高一数学比较大小
- 格式:ppt
- 大小:577.50 KB
- 文档页数:16
比较大小数字的大小比较数字大小比较是数学中非常基础的概念之一。
无论是在日常生活中还是在工作和学习中,我们经常需要比较数字的大小。
通过比较数字的大小,我们可以确定大小关系,进而做出适当的决策和判断。
本文将从不同角度介绍比较大小数字的方法和技巧。
一. 基本概念与符号表示数字大小比较的基本概念是了解数字的大小和大小关系。
在数学中,我们常用符号表示数字的大小。
以下是常见的符号表示方法:1. 大于:使用符号 ">" 表示,比如 a > b 表示数字 a 大于数字 b。
2. 小于:使用符号 "<" 表示,比如 a < b 表示数字 a 小于数字 b。
3. 大于等于:使用符号"≥" 表示,比如a ≥ b 表示数字 a 大于等于数字 b。
4. 小于等于:使用符号"≤" 表示,比如a ≤ b 表示数字 a 小于等于数字 b。
二. 整数比较比较整数的大小时,我们可以按照以下原则进行比较:1. 正负关系:正数大于负数。
比如 3 > -2。
2. 数字大小:绝对值大的整数一般比绝对值小的整数大。
比如 6 > 3。
3. 相同数字位数:位数多的整数一般比位数少的整数大。
比如 200 > 20。
三. 小数比较比较小数的大小时,我们需要借助小数点后面的位数进行比较:1. 整数部分大小关系:比较小数点前面的整数部分,先比较整数部分的大小,若相同再比较小数部分。
2. 小数部分大小关系:小数部分位数多的一般比位数少的小数大;若位数相同,则从左到右逐位比较,数值较大的小数大。
四. 分数比较比较分数的大小时,我们可以采用以下方法:1. 分子相同:若分数的分子相同,分母小的分数大。
比如 3/4 > 3/5。
2. 分母相同:若分数的分母相同,分子大的分数大。
比如 5/6 > 3/6。
3. 分子分母比较:若分数的分子和分母都不同,可以将分数转化为小数形式,再进行比较。
3.1.2 比较大小1. 实数的运算性质与大小顺序之间的关系。
设、为任意两个实数,如果是整数,那么;如果等于零,那么;如果是负数,那么,反过来也成立,即注:①上面的“”表示“等价于”,即可以互相推出;②上面的“”左边的式子反应了实数的运算性质,右边的式子反应的是数的大小,而这结合起来即是实数的运算性质与大小顺序之间的关系。
③这一关系是不等式的理论基础,是比较两个实数大小的依据,也是不等式性质的证明、证明不等式和解不等式的主要依据。
2. 实数比较大小的方法。
(1)作差比较:“作差法”的一般步骤是: ①作差;②变形;③判断符号;④得出结论. 用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理化等方法.常用的结论有等.(2) 作商比较:“作商法”的一般步骤是:①作商;②变形;③判断商值与1的大小关系;④得出结论.用“作商法”比较两个实数大小的关键是判断商值与1的大小关系,常采用约分、分解等变形方法。
注:利用作商法比较两个实数的大小时,作为比较大小的两个数必须同号切不为零;关键是正确变形和判断商的值与1的大小。
在数(式)的结构中含有幂、根式或绝对值时,常采用作商法。
3. 不等式的性质及证明。
性质1:(对称性);证:∵ ∴由正数的相反数是负数性质2:(传递性),证:∵, ∴,∵两个正数的和仍是正数 ∴即 ∴由对称性、性质2可以表示为:如果且那么性质3:(加法单调性),证:∵ ∴从而可得移项法则:推论①:(相加法则) a b b a -b a >b a -b a =b a -b a <⎪⎩⎪⎨⎧<⇔<-=⇔=->⇔>-.0;0;0b a b a b a b a b a b a ⇔⇔2200x x ≥-≤≥≤,,|x|0,-|x|0b a >⇔a b <b a >0>-b a 0)(<--b a 0<-a b a b <b a >c b >⇒c a >b a >c b >0>-b a 0>-c b +-)(b a 0)(>-c b 0>-c a c a >b c <a b <a c <b a >R c ∈⇔c b c a +>+0)()(>-=+-+b a c b c a c b c a +>+b c a b c b b a c b a ->⇒-+>-++⇒>+)()(d b c a d c b a +>+⇒>>,证: 推论②:(相减法则)如果且,那么 证:∵ ∴ 或证:上式>0 ……… 性质4:(乘法单调性),;,证: ∵ ∴根据同号相乘得正,异号相乘得负,得:时即:时即:推论①:(相乘法则)且 证: 推论②:(乘方法则)推论③:(相除法则)且,那么证:∵ ∴ 性质5:(开方法则)如果,那么证:(反证法)假设则:若这都与矛盾 ∴d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒>b a >d c <d b c a ->-d c <d c ->-d b c a d c b a ->-⇒⎩⎨⎧->->)()()()(d c b a d b c a ---=---d c ba <> ⇒⎭⎬⎫<-∴>-∴00d c b a b a >0>c ⇒bc ac >b a >0<c ⇒bc ac <c b a bc ac )(-=-b a >0>-b a 0>c 0)(>-c b a bc ac >0<c 0)(<-c b a bc ac <0>>b a 0>>d c ⇒bd ac >bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,0>>b a ⇒n n b a >)1(>∈n N n 且0>>b a d c <<0d b c a >0>>c d ⇒⎪⎭⎪⎬⎫>>>>0011b a d c d b c a >0>>b a n n b a >)1(>∈n N n 且n n b a ≤ba b a b a b a n n n n =⇒=<⇒<b a >n n b a >例1:有三个条件:(1)ac 2>bc 2;(2)>;(3)a 2>b 2,其中能分别成为a>b 的充分条件的个数有( )A .0B .1C .2D .3【解析】(1)由ac 2>bc 2可知c 2>0,即a >b ,故ac 2>bc 2是a >b 的充分条件,(2)c <0时,a <b ,(3)a <0时,a <b ,故(2)、(3)不是a >b 的充分必要条件,故答案选B 。
