第3、4章地图投影2三种常用投影
- 格式:ppt
- 大小:7.33 MB
- 文档页数:55
常用的几种地图投影世界地图常用投影一、墨卡托投影(等角正切圆柱投影)投影方法:圆柱投影。
经线彼此平行且间距相等。
纬线也彼此平行,但离极点越近,其间距越大。
不能显示极点。
应用:标准海上航线图(方向)。
其他定向使用:航空旅行、风向、洋流。
等角世界地图。
此投影的等角属性最适合用于赤道附近地区,例如,印尼和太平洋部分地区。
特点:形状等角。
由于该投影维持局部角度关系不变,所以能很好地描绘微小形状。
面积明显变形方向保持了方向和相互位置关系的正确距离沿赤道或沿割纬线的比例是真实的。
局限:在墨卡托投影上无法表示极点。
可以对所有经线进行投影,但纬度的上下限约为80° N 和80° S。
大面积变形使得墨卡托投影不适用于常规地理世界地图。
墨卡托投影坐标系:取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。
二、桑逊投影(正轴等积伪圆柱投影)应用:除用于编制世界地图外,更适合编制赤道附近南北延伸地区的地图,如非洲、南美洲地图等特点:该投影的纬线为间隔相等的平行直线,经线为对称于中央经线的正弦曲线,是等面积投影,赤道和中央经线是两条没有变形的线,离开这两条线越远,长度、角度变形越大。
因此,该投影中心部分变形较小。
三、摩尔维特投影(伪圆柱等积投影)投影方法:伪圆柱等积投影。
所有纬线都是直线,所有经线都是等间距的椭圆弧。
唯一例外的是中央子午线,中央子午线是直线。
极点是点。
应用:适用于绘制世界专题或分布地图,经常采用不连续的形式。
将其与正弦曲线投影组合使用可创造出古蒂等面积和博格斯投影。
属性:形状在中央子午线和40°44' N 与40°44' S 纬线的交点处,形状未发生变形。
向外离这些点越远,变形越严重,在投影边处变形严重。
面积等积。
方向仅在中央子午线和40°44' N 与40°44' S 纬线的交点处,局部角度才是真实的。
测绘中常用的地图投影方法介绍地图投影是地图制作中不可或缺的一部分,它将地球的曲面投影到一个平面上。
在测绘学中,有许多不同的地图投影方法,每一种方法都有自己的特点和适用范围。
本文将介绍一些常用的地图投影方法。
一、正轴等积圆柱投影法正轴等积圆柱投影法是最早出现的地图投影方法之一。
它以一个圆柱体为投影面,将地球的表面投影到圆柱体上,再展开成一个平面地图。
这种投影方法保持了等积性,即相等面积的地图上的面积在实际地球上也是相等的。
这使得正轴等积圆柱投影法在制作区域较大的地图时非常有用。
然而,在投影过程中,经纬度线不再是直线,而是弯曲的。
因此,这种投影方法在导航和航海等领域的应用相对较少。
二、墨卡托投影法墨卡托投影法是目前应用最广泛的地图投影方法之一。
它以一个圆柱体为投影面,将地球的表面投影到圆柱体上,再展开成一个平面地图。
与正轴等积圆柱投影法不同,墨卡托投影法保持了等角性,即相等角度的地图上的角度在实际地球上也是相等的。
这使得墨卡托投影法在导航和地图浏览等领域广受欢迎。
此外,墨卡托投影法也可以用于制作世界地图,因为它能够较为准确地展示各个地区的形状和比例关系。
三、兰勃托投影法兰勃托投影法是一种圆锥投影方法,它以一个圆锥体为投影面,将地球的表面投影到圆锥体上,再展开成一个平面地图。
兰勃托投影法保持了等距性,即相等距离的地图上的距离在实际地球上也是相等的。
这使得兰勃托投影法在制作航空地图和地理信息系统等领域得到广泛应用。
然而,由于地球是一个几乎球体状的物体,圆锥体无法完全覆盖地球的各个地区,因此在使用兰勃托投影法时需要选择合适的投影中心和标准纬度,以确保地图的准确性和正确性。
四、极射赤面投影法极射赤面投影法是一种特殊的地图投影方法,它以地球的南极或北极为投影中心,将地球的表面投影到一个平面上。
