华中师大第一附属中学期中)设a =2 01812019,b =log 2 018 2 019,c=log 2 019 2 018,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a[解析] ∵a =2 01812019>2 0180=1,1=log 2 0182 018>b =log 2 018 2 019>log 2 018 2 018=12,c =log 2 019 2 018<log 2 019 2 019=12,所以a >b >c .故选A. [答案] A[方法技巧] 对数函数值大小比较的方法 单调性法 在同底的情况下直接得到大小关系,若不同底,先化为同底中间量过渡法 寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”图象法根据图象观察得出大小关系考法三 与对数有关的不等式问题[例3] 设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0.若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)[解析] 由题意得⎩⎪⎨⎪⎧ a >0,log 2a >-log 2a 或⎩⎪⎨⎪⎧a <0,-log 2(-a )>log 2(-a ),解得a >1或-1<a <0.故选C. [答案] C [方法技巧]简单对数不等式问题的求解策略(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数a 的值有关,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.(3)某些对数不等式可转化为相应的函数图象问题,利用数形结合法求解. 考法四 对数函数性质的综合问题[例4] 若函数f (x )=log 12(-x 2+4x +5)在区间(3m -2,m +2)内单调递增,则实数m的取值范围为( )A.⎣⎡⎦⎤43,3B.⎣⎡⎦⎤43,2C.⎣⎡⎭⎫43,2D.⎣⎡⎭⎫43,+∞ [解析] 由-x 2+4x +5>0,解得-1<x <5.二次函数y =-x 2+4x +5的对称轴为x =2.由复合函数单调性可得函数f (x )= log 12(-x 2+4x +5)的单调递增区间为(2,5).要使函数f (x )=log 12(-x 2+4x +5)在区间(3m -2,m +2)内单调递增,只需⎩⎪⎨⎪⎧3m -2≥2,m +2≤5,3m -2<m +2,解得43≤m <2.[答案] C [方法技巧]解决对数函数性质的综合问题的3个注意点(1)要分清函数的底数是a ∈(0,1),还是a ∈(1,+∞).(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行.(3)转化时一定要注意对数问题转化的等价性.[集训冲关]1.[考法一]函数f (x )=1ln (3x +1)的定义域是( )A.⎝⎛⎭⎫-13,+∞ B.⎝⎛⎭⎫-13,0∪(0,+∞) C.⎣⎡⎭⎫-13,+∞ D .[0,+∞)解析:选B 由⎩⎪⎨⎪⎧3x +1>0,ln (3x +1)≠0,解得x >-13且x ≠0,故选B.2.[考法二]设a =log 50.5,b =log 20.3,c =log 0.32,则a ,b ,c 的大小关系是( ) A .b <a <c B .b <c <a C .c <b <aD .a >b >c解析:选B a =log 50.5>log 50.2=-1,b =log 20.3<log 20.5=-1,c =log 0.32>log 0.3103=-1,log 0.32=lg 2lg 0.3,log 50.5=lg 0.5lg 5=lg 2-lg 5=lg 2lg 0.2.∵-1<lg 0.2<lg 0.3<0,∴lg 2lg 0.3<lg 2lg 0.2,即c <a ,故b <c <a .故选B.3.[考法三](2019·湛江模拟)已知log a 34<1,那么a 的取值范围是________.解析:∵log a 34<1=log a a ,故当0<a <1时,y =log a x 为减函数,0<a <34;当a >1时,y =log a x 为增函数,a >34,∴a >1.综上所述,a 的取值范围是⎝⎛⎭⎫0,34∪(1,+∞). 答案:⎝⎛⎭⎫0,34∪(1,+∞) 4.[考法四](2019·盐城中学月考)已知函数f (x )=log a1-xb +x(0<a <1)为奇函数,当x ∈(-1,a ]时,函数f (x )的值域是(-∞,1],则a +b 的值为________.解析:由1-xb +x >0,解得-b <x <1(b >0).又奇函数定义域关于原点对称,故b =1.所以f (x )=log a 1-x 1+x (0<a <1).又g (x )=1-x x +1=-1+2x +1在(-1,a ]上单调递减,0<a <1,所以f (x )在(-1,a ]上单调递增.又因为函数f (x )的值域是(-∞,1],故f (a )=1,此时g (a )=a ,即1-a a +1=a ,解得a =2-1(负根舍去),所以a +b = 2.