高中数学—指对数比较大小方法标题:高中数学——指对数比较大小方法在数学的海洋中,我们经常需要比较数字的大小。
然而,当我们面对指对数时,比较大小的方法就变得相对复杂了。
指对数是一类特殊的函数,其特点是函数的值与实数之间存在一一对应的关系。
因此,比较指对数的大小实际上就是比较它们所对应的实数的大小。
一、理解指对数我们需要理解什么是指对数。
简单来说,指对数是一种特殊的函数,它可以将一个正实数映射到一个特定的实数。
对于任何一个正实数x,都有一个唯一的实数y与之对应,这个关系可以表示为log(x) = y。
其中,log是常用对数的简写形式,它通常用来表示以10为底的对数。
二、比较指对数大小的方法1、利用函数的单调性:对于任何一个底数大于1的指对数函数,它在定义域内都是单调递增的。
因此,如果log(a) > log(b),那么a 一定大于b。
同样地,如果log(a) < log(b),那么a一定小于b。
2、利用图象:我们可以通过画出指对数函数的图象来比较大小。
如果两个数的指对数值相等,那么它们对应的点应该在同一条直线上。
反之,如果两个数的指对数值不相等,那么它们对应的点一定不在同一条直线上。
3、利用中间值:当两个数的指对数值难以确定时,我们可以利用中间值来比较它们的大小。
假设log(a) > log(m) > log(b),那么我们可以推断出a > m > b。
三、注意事项在比较指对数大小的时候,一定要注意底数的范围。
如果底数小于1,那么函数在定义域内是单调递减的。
这时,比较大小的方法就需要根据具体情况来调整了。
总结来说,比较指对数大小的方法需要我们理解指对数的概念和性质,并利用函数的单调性、图象和中间值等方法来进行比较。
我们也要注意底数的范围对比较大小的影响。
通过不断地实践和练习,我们就能熟练掌握指对数比较大小的方法了。
在数学学习中,比较大小是非常基础且重要的一项技能。
第20讲 指对数比较大小8种常考题型总结【知识点梳理】指数和对数的比大小问题成为了高考和模拟题的一些拉档题,这里我们重点介绍几种比大小方法,让大家充分了解掌握一些指数对数大小比较的常用方法.(1)利用指数对数单调性比较大小;当底数一样或者可以化成一样,直接利用单调性比较即可 (2)利用指数对数函数图象关系比较大小(2)比较与0,1的大小关系,此类题目一般会放在单选第5题左右位置,比如12.02.0003.0=<<,12.0log 3.0log 1log 02.02.02.0=<<=(3)取中间值,比如遇到两个数都在0到1之间,我们可以比较它们与21的大小等 (4)去常数再比大小当底数和真数出现了倍数关系时候,需要将对数进行分离常数再比较.例如:log log 1log log n a a a a ma m ma m n =+=+;.(5)当真数一样我们考虑用换底公式,换为底数一样,再比较分母,如2ln =a 和2log 3=b ,e a 2log 12ln ==,3log 12log 23==b ,因为e 22log 3log >,所以b a > (6)乘倍数比较数的范围比较大小,比如3log 2=a 和4log 3=b ,则()5,427log 3log 3322∈==a ,()4,364log 4log 3333∈==b ,所以b a 33>,所以b a >(7)构造函数,利用函数的单调性比价大小 【题型目录】题型一:直接利用单调性比较大小 题型二:比较与1,0的大小关系 题型三:取中间值比较大小 题型四:利用换底公式比较大小 题型五:分离常数再比较大小 题型六:利用均值不等式比较大小题型七:乘倍数比较数的范围比较大小 题型八:构造函数比大小 【典型例题】题型一:直接利用单调性比较大小【例1】(2022·湖南邵阳·高一期末)已知222log 0.6,log 0.8,log 1.2a b c ===,则( ) A .c b a >>B .c a b >>C .b c a >>D .a b c >>【答案】A【分析】由对数函数得单调性即可得出结果. 【详解】∵2log y x =在定义域上单调递增, ∵222log 0.6log 0.8log 1.2<<,即c b a >>. 故选:A.【例2】(2022·全国·高三专题练习)已知2log 3a =,4log 6b =,8log 9c =,则a 、b 、c 的大小顺序为( ) A .a b c << B .a c b <<C .c b a <<D .b c a <<【答案】C【分析】先利用对数运算法则进行化简,再用函数单调性比较大小.【详解】42log 6log 6b ==,又382log 9log 9c ==,因为3369>>,2log y x =单调递增,所以c b a <<. 故选:C 【题型专练】1.(2022·广东珠海·高一期末)下列选项正确的是( ) A .22log 5.3log 4.7< B .0.20.2log 7log 9<C .3πlog πlog 3>D .log 3.1log 5.2(0a a a <>且1)a ≠【答案】C【分析】利用对数函数的单调性逐项判断可得答案.【详解】对于A ,因为2=log y x 是单调递增函数,所以22log 5.3log 4.7>,故A 错误; 对于B ,因为0.2=log y x 是单调递减函数,所以0.20.2log 7log 9>,故B 错误; 对于C ,因为33ππ3=1,1log πlog log 3log π><=,所以3πlog πlog 3>,故C 正确; 对于D ,当01a <<时,=log a y x 是单调递减函数,当1a >时,=log a y x 是单调递增函数, 所以当01a <<时,log 3.1log 5.2>a a ,当1a >时,log 3.1log 5.2<a a ,故D 错误. 