在这种投影方法中,赤道直径上的距离得以保持不变,而纬度线则以放射状的形式展开。
极射赤面投影法在制作地图时可以保持地球的真实形状,但是在极地地区附近的区域会有较大的变形。
4. 地图投影方法的种类及其简介常见种类目前常用的投影方法有墨卡托投影(正轴等角圆柱投影)、高斯-克吕格尔投影、斜轴等面积方位投影、双标准纬线等角圆锥投影、等差分纬线多圆锥投影、正轴方位投影等。
基本方法几何透视法几何透视法是利用透视的关系,将地球体面上的点投影到投影面(借助的几何面)上的一种投影方法。
如假设地球按比例缩小成一个透明的地球仪般的球体,在其球心或球面、球外安置一个光源,将球面上的经纬线投影到球外的一个投影平面上,即将球面经纬线转换成了平面上的经纬线。
几何透视法是一种比较原始的投影方法,有很大的局限性,难于纠正投影变形,精度较低。
绝大多数地图投影都采用数学解析法。
数学解析法数学解析法是在球面与投影面之间建立点与点的函数关系,通过数学的方法确定经纬线交点位置的一种投影方法。
大多数的数学解析法往往是在透视投影的基础上,发展建立球面与投影面之间点与点的函数关系的,因此两种投影方法有一定联系。
地图投影的建立系假定有一个投影面(平面、可展的圆锥面或圆柱面)与投影原面(地球椭球面)相切、相割或多面相切,如图1所示。
用某种投影条件将投影原面上的地理坐标点一一投影到平面坐标系内,即构成某种地图投影。
其实质是将地球椭球面上地理坐标(φ、λ)转化为平面直角坐标(x、y)。
它们之间的数学关系式为:x=f1(φ、λ);y=f2(φ、λ)式中f1、f2为函数。
投影变形地图投影地图是一个平面,而地球椭球面是不可展的曲面,把不可展的曲面上的经纬线网描绘成平面的图形,必然会发生各种变形。
这就使地图上不同点位的比例尺不能保持一个定值,而有主比例尺和局部比例尺之分。
通常地图上注明的比例尺系主比例尺,是地球缩小的比率,而表现在不同点位上的实际比例尺称之为局部比例尺。
地图投影的变形,有角度变形、面积变形和长度变形。
但不是所有投影都有这3种变形,等角投影就没有角度编形,等面积投影就没有面积变形,其他投影这 3种变形都同时存在。
测绘技术的地图投影方法地图是人类为了更好地认识和把握地球而创造的重要工具。
然而,地球作为一个三维球体,如何将其表达在二维平面上,一直是地图制作中的难题。
为了解决这个问题,测绘技术发展出了各种地图投影方法,用于将地球的地理信息转换为平面地图。
本文将讨论几种常用的地图投影方法,并探讨其特点和应用。
一、等经纬度投影法等经纬度投影法又称为柱面投影法,它是最简单也是最直观的地图投影方法之一。
它以地球的经度和纬度为基准,将地球展开成一个长方形或矩形,并将经纬度放置在长方形的边上。
这种投影方法使得纬线和经线在地图上呈现为等间隔的直线,从而方便了对地球上的地理信息进行分析和比较。
等经纬度投影法最著名的应用就是经度和纬度坐标所构成的经纬网。
然而,等经纬度投影法也存在着一些局限性。
首先,它无法完全保留地球表面的面积关系,导致地图上不同区域的面积有所变形。
其次,纬线越接近极地,变形越明显,最终导致了北极的无限大问题。
因此,等经纬度投影法主要适用于小范围的地图制作和一些简单的地理问题分析。
二、圆柱投影法圆柱投影法是一种将球面地图映射到圆柱面上的投影方法。
它使用了一根垂直于地球的柱形,将地球表面的地理信息投影到柱面上,然后再展开成平面地图。
圆柱投影法具有简单、直观的特点,广泛应用于航海、航空和地图编制等领域。
最常见的圆柱投影法就是墨卡托投影。
墨卡托投影将地球表面的地理信息等比例地映射到柱面上,使纬线和经线在地图上呈现为等距直线。
这种投影方法主要用于大范围和中等纬度区域的地图制作,例如世界地图。