答案: 2[课时跟踪检测][A 级 基础题——基稳才能楼高]1.(log 29)(log 32)+log a 54+log a ⎝⎛⎭⎫45a (a >0,且a ≠1)的值为( ) A .2 B .3 C .4D .5解析:选B 原式=(2log 23)(log 32)+log a ⎝⎛⎭⎫54×45a =2×1+log a a =3. 2.(2018· 衡水名校联考)函数y =log 23(2x -1)的定义域是( )A .[1,2]B .[1,2) C.⎣⎡⎦⎤12,1D.⎝⎛⎦⎤12,1解析:选D 由log 23(2x -1)≥0⇒0<2x -1≤1⇒12<x ≤1.3.设a =log 3π,b =log 23,c =log 32,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .b >a >cD .b >c >a解析:选A 因为a =log 3π>log 33=1,b =log 23<log 22=1,所以a >b ; 又b c =12log 2312log 32=(log 23)2>1,c >0,所以b >c .故a >b >c .4.(2019·武汉调研)函数f (x )=log a (x 2-4x -5)(a >1)的单调递增区间是( ) A .(-∞,-2) B .(-∞,-1) C .(2,+∞)D .(5,+∞)解析:选D 由函数f (x )=log a (x 2-4x -5)得x 2-4x -5>0,得x <-1或x >5.令m (x )=x 2-4x -5,则m (x )=(x -2)2-9,m (x )在[2,+∞)上单调递增,又由a >1及复合函数的单调性可知函数f (x )的单调递增区间为(5,+∞),故选D.5.已知a >0,且a ≠1,函数y =log a (2x -3)+2的图象恒过点P .若点P 也在幂函数f (x )的图象上,则f (x )=________.解析:设幂函数为f (x )=x α,因为函数y =log a (2x -3)+2的图象恒过点P (2,2),则2α=2,所以α=12,故幂函数为f (x )=x 12.答案:x 126.函数y =log 2|x +1|的单调递减区间为__________,单调递增区间为__________. 解析:作出函数y =log 2x 的图象,将其关于y 轴对称得到函数y =log 2|x |的图象,再将图象向左平移1个单位长度就得到函数y =log 2|x +1|的图象(如图所示).由图知,函数y =log 2|x +1|的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞).答案:(-∞,-1) (-1,+∞)[B 级 保分题——准做快做达标]1.(2019·广东普通高中学业水平考试)对任意的正实数x ,y ,下列等式不成立的是( ) A .lg y -lg x =lg yxB .lg(x +y )=lg x +lg yC .lg x 3=3lg xD .lg x =ln xln 10解析:选B 由对数的运算性质可知lg x +lg y =lg(xy ),因此选项B 错误. 2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B.12xC .log 12xD .2x -2解析:选A 由题意知f (x )=log a x (a >0,且a ≠1). ∵f (2)=1,∴log a 2=1.∴a =2.∴f (x )=log 2x .3.已知函数f (x )=lg(1+4x 2+2x )+2,则f (ln 2)+f ⎝⎛⎭⎫ln 12=( ) A .4 B .2 C .1D .0解析:选A 由函数f (x )的解析式可得:f (x )+f (-x )=lg(1+4x 2+2x )+2+lg(1+4x 2-2x )+2=lg(1+4x 2-4x 2)+4=4, ∴f (ln 2)+f ⎝⎛⎭⎫ln 12=f (ln 2)+f (-ln 2)=4.故选A. 4.(2019·衡水中学模考)函数y =x ln|x ||x |的图象可能是( )解析:选B 易知函数y =x ln|x ||x |为奇函数,故排除A ,C ;当x >0时,y =ln x ,只有B项符合.故选B.5.(2019·菏泽模拟)若函数f (x )=⎩⎪⎨⎪⎧-x +8,x ≤2,log a x +5,x >2(a >0,a ≠1)的值域为[6,+∞),则a 的取值范围是( )A .(0,1)B .(0,1)∪(1,2)C .(1,2]D .[2,+∞)解析:选C 当x ≤2时,f (x )∈[6,+∞),所以当x >2时,f (x )的取值集合A ⊆[6, +∞).当0<a <1时,A =(-∞,log a 2+5),不符合题意;当a >1时,A =(log a 2+5,+∞),若A ⊆[6,+∞),则有log a 2+5≥6,得1<a ≤2.综上所述,选C.6.