故选:C.2.(2022·全国·高一单元测试)已知2log 3a =,ln 2b =,2log πc =,则a ,b ,c 的大小关系为( ) A .a b c >> B .c a b >>C .a c b >>D .c b a >>【答案】B【分析】根据对数函数的单调性并借助1比较即可求解.【详解】解:因为()2log f x x =为单调递增函数,所以22log πlog 31>>. 因为ln 21<,所以c a b >>. 故选:B .3.(2022·江西·上高二中模拟预测(文))已知1ln 3a=,33log 5log 2b =-,3c =a ,b ,c 的大小关系为( ) A .a c b >> B .b c a >> C .c a b >> D .c b a >>【答案】C【分析】根据对数的运算及对数函数的性质计算可得;【详解】解:2ln 3ln 3c ==,21ln e ln 3ln e 2=<<=,即12c <<, 又1ln 3a =,所以31ln elog e ln 3ln 3a ===,所以112a <<, 3335log 5log 2log 2b =-=,33315log 3log log 3122=<<=,即112b <<, 又5e 2>,所以335log e log 2>,即a b >, 综上可得c a b >>; 故选:C4.(2022·内蒙古·阿拉善盟第一中学高一期末)已知0.919x =,2log 0.1y =,2log 0.2z =,则( ) A .x y z >> B .x z y >>C .z x y >>D .z y x >>【答案】B【分析】利用指数函数和对数函数的性质比较大小即可 【详解】因为9x y =在R 上为增函数,且0.910>, 所以0.910991>=,即1x >,因为2log y x =在(0,)+∞上为增函数,且0.10.21<<, 所以222log 0.1log 0.2log 10<<=,即0y z <<, 所以x z y >> 故选:B.题型二:比较与1,0的大小关系【例1】(2022·甘肃酒泉·高二期末(理))若1223a ⎛⎫= ⎪⎝⎭,1ln 2b =,0.20.6c -=,则a ,b ,c 的大小关系为( ) A .c b a >> B .c a b >> C .b a c >> D .a c b >>【答案】B【分析】分别根据23xy ⎛⎫= ⎪⎝⎭、ln y x =、0.6x y =的单调性,比较a ,b ,c 与0、1的大小,即可比较【详解】23xy ⎛⎫= ⎪⎝⎭在(),-∞+∞上是减函数,12220133a ⎛⎫⎛⎫<== ⎪⎪⎝⎭⎝⎭< ; ln y x =在()0,+∞上是增函数,1lnln102b =<=; 0.6x y =在(),-∞+∞上是减函数,0.200.60.61c -=>=,故c a b >>, 故选:B【例2】(2022·全国·高一课时练习)已知0.3123log 2,log 3,2a b c -===,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】D【分析】利用函数的单调性判断出0a <,1b >,01c <<,即可得到正确答案. 【详解】因为13log y x=为减函数,所以1133log 2log 10a =<=,即0a <;因为2log y x =为增函数,所以22log 321log b =>=,即1b >; 因为2x y =为增函数,所以0.300221c -<=<=,即01c <<; 所以b c a >>. 故选:D【例3】(2022·天津·高考真题)已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则( )A .a c b >>B .b c a >>C .a b c >>D .c a b >>【答案】C【分析】利用幂函数、对数函数的单调性结合中间值法可得出a 、b 、c 的大小关系.【详解】因为0.70.7221120log 1log 33⎛⎫>>=> ⎪⎝⎭,故a b c >>.故答案为:C. 【题型专练】1.(2022·黑龙江·鸡东县第二中学二模)若0.110a =,lg0.8b =,5log 3.5c =,则( ) A .a b c >> B .b a c >> C .c a b >> D .a c b >>【答案】D【分析】根据指数函数以及对数函数的性质,判断a,b,c 的范围,即可比较大小,可得答案. 【详解】由函数10x y =为增函数可知0.1110a =>,由lg y x =为增函数可得lg0.80b =<,由由5log y x =为增函数可得50log 3.51c <=<,0.15101log 3.50lg0.8a c b ∴=>>=>>=,a cb ∴>>,故选:D2.(2022·浙江·诸暨市教育研究中心高二学业考试)已知5lg 0.2,log 6,ln 2a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .c a b << C .a c b << D .c b a <<【答案】C【分析】利用0,1分段法求得正确答案.【详解】55lg 0.20,log 6log 51,0ln 2ln e 1a b c =<=>=<=<=, 所以a c b <<. 故选:C3.(2022·陕西汉中·高一期末)已知0.60.622e log 0.6a b c -===,,,则a ,b ,c 的大小关系为( )A .b a c >>B .b c a >>C .a b c >>D .a c b >>【答案】C【分析】根据指数函数和对数函数的性质判断0.60.622e log 0.6a b c -===,,的范围,即可判断大小,即得答案.【详解】由于0.60.602022e e >2log 0.6lo <0<g 1a b c -====<=1,0=1,,故a b c >>, 故选:C题型三:取中间值比较大小【例1】(2022·吉林·东北师大附中模拟预测(文))已知32log 3a =,2log 3b =,139c =,则( ) A .c a b >> B .b a c >> C .b c a >> D .c b a >>【答案】D【分析】利用幂函数、对数函数的单调性结合中间值法可得出a 、b 、c 的大小关系. 【详解】因为332log log 103a =<=,2221log 2log 3log 42b =<=<=,1133982c =>=, 因此,c b a >>. 故选:D.【例2】(2021·全国·高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a << B .b a c << C .a c b << D .a b c <<【答案】C【分析】对数函数的单调性可比较a 、b 与c 的大小关系,由此可得出结论. 【详解】55881log 2log 5log 22log 32a b =<==<=,即a c b <<. 故选:C.【例3】(2022·山东滨州·高二期末)已知6log 2a =,0.5log 0.2b =,0.30.6c =,则a ,b ,c 的大小关系为( ) A .a c b << B .a b c << C .b c a << D .c a b <<【答案】A【分析】根据指数函数、对数函数的性质计算可得.【详解】解:110.5222log 0.2log 5log 5log 42--==>=,即2b >,66610log 1log 2log 62=<<=,即102a <<,00.30.31110.60.60.50.52=>>>=,即112c <<,所以b c a >>; 故选:A 【题型专练】1.(2022·河南濮阳·高一期末(文))已知3log 4a =,4log 5b =,32c =,则有( ) A .a b c >> B .c b a >> C .a c b >> D .c a b >>【答案】D【分析】根据对数函数的单调性,借助中间值比较大小即可. 【详解】依题意,23043<<,3243∴< ,3log y x =是单调递增,32333log 4log 32∴<=,a c ∴<,23054<<,3254∴<,4log y x =是单调递增,32443log 5log 42∴<=,b c ∴<, 45430>>,5443∴> ,3log y x =是单调递增,54335log 4log 34∴>=,54a ∴>,45054<<,5454∴<,4log y x =是单调递增,54445log 5log 44∴<=,54b ∴<,综上所述,c a b >>. 故选:D.高二期末(理))设0.632log 8c =A .b a c << B .c b a << C .a c b << D .b c a <<【答案】D【分析】利用幂函数和对数函数的性质比较即可【详解】因为533223log 8log 20.60.615c ====<, 所以c a <,因为0.6y x =在(0,)+∞上为增函数,且910<, 所以0.60.6910<,因为lg y x =在(0,)+∞上为增函数, 所以0.60.6lg9lg100.6<=,所以b c <, 综上b c a <<,故选:D3.(2022·重庆九龙坡·高二期末)已知52log 4a =,31log 72b =,4log 52c =,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c a b <<D .a b c <<【答案】B【分析】根据对数得运算性质结合对数函数的性质,利用中间量法即可得出答案. 【详解】解:由552log 4log 16a ==,则12a <<, 3331log 7log 7log 912b ==<=, 42log 5log 52252c ===>,所以b a c <<. 故选:B.题型四:利用换底公式比较大小【例1】(2021·全国·高一期末)设x ,y ,z 为正数,且345x y z ==,则( ) A .x y z << B .y x z << C .y z x << D .z y x <<【答案】D【分析】令3451x y z k ===>,用k 表示出x ,y ,z ,再借助对数函数的性质即可比较作答. 【详解】因x ,y ,z 为正数,令345x y z k ===,则1k >, 因此有:31log log 3k x k ==,41log log 4k y k ==,51log log 5k z k ==, 又函数()log k f t t =在(0,)+∞上单调递增,而1345<<<,则0log 3log 4log 5k k k <<<, 于是得111log 3log 4log 5k k k >>, 所以z y x <<. 故选:D【例2】(2022·全国·高三专题练习)设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是( ) A .a >b >c B .b >a >cC .c >a >bD .c >b >a【答案】D【分析】根据对数函数与指数函数性质,结合中间值0、1比较可得. 【详解】∵0<ln2<lne=1,ln3>1,∵log 32ln 2ln 3=<ln2, ∵a <b <1, ∵c 125=>50=1, ∵c >b >a , 故选:D .【例3】(2022·全国·高三专题练习)设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是( ) A .a >b >c B .b >a >c C .c >a >b D .c >b >a【答案】D【分析】根据对数函数与指数函数性质,结合中间值0、1比较可得. 【详解】∵0<ln2<lne=1,ln3>1, ∵log 32ln 2ln 3=<ln2, ∵a <b <1, ∵c 125=>50=1, ∵c >b >a , 故选:D . 