设a ,b ,c 均为正数,且2a =log 12a ,⎝⎛⎭⎫12b =log 12b ,⎝⎛⎭⎫12c =log 2c ,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析:选A ∵a >0,∴2a >1,∴log 12a >1,∴0<a <12.∵b >0,∴0<⎝⎛⎭⎫12b <1,∴0<log 12b <1,∴12<b <1. ∵c >0,∴⎝⎛⎭⎫12c >0,∴log 2c >0,∴c >1. ∴0<a <12<b <1<c ,故选A.7.已知函数f (x )=log a (2x -a )在区间⎣⎡⎦⎤12,23上恒有f (x )>0,则实数a 的取值范围是( ) A.⎝⎛⎭⎫13,1 B.⎣⎡⎭⎫13,1 C.⎝⎛⎭⎫23,1D.⎣⎡⎭⎫23,1解析:选A 当0<a <1时,函数f (x )在区间⎣⎡⎦⎤12,23上是减函数,所以log a ⎝⎛⎭⎫43-a >0,即0<43-a <1,解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间[ 12,23 ]上是增函数,所以log a (1-a )>0,即1-a >1,解得a <0,此时无解.综上所述,实数a 的取值范围是⎝⎛⎭⎫13,1. 8.(2019·六安一中一模)计算:(lg 3)2-lg 9+1-lg 13+8130.5 log 5=________.解析:原式=(lg 3)2-2lg 3+1+lg 3+33log 25=1-lg 3+lg 3+25=26.答案:269.已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.解析:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-2a )>1,解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数,由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-a )>1,解得a >4,且0<a <1,故不存在.综上可知,实数a 的取值范围是⎝⎛⎭⎫1,83. 答案:⎝⎛⎭⎫1,83 10.若函数f (x )=log a (x 2-26x +a )(a >0,且a ≠1)有最小值12,则实数a 的值等于________.解析:令g (x )=x 2-26x +a ,则f (x )=log a [g (x )].①若a >1,由于函数f (x )有最小值12,则g (x )应有最小值 a ,而g (x )=x 2-26x +a =(x -6)2+a -6,当x =6时,取最小值a-6,因此有⎩⎨⎧a >1,a =a -6,解得a =9.②若0<a <1,由于函数f (x )有最小值12,则g (x )应有最大值a ,而g (x )不存在最大值,不符合题意.综上,实数a =9.答案:911.已知函数f (x )=lg ⎝⎛⎭⎫x +ax -2,其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解:(1)由x +a x -2>0,得x 2-2x +a x >0,当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞);当a =1时,定义域为{x |x >0且x ≠1};当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x -2,当a ∈(1,4),x ∈[2,+∞)时,∴g ′(x )=1-a x 2=x 2-ax 2>0.因此g (x )在[2,+∞)上是增函数,∴f (x )在[2,+∞)上是增函数.则f (x )min =f (2)=lg a2.(3)对任意x ∈[2,+∞),恒有f (x )>0.即x +ax -2>1对x ∈[2,+∞)恒成立.∴a >3x -x 2.令h (x )=3x -x 2,x ∈[2,+∞).由于h (x )=-⎝⎛⎭⎫x -322+94在[2,+∞)上是减函数,∴h (x )max =h (2)=2.故a >2时,恒有f (x )>0.因此实数a 的取值范围为(2,+∞).12.(2019·邯郸模拟)已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解:(1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,当x ∈[0,2]时,t (x )的最小值为3-2a , ∵当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0,∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝⎛⎭⎫1,32. (2)由(1)知函数t (x )=3-ax 为减函数.∵f (x )在区间[1,2]上为减函数,∴y =log a t 在[1,2]上为增函数,∴a >1, 当x ∈[1,2]时,t (x )的最小值为3-2a ,f (x )的最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a(3-a )=1,即⎩⎨⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.