【题型专练】1.(2022河南·高三开学考试(文))设0.1log 4a =,50log 4b =,则( ) A .()22ab a b ab <+< B .24ab a b ab <+< C .2ab a b ab <+< D .2ab a b ab <+<【答案】D【分析】由对数函数性质得0,0a b <>,从而0ab <,由对数换底公式和对数运算法则计算得1112a b<+<,再由不等式性质可得结论.【详解】因为0.1log 4a =,50log 4b =,所以0,0a b <>,所以0ab <, ()44411log 0.1log 50log 51,2a b +=+=∈,即1112a b<+<,所以2ab a b ab <+<. 故选:D .2.(2022·重庆八中高三阶段练习)设2log a π=,6log b π=,则( )A .0a b ab -<<B .0ab a b <<-C .0ab a b <<-D .0a b ab <-<【答案】D【分析】根据对数函数的性质可得>0>0a b ab -,,111b a-<,由此可判断得选项. 【详解】解:因为22log >log 21a π==,6660log 1log log 61b π=<=<=,所以>1,01a b <<,所以>0>0a b ab -,,故排除A 、B 选项;又11log 6log 2log 3log 1a bb a abπππππ--==-=<<,且>0ab ,所以0a b ab <-<, 故选:D.3.(2021·江苏·海安高级中学高一阶段练习)设0.20.3a =,20.3b =,则( ) A .0a b ab +<< B .0ab a b <+< C .0a b ab +<< D .0ab a b <<+【答案】B【分析】根据指数式与对数式互化公式,结合对数的运算性质进行判断即可.【详解】由0.20.20.3log 0.3aa =⇒=,因为0.20.20.2log 1log 0.3log 0.2<<,所以01a <<,由220.3log 0.3bb =⇒=,因为22log 0.3log 0.51<=-,所以1b <-,因此0ab <,0a b +< 由0.20.31log 0.3log 0.2a a =⇒=,20.31log 0.3log 2b b=⇒=, 于是有:0.30.30.311log 0.2log 2log 0.4a b+=+=,因为0.30.3log 0.4log 0.31<=,所以1111b aa b ab++<⇒<,因为0ab <,所以b a ab +>, 即0ab a b <+<, 故选:B【点睛】关键点睛:利用对数函数的单调性,结合,a b 两数的倒数和与1之间的关系,进行判断是解题的关键.4.(2022·全国·高一课时练习多选题)已知正数x ,y ,z 满足346x y z ==,则下列说法中正确的是( ) A .1112x y z+= B .346x y z >>C .22xy z > D .32x y z +>⎝【答案】ACD【分析】将已知条件转化为对数的形式,利用对数运算、商比较法、基本不等式等指数对选项进行分析,从而确定正确答案.【详解】正数x ,y ,z 满足346x y z ==,设()3461x y zt t ===>,则3log x t =,4log y t =,6log z t =.对于A ,1111log 3log 4log 622t t t x y z+=+==,故A 正确; 对于B ,333log x t =,444log y t =,666log z t =, ∵33433log 3log 4144log 4x t y t ==<,∵34x y <, ∵44644log 2log 6166log 3y t z t ==<,∵46y z <,∵346x y z <<,故B 错误; 对于C ,由1111222z x y xy=+>(2x y ≠),两边平方,可得22xy z >,故C 正确; 对于D ,由22xy z >,可得232222222x y xy z z z ⎛⎫+>>=>+ ⎪ ⎪⎝⎭(x y ≠),故D 正确. 故选:ACD题型五:分离常数再比较大小【例1】(2022·河南·汝州市第一高级中学模拟预测(文))已知6log 3a =,8log 4b =,10log 5c =,则( ). A .b a c << B .c b a << C .a c b << D .a b c <<【答案】D【分析】结合对数的运算公式以及对数函数的单调性进行转化求解即可. 【详解】由题意得, 666261log 3log 1log 212log 6a ===-=-, 888281log 4log 1log 212log 8b ===-=-, 1010102101log 5log 1log 212log 10a ===-=-, 因为函数2log y x =在(0,)+∞上单调递增, 所以222log 6log 8log 10<<,则222111log 6log 8log 10>>, 所以a b c <<. 故选:D .【题型专练】1.设6log 3=a ,10log 5=b ,14log 7=c ,则( )A. a b c >>B. b c a >>C. a c b >>D. a b c >> 【答案】D【详解】由题意得,()()()335577log 321log 2,log 521log 2,log 721log 2a b c =⨯=+=⨯=+=⨯=+357log 2log 2log 2>>,所以可得:a b c >>故选:D .