[C 级 难度题——适情自主选做]1.(2019·长沙五校联考)设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1D .0<x 1x 2<1解析:选D 构造函数y =10x 与y =|lg(-x )|,并作出它们的图象,如图所示.因为x 1,x 2是10x =|lg(-x )|的两个根,所以两个函数图象交点的横坐标分别为x 1,x 2,不妨设x 2<-1,-1<x 1<0,则10x 1=-lg(-x 1),10x 2=lg(-x 2),因此10x 2-10x 1=lg(x 1x 2),因为10x 2-10x 1<0,所以lg(x 1x 2)<0,即0<x 1x 2<1.2.(2019·安丘一中期中)如图所示,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log22x ,y =x 12,y =⎝⎛⎭⎫22x 的图象上,且矩形的边分别平行于两坐标轴,若点A 的纵坐标为2,则点D 的坐标为________.解析:因为点A 的纵坐标为2,所以令2x =2,解得点A 的横坐标为12,故x D =12.令x 12=2,解得x =4,故x C =4.所以y C =⎝⎛⎭⎫224=14,故y D=14,所以D ⎝⎛⎭⎫12,14.答案:⎝⎛⎭⎫12,143.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.解析:因为f (x )=|log 3x |=⎩⎪⎨⎪⎧-log 3x ,0<x <1,log 3x ,x ≥1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,由0<m <n 且f (m )=f (n ),可得⎩⎪⎨⎪⎧0<m <1,n >1,log 3n =-log 3m ,则⎩⎪⎨⎪⎧0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3,所以n m =9.答案:9。
对数函数比较大小方法教学目标:使学生掌握对数形式复合函数的单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.教学重点:复合函数单调性、奇偶性的讨论方法.教学难点:复合函数单调性、奇偶性的讨论方法.教学过程:[例1]设loga23 <1,则实数a的取值范围是a.0<a<23b. 23 <a<1c.0<a<23 或a>1d.a>23求解:由loga23 <1=logaa得(1)当0<a<1时,由y=logax是减函数,得:0<a<23(2)当a>1时,由y=logax就是增函数,得:a>23 ,∴a>1综合(1)(2)得:0<a<23 或a>1 答案:c[基准2]三个数60.7,0.76,log0.76的大小顺序就是a.0.76<log0.76<60.7b.0.76<60.7<log0.76c.log0.76<60.7<0.76d.log0.76<0.76<60.7解:由于60.7>1,0<0.76<1,log0.76<0 答案:d[基准3]设0<x<1,a>0且a≠1,先行比较|loga(1-x)|与|loga(1+x)|的大小解法一:作差法|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga |=1|lga| (|lg(1-x)|-|lg(1+x)|)∵0<x<1,∴0<1-x<1<1+x∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,∴|loga(1-x)|>|loga(1+x)|数学分析二:并作商法lg(1+x)lg(1-x) =|log(1-x)(1+x)|∵0<x<1 ∴0<1-x<1+x∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x由0<x<1 ∴1+x>1,0<1-x2<1∴0<(1-x)(1+x)<1 ∴11+x >1-x>0∴0<log(1-x) 11+x <log(1-x)(1-x)=1∴|loga(1-x)|>|loga(1+x)|数学分析三:平方后比较大小∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x∵0<x<1,∴0<1-x2<1,0<1-x1+x <1∴lg(1-x2)<0,lg1-x1+x <0∴loga2(1-x)>loga2(1+x)即为|loga(1-x)|>|loga(1+x)|解法四:分类讨论去掉绝对值当a>1时,|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2)∵0<1-x<1<1+x,∴0<1-x2<1∴loga(1-x2)<0,∴-loga(1-x2)>0当0<a<1时,由0<x<1,则存有loga(1-x)>0,loga(1+x)<0∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0∴当a>0且a≠1时,总存有|loga(1-x)|>|loga(1+x)|[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为r,求实数a的取值范围求解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈r恒设立.当a2-1≠0时,其充要条件是:a2-1>0△=(a+1)2-4(a2-1)<0 Champsaura<-1或a>53又a=-1,f(x)=0满足题意,a=1不合题意.所以a的值域范围就是:(-∞,-1]∪(53 ,+∞)[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小求解:易知f(x)、g(x)的定义域均就是:(0,1)∪(1,+∞)f(x)-g(x)=1+logx3-2logx2=logx(34 x).①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).若34 x<1,则1<x<43 ,这时f(x)<g(x)②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x)当x∈(1,43 )时,f(x)<g(x)[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]求解:原方程可以化成(9x-1-5)= [4(3x-1-2)]∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3∴x=1或x=2 经检验x=1就是减根∴x=2是原方程的根.[基准7]解方程log2(2-x-1) (2-x+1-2)=-2解:原方程可化为:log2(2-x-1)(-1)log2[2(2-x-1)]=-2即:log2(2-x-1)[log2(2-x-1)+1]=2令t=log2(2-x-1),则t2+t-2=0解之得t=-2或t=1∴log2(2-x-1)=-2或log2(2-x-1)=1解之得:x=-log 或x=-log23一、说道教材1、地位和作用本章自学就是在学生顺利完成函数的第一阶段自学(初中)的基础上,展开第二阶段的函数自学。
对数比大小的万能方法是通过比较对数来确定原始数的大小。
当比较两个正数a和b时,可以将它们都取对数,然后比较对数的大小来确定原始数的大小。
具体步骤如下:
计算a和b的对数。
可以选择以任意底数来计算对数,常用的有以10为底的常用对数(记作log)和以自然对数e为底的自然对数(记作ln)。
log(a)表示以10为底的a的对数。
ln(a)表示以e为底的a的对数。
比较对数的大小。
对数越大,原始数越大;对数越小,原始数越小。
因此,如果log(a) > log(b),则a比b更大;如果log(a) < log(b),则a比b更小。
需要注意的是,对数比大小方法相对简便,但并不适用于所有情况,特别是在比较负数或0时。
在使用该方法时,请确保比较的数是正数并且不为0。
比较对数大小一般方法一、选择题1、已知0<a<1,b>1且ab>1,则M=loga ,N=logab,P=loga.三数大小关系为( )A.P<N<M B.N<P<M C.N<M<P D.P<M<N2、当0<x<1时,下列不等式成立的是( ) A .(12)x +1>(12)1-xB .log (1+x)(1-x)>1C .0<1-x 2<1D .log (1-x)(1+x)>0二、填空题3、设,,,则之间的大小关系为_________.4、若a=log 3π,b=log 76,c=log 20.8,则从小到大的顺序为__________.三、解答题5、已知且,求使方程有解时的的取值范围6、已知函数2()log (424)x x f x b =+⋅+,()g x x =.(1)当5b =-时,求()f x 的定义域; (2)若()()f x g x >恒成立,求b 的取值范围.参考答案一、选择题1.B2.C二、填空题3、4、c<b<a三、解答题5、解:,即①,或② 当时,①得,与矛盾;②不成立 23log a =25log b =32log c =c b a ,,0a >1a ≠222log ()log ()a a x ak x a -=-k b a c >>22222log ()log ()a a x ak x a -=-22222()x akx a x ak x a >⎧⎪>⎨⎪-=-⎩2(1)2x ak x a a k x k ⎧⎪>⎪⎪>⎨⎪+⎪=⎪⎩2(1)2x ak x a a k x k ⎧⎪>⎪⎪<-⎨⎪+⎪=⎪⎩1k ≥22(1),12a k ak k k+><1k ≥当时,①得,恒成立,即;②不成立 显然,当时,①得,不成立, ②得得 ∴或6、(1)由45240x x -⋅+>………………………………………………3分解得()f x 的定义域为(,0)(2,)-∞⋃+∞.………………………6分(2)由()()f x g x >得4242x x x b +⋅+>,即4122x xb ⎛⎫>-+ ⎪⎝⎭……………………9分 令4()122x x h x ⎛⎫=-+ ⎪⎝⎭,则()3h x ≤-,………………………………………………12分∴ 当3b >-时,()()f x g x >恒成立.………………………………………………14分01k <<22(1),122a k a k k k +>+>01k <<0k ≠0k <22(1),122a k a k k k +>+<2(1),2a k ak a k+<<-1k <-01k<<1k <-。