题型六:利用均值不等式比较大小【例1】(2022·黑龙江·绥化市第九中学高二期末)73a =,4log 20b =,33log 2log 6c =+,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .c b a >> D .c a b >>【答案】B【分析】根据对数函数的性质结合基本不等式分析比较即可 【详解】74133a ==+,4444log 20log 4log 51log 5b ==+=+,333log 2log 61log 4c =+=+, 因为433333334log 3log 81log 64log 43==>=,所以a c >,因为2423lg3lg5log 5lg5lg32log 4lg 4lg 4(lg 4)+⎛⎫ ⎪⎝⎭=⋅<222222lg15lg162lg 42221(lg 4)(lg 4)(lg 4)⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=<==,43log 51,log 41>>, 所以43log 5log 4<,所以c b >, 综上a c b >>, 故选:B【例2】(2022·安徽省临泉第一中学高二期末)若lg 2lg5a =⋅,ln 22b =,ln 33c =,则a ,b ,c 的大小关系为( ) A .a b c << B .b c a << C .b a c << D .a c b <<【答案】A【分析】由基本不等式可判断14a <,由对数的性质可得14b >,再作差可判断,c b 大小.【详解】()2lg 2lg51lg 2lg544a +=⋅<=,2ln 2ln 41444b ==>,9ln ln 3ln 22ln 33ln 2803266c b --=-==>,则c b >.所以a b c <<. 故选:A . 【题型专练】1.(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >>C .0b a >>D .0b a >>【答案】A【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=. 又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A.2.(2022·河南商丘·高二期末(文))已知log 5a =0.62b =,0.2log 6c =-,则实数a ,b ,c 的大小关系为( ) A .a c b >> B .a b c >>C .b a c >>D .b c a >>【答案】C【分析】根据换底公式可得,1a c >,再根据换底公式与基本不等式可得c a <,再根据5532b ⎛⎫> ⎪⎝⎭可得b a >,进而求得大小关系【详解】24log 5log 51a =>=,0.25log 6log 61c =-=>,则()25224lg 4lg 6log 6lg 4lg 62log 5(lg 5)lg 5c a +⎛⎫ ⎪⋅⎝⎭==<()()2222lg 24lg 25221lg 5lg 5⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=<=,所以c a <; 243log 5log 52a ==<,()5550.63282b ⎛⎫==> ⎪⎝⎭,所以32b >,则b a >.所以b a c >> 故选:C.题型七:乘倍数比较小【例1】(2020·全国·高考真题(理))已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <cC .b <c <aD .c <a <b【答案】A【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a 、b 、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<;由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<. 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题. 【题型专练】1.已知3log 2=a ,4log 3=b ,5log 4=c ,则实数a ,b ,c 的大小关系为( ) A .a <b <c B .a b c >>C .b a c >>D .b c a >>【答案】B【详解】()5,427log 3log 3322∈==a ,()4,364log 4log 3333∈==b ,所以b a 33>,所以b a > 又因()6,5256log 4log 4433∈==b ,()5,4625log 5log 4444∈==c ,所以c b 44>,所以c b > 所以c b a >>,故选B 题型八:构造函数比大小【例1】(2022·全国·高一专题练习)设0a >,0b >,则下列叙述正确的是( ) A .若ln 2ln 2a b b a ->-,则a b > B .若ln 2ln 2a b b a ->-,则a b < C .若ln 2ln 2a a b b ->-,则a b > D .若ln 2ln 2a a b b ->-,则a b < 【答案】A【分析】利用函数的单调性分析判断即可【详解】因为ln y x =和2y x =在(0,)+∞上均为增函数, 所以()ln 2f x x x =+在(0,)+∞上为增函数, 所以()()f a f b >时,得0a b >>,反之也成立, 即ln 2ln 2a a b b +>+时,0a b >>,反之也成立, 所以ln 2ln 2a b b a ->-时,0a b >>,反之也成立, 故选:A【例2】(2022·四川·树德中学高二阶段练习(文))若2e 2e x x y y ---<-,则( ) A .()ln 10y x -+< B .()ln 10y x -+>C .ln 0x y ->D .ln 0x y -<【答案】B【分析】先构造函数()2e x xf x -=-,通过导函数得到单调性,从而得到x y <,故可通过函数单调性判断出()ln 1ln10y x -+>=,而x y 可能比1大,可能等于1,也可能()0,1x y -∈,故CD 均错误.