微专题41 指对数比较大小在填空选择题中我们会遇到一类比较大小的问题,通常是三个指数和对数混在一起,进行排序。
这类问题如果两两进行比较,则花费的时间较多,所以本讲介绍处理此类问题的方法与技巧一、一些技巧和方法1、如何快速判断对数的符号?八字真言“同区间正,异区间负”,容我慢慢道来: 判断对数的符号,关键看底数和真数,区间分为()0,1和()1,+∞(1)如果底数和真数均在()0,1中,或者均在()1,+∞中,那么对数的值为正数 (2)如果底数和真数一个在()0,1中,一个在()1,+∞中,那么对数的值为负数 例如:30.52log 0.50,log 0.30,log 30<>>等2、要善于利用指对数图像观察指对数与特殊常数(如0,1)的大小关系,一作图,自明了3、比较大小的两个理念:(1)求同存异:如果两个指数(或对数)的底数相同,则可通过真数的大小与指对数函数的单调性,判断出指数(或对数)的关系,所以要熟练运用公式,尽量将比较的对象转化为某一部分相同的情况例如:1113423,4,5,比较时可进行转化,尽管底数难以转化为同底,但指数可以变为相同()()()11111143634212121233,44,55===,从而只需比较底数的大小即可(2)利用特殊值作“中间量”:在指对数中通常可优先选择“0,1”对所比较的数进行划分,然后再进行比较,有时可以简化比较的步骤(在兵法上可称为“分割包围,各个击破”,也有一些题目需要选择特殊的常数对所比较的数的值进行估计,例如2log 3,可知2221log 2log 3log 42=<<=,进而可估计2log 3是一个1点几的数,从而便于比较4、常用的指对数变换公式:(1)nm mn a a ⎛⎫= ⎪⎝⎭(2)log log log a a a M N MN += log log log a a a M M N N-= (3)()log log 0,1,0na a N n N a a N =>≠>(4)换底公式:log log log c a c bb a=进而有两个推论:1log log a b b a =(令c b =) log log m na a n N N m=二、典型例题:例1:设323log ,log log a b c π===,,a b c 的大小关系是______________ 思路:可先进行0,1分堆,可判断出1,0b 1,0c 1a ><<<<,从而a 肯定最大,只需比较,b c 即可,观察到,b c 有相同的结构:真数均带有根号,抓住这个特点,利用对数公式进行变换:223311log log 3,log log 222b c ====,从而可比较出32log 21log 3<<,所以c b < 答案:c b a <<例2:设123log 2,ln 2,5a b c -===,则,,a b c 的大小关系是___________思路:观察发现,,a b c 均在()0,1内,,a b 的真数相同,进而可通过比较底数得到大小关系:a b <,在比较和c 的大小,由于c 是指数,很难直接与对数找到联系,考虑估计,,a b c 值得大小:12152c -==<=,可考虑以12为中间量,则331log 2log 2a =>=,进而12a c >>,所以大小顺序为b a c >> 答案:b a c >>例3:设ln2ln3ln5,,,235a b c === 则,,a b c 的大小关系为( )A. a b c >>B. a c b >>C. b a c >>D. b c a >> 思路:观察到,,a b c 都是以e 为底的对数,所以将其系数“放”进对数之中,再进行真数的比较。
111352ln 2ln3ln5ln 2,ln3,ln5,235a b c ======发现真数的底与指数也不相同,所以依然考虑“求同存异”,让三个真数的指数一致:()()()1111111510635230303022,33,55=== ,通过比较底数的大小可得:b a c >> 答案:C小炼有话说:(1)本题的核心处理方式就是“求同存异”,将三个数变形为具备某相同的部分,从而转换比较的对象,将“无法比较”转变为“可以比较”(2)本题在比较指数幂时,底数的次数较高,计算起来比较麻烦。
所以也可以考虑将这三个数两两进行比较,从而减少底数的指数便于计算。
例如可以先比较,:a b ()()11113232662=2,3=3,从而a b <,同理再比较,a c 或,b c 即可例4:设6log 3=a ,10log 5=b ,14log 7=c ,则( )A. a b c >>B. b c a >>C. a c b >>D. a b c >> 思路:观察可发现:()()()335577log 321log 2,log 521log 2,log 721log 2a b c =⨯=+=⨯=+=⨯=+357log 2log 2log 2>>,所以可得:a b c >>答案:D例5:设232555322,,,555a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则,,a b c 的大小关系为( )A. a b c >>B. a c b >>C. b a c >>D. b c a >> 思路:观察可发现,b c 的底数相同,,a c 的指数相同,进而考虑先进行这两轮的比较。
对于,b c ,两者底数在()0,1,则指数越大,指数幂越小,所以可得b c <,再比较,a c ,两者指数相同,所以底数越大,则指数幂越大,所以a c >,综上:a c b >> 答案:B例6:已知三个数0.5333,log 2,cos2a b c ===,则它们之间的大小关系是( ) A. c b a << B. c a b << C. a b c << D. b c a <<思路:可先进行0,1分组,0.531a =>,0,1b c <<,所以只需比较,b c 大小,两者都介于0,1之间且一个是对数,一个是三角函数,无法找到之间的联系。
所以考虑寻找中间值作为桥梁。
以3cos2作为入手点。
利用特殊角的余弦值估计其大小。
331cos cos 23232ππ>⇒<=,而331log 2log 2>=,从而12c b <<,大小顺序为c b a <<答案:A小炼有话说:在寻找中间量时可以以其中一个为入手点,由于非特殊角的三角函数值可用特殊角三角函数值估计值的大小,所以本题优先选择c 作为研究对象。
例7:(2015甘肃河西三校第一次联考)设 1.1 3.13log 7,2,0.8a b c ===,则( )A. b a c <<B. a c b <<C. c b a <<D. c a b << 思路:首先进行0,1分组,可得1,c a b <<,下面比较,a b 的大小,可以考虑以2作为中间量,1.13322,log 7log 92b a =>=<=,所以2a b <<,从而c a b <<答案:D例8:设0,1a b a b >>+=且1111,log ,log bb a b x y ab z a a ⎛⎫+ ⎪⎝⎭⎛⎫=== ⎪⎝⎭,则,,x y z 的大小关系是( )A. y x z <<B. z y x <<C. y z x <<D. x y z <<思路:由0,1a b a b >>+=可得:1012b a <<<<,先用0,1将,,x y z 分堆,0x >,,0y z <,则x 为最大,只需要比较,y z 即可,由于,y z 的底数与真数不同,考虑进行适当变形并寻找中间量。
111log log log 1a b ababa b y ab ab ab +⎛⎫+ ⎪⎝⎭====-,而1log log b bz a a ==-,因为01b <<,所以log log 1,log 1b b b a b z a y <==->-=,所以顺序为y z x << 答案:C例9:下列四个数:()()2ln2,ln ln2,ln2a b c d ====的大小顺序为________ 思路:观察发现()ln ln20b =<,其余均为正。
所以只需比较,,a c d ,考虑()ln20,1∈,所以a d <,而1ln22c d ==<,所以下一步比较,a c :()(211ln 2ln 2ln 2ln 2ln 2ln 2022a c ⎛⎫-=-=-=-> ⎪⎝⎭,所以a c >,综上所述,大小顺序为b c a d <<<答案:b c a d <<<例10:已知,,a b c 均为正数,且11222112log ,log ,log 22b caa b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则( )A. a b c <<B. c b a <<C. c a b <<D. b a c << 思路:本题要通过左右相等的条件,以某一侧的值作为突破口,去推断,,a b c 的范围。
首先观察等式左侧,左侧的数值均大于0,所以可得:11222log ,log ,log a b c 均大于0,由对数的符号特点可得:(),0,1,1a b c ∈>,只需比较,a b 大小即可。
观察到1212ba⎛⎫>> ⎪⎝⎭,从而1122log log a b a b >⇒<,所以顺序为a b c <<答案:A小炼有话说:本题也可用数形结合的方式比较大小,观察发现前两个等式右侧为12log y x =的形式,而第三个等式也可变形为2121log log 2cc c ⎛⎫-=-= ⎪⎝⎭,从而可以考虑视,,a b c 分别为两个函数的交点。
先作出12log y x =图像,再在这个坐标系中作出112,,22x xxy y y ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,比较交点的位置即可。