【详解】令()2e x x f x -=-,则()2ln 2e 0x xf x -'=+>恒成立,故()2e x x f x -=-单调递增,由2e 2e x x y y---<-可得:x y <,故()ln 1ln10y x -+>=,A 错误,B 正确;x y 可能比1大,可能等于1,也可能()0,1x y -∈,故不能确定ln x y -与0的大小关系,CD 错误.故选:B【题型专练】1.(2021·江西·高二阶段练习(理))若1a b >>,且x y x y a a b b --->-,则( ) A .()ln 10x y -+> B .()ln 10x y -+< C .ln 0x y -> D .ln 0x y -<【答案】A【分析】根据题意,构造函数()x xf x a b -=-,利用函数单调性,结合对数函数的性质,即可判断和选择.【详解】因为x y x y a a b b --->-,即x x y y a b a b --->-,故令()x xf x a b -=-,则上式等价于()()f x f y >因为1a b >>,,x x y a y b -==-都是R 上的单调增函数,故()f x 为R 上的单调增函数,则由()()f x f y >,可得x y >,即0x y ->; 则11x y -+>,故()ln 10x y -+>,则A 正确;B 错误; 因为0x y ->,故无法判断ln x y -的正负,故C ,D 错误. 故选:A .【点睛】本题考查对数函数的单调性,以及函数单调性的应用,属综合中档题;解决问题的关键是根据已知条件,构造函数()x xf x a b -=-,并利用其单调性判断,x y 的大小关系.2.(2022·全国·高一单元测试)已知正实数x ,y 满足21211log log 22x yx y ⎛⎫⎛⎫+<- ⎪ ⎪⎝⎭⎝⎭,则( )A .11x y< B .33x y < C .()ln 10y x -+> D .122x y -<【答案】BC【分析】可以利用筛选法逐个检验选项或者构造函数,结合单调性求解.【详解】方法一(筛选法) 由题意,211log 22x yx y ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭.当x y >,即1x y >时,2log 0x y >,而1122x y ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以11022x y ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,故211log 22x yx y ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭不成立.当x y =时,2log 0x y =,11022x y ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,211log 22x yx y ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭不成立,故0x y <<,所以11x y >,33x y <,故A 错误,B 正确.0y x ->,则11y x -+>,()ln 10y x -+>,故C 正确.0221x y -<=,故D 不一定正确.故选:BC .方法二(构造函数法) 由题意,2211log log 22x y x y ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭.设函数()21log 2xf x x ⎛⎫=- ⎪⎝⎭,显然()f x 在区间()0,∞+上单调递增,故由()()f x f y <,得0x y <<,故11x y>,故A 错误.33x y <,B 正确;由x y <,得11y x -+>,故()ln 1ln10y x -+>=,C 正确;0221x y -<=,故D 不一定正确, 故选:BC .。
比较大小的常用方法比较大小是数学中的基本概念之一,它在我们日常生活和学习中都有广泛的应用。
无论是比较两个数的大小,还是比较两个物体的大小,我们都需要使用一些常用的方法来进行比较。
下面我将详细介绍一些常用的比较大小的方法。
首先,我们可以使用数轴来比较大小。
数轴是一个直线,上面标有数值,可以用来表示不同的数。
我们可以将要比较的数放在数轴上,然后根据它们在数轴上的位置来判断它们的大小关系。
例如,如果一个数在另一个数的右边,那么它就比另一个数大;如果一个数在另一个数的左边,那么它就比另一个数小。
通过数轴,我们可以直观地比较两个数的大小。
其次,我们可以使用大小符号来比较大小。
在数学中,我们使用不同的符号来表示不同的大小关系。
例如,大于号(>)表示大于的关系,小于号(<)表示小于的关系,等于号(=)表示等于的关系,大于等于号(≥)表示大于或等于的关系,小于等于号(≤)表示小于或等于的关系。
通过使用这些符号,我们可以直接比较两个数的大小关系。
另外,我们还可以使用绝对值来比较大小。
绝对值是一个数的非负值,表示这个数与零的距离。
当我们比较两个数的大小时,可以先求出它们的绝对值,然后比较它们的绝对值的大小关系。
例如,如果一个数的绝对值大于另一个数的绝对值,那么这个数就比另一个数大;如果一个数的绝对值小于另一个数的绝对值,那么这个数就比另一个数小。
此外,我们还可以使用相反数来比较大小。
相反数是一个数与它的相反数相加等于零的数。
当我们比较两个数的大小时,可以先求出它们的相反数,然后比较它们的相反数的大小关系。
例如,如果一个数的相反数大于另一个数的相反数,那么这个数就比另一个数小;如果一个数的相反数小于另一个数的相反数,那么这个数就比另一个数大。
此外,我们还可以使用分数来比较大小。
分数是一个数与另一个数的比值,表示两个数之间的大小关系。
当我们比较两个分数的大小时,可以先将它们化为相同的分母,然后比较它们的分子的大小关系。
数学比大小的方法
数学比大小是数学中必不可少的一部分,是从小学开始学习的数
学知识之一。
比大小是指通过比较两个或多个数的大小关系,来确定
它们的大小次序。
在日常生活中,我们经常需要进行比大小操作,比
如购物时比较价格,评价成绩时比较分数等等。
比较大小的方法有很多种,这里介绍几种简单易懂的方法。
1. 使用不等式符号
比较大小时,我们可以使用不等式符号来表示大小关系。
例如,
当我们要比较两个数a和b的大小,如果a大于b,我们可以用a>b表示;如果a小于b,我们可以用a<b表示;如果a等于b,我们可以用
a=b表示。
2. 使用大小规律
在进行数字比较时,我们可以通过一些规律辅助我们进行比较。
例如,我们知道如果一个数的个位是0或5,它一定能被5整除。
这样,我们就可以通过比较个位数是否为0或5来判断哪个数更大。
3. 使用绝对值比较法
绝对值是一个数值的大小,不考虑其正负号,例如|-2|=2。
通过
使用绝对值比较法,我们可以快速比较两个数的大小。
方法是,先将
两个数的差值取绝对值,然后比较这个差值即可。
例如,要比较两个
数a和b的大小,可以比较|a-b|与0的大小关系。
数学比大小的方法在日常生活中非常重要,它可以帮助我们更有效地做出决策,提高我们的数学水平。
通过学习比大小,我们还能在数学领域中更好地进行运算,更快地解决问题。
希望大家能够通过学习比大小,掌握更多有用的数学知识。
比较大小的方法高中数学
比较大小的方法高中数学有八种:
一、作商比较法。
要证a>b(b>0),则只要证a/b>1,这就是作商比较法。
二、作差比较法。
要证a>b,则只要证a-b>0.这就是“作差比较法”。
三、导数方法。
利用导数来研究函数的单调性可以比较数的大小。
四、图象法。
考查数形结合思想,合理使用中间值。
五、寻找中间变量(桥梁)法。
有些题型,我们常用1或2(或其它数~要因地制宜:具体情况具体分析)作为中间变量(联系的桥梁)来进行比较。
六、均值不等式法。
均值不等式法即利用不等式:
a+b≥2√ab
七、特殊值法。
此种题型,在满足题意的条件下,随意地取一组特殊值,以方便我们比较大小。
八、“极限”方法。
高一数学比较大小知识点在高中数学中,比较大小是一项基础而重要的技能。
无论是解决数列问题还是进行不等式推导,都需要我们准确地判断数值的大小关系。
下面将介绍一些高一数学中常见的比较大小知识点,帮助大家更好地掌握这项技能。
1. 实数的比较在实数的范围内,我们经常需要比较两个数的大小。
首先是正数和负数的比较。
一般来说,正数大于负数。
但是,当两个正数相比或者两个负数相比时,我们需要比较它们的绝对值大小。
例如,-2和-5的比较,由于2比5小,所以-2大于-5。
2. 分数的比较在比较分数大小时,最常用的方法是通分比较。
即将两个分数的分母取相同的数,然后比较它们的分子。
例如,我们要比较1/2和2/3的大小。
将1/2通分为3/6,2/3不变,可以看出3/6大于2/3,所以1/2小于2/3。
3. 百分数的比较百分数是我们在生活中常见的一种数值表示方法。
在比较两个百分数大小时,可以将百分数转化为小数,然后进行比较。
例如,我们要判断60%和50%的大小。
可以将60%转化为0.6,50%转化为0.5,可以看出0.6大于0.5,所以60%大于50%。
4. 平方根的比较在一些几何题中,我们需要比较不同平方根的大小。
以平方根2和平方根3为例,我们可以将它们转化为小数形式。
平方根2约等于1.414,平方根3约等于1.732,所以平方根3大于平方根2。
5. 幂的比较在求解指数函数相关问题时,我们需要比较不同底数和指数的幂的大小。
对于两个正数a和b来说,当a大于1时,幂a^x的大小由指数x决定。
x越大,幂越大;当0小于a小于1时,幂a^x的大小由底数a决定。
a越大,幂越小。
例如,我们比较2^3和2^4的大小,可以看出2^3等于8,2^4等于16,所以2^4大于2^3。
以上只是高一数学中比较大小的一些基础知识点,通过这些例子,我们可以看到在不同的情况下,比较大小的方法也会有所不同。
掌握了这些基础知识点后,我们可以更加灵活地解决各种数学问题,为以后的学习打下坚实的基础。
数字的大小比较知识点数字的大小比较是日常生活和学习中常常遇到的问题。
了解数字的大小比较知识点,不仅可以帮助我们更好地理解数值的大小排列,还能在数学和科学领域中应用于各种问题的求解和分析。
本文将介绍数字的大小比较常用的方法和技巧,并通过案例分析加深理解。
一、整数比较在整数比较中,我们经常会遇到大于(>)、小于(<)、大于等于(≥)、小于等于(≤) 的符号。
这些符号用于表示两个整数之间的大小关系。
1. 大于 (>):当一个整数的值比另一个整数大时,我们可以用大于符号 (>) 来表示。
例如,对于整数 a 和 b,如果 a > b,则可以说 a 比 b 大。
2. 小于 (<):当一个整数的值比另一个整数小时,我们可以用小于符号 (<) 来表示。
例如,对于整数 a 和 b,如果 a < b,则可以说 a 比 b 小。
3. 大于等于(≥):当一个整数的值比另一个整数大或相等时,我们可以用大于等于符号(≥) 来表示。
例如,对于整数 a 和 b,如果a ≥ b,则可以说 a 大于等于 b。
4. 小于等于(≤):当一个整数的值比另一个整数小或相等时,我们可以用小于等于符号(≤) 来表示。
例如,对于整数 a 和 b,如果a ≤ b,则可以说 a 小于等于 b。
在实际应用中,我们可以通过绘制数轴来更直观地比较整数的大小。
例如,对于 a = 2 和 b = 5,我们可以在数轴上找到对应的位置,并发现a < b。
二、小数比较小数的比较与整数类似,同样可以使用大于、小于、大于等于、小于等于的符号来表示大小关系。
不同之处在于小数比较时需要注意小数点后的位数。
1. 小数位数相同情况下的比较:当两个小数的小数位数相同时,我们可以按照整数的比较方法进行大小关系的判断。
例如,对于小数 a =1.34 和 b = 1.25,可以将它们视为整数 134 和 125 进行比较,从而得出a > b。