然而,墨卡托投影无法完全保留地球表面的形状和角度关系,尤其是靠近两极的地区。
因此,在导航和导航等对地球形状和角度要求较高的应用中,圆柱投影法并不是最佳选择。
三、圆锥投影法圆锥投影法是一种将球面地图映射到圆锥面上的投影方法。
与圆柱投影法相比,圆锥投影法更适用于大范围和高纬度地区的地图制作。
圆锥投影法将地球表面的地理信息投影到一根垂直于地球的圆锥上,然后再展开成平面地图。
介绍几种常用的,其它的投影方式请了解的朋友跟帖补充|)一、地图投影(比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”)1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。
墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。
墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。
在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。
“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。
基准纬线取至整度或整分。
1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。
2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。
测绘技术中的常用地图投影方法地图是一种常见的信息展示工具,可以有效地将地理信息以图形的方式呈现给人们。
然而,由于地球的形状是不规则的,将其展示在平面上时,必然会出现形状、面积和方向的畸变。
为了解决这个问题,测绘技术中使用了各种地图投影方法。
本文将介绍几种常用的地图投影方法,以及它们各自的优缺点。
一、等角投影等角投影是最早应用的地图投影方法之一,其原理是保持地球上任意两点之间的角度在地图上成立。
在等角投影中,地球被切割成若干等角三角形或等角四边形,然后将这些形状展开在平面上。
等角投影的优点在于保持了地球上地理要素之间的角度关系,使地图具有较好的方位性,适合进行地理分析和导航。
然而,等角投影在保持角度的同时,却会引入形状和面积的畸变。
这意味着,等角投影通常无法准确表达地球上各个地区的形状和面积。
二、等积投影等积投影是为了解决等角投影中的形状和面积畸变问题而提出的一种地图投影方法。
它的基本原理是保持地球上任意区域的面积在地图上和实际上是相等的。
等积投影的优点在于能够准确表达地球上各个地区的面积,适用于统计分析和区域规划。
然而,为了实现等积投影,不可避免地要牺牲角度的保持,导致形状的畸变。
因此,在使用等积投影时需要根据具体需求进行权衡,选择适合的投影方法。
三、等距投影等距投影是一种保持地球上任意两点之间的距离在地图上成立的投影方法。
在等距投影中,地球被切割成若干等长弧段,并将这些弧段展开在平面上。
等距投影的优点在于能够准确表达地球上任意两点之间的距离,适用于测量和定位。
然而,为了实现等距投影,形状和面积会发生较大的畸变。
因此,在选择等距投影时需要根据具体需求进行权衡,权衡角度、形状和面积的畸变,选择最优的投影方法。
四、截面投影截面投影是一种将地球沿某条线切割,并将该切割线展开成平面的投影方法。
在截面投影中,地球的形状沿着切割线得到保持,但是其他地区的形状和面积会发生畸变。
截面投影的优点在于能够准确表达沿着切割线的地区的形状,适用于沿海线或山脉线等特定地理要素的展示。
测绘技术中的地图投影方法解析地图投影是测绘技术中的一个重要领域,在地理信息系统和地图制作中起着至关重要的作用。
地图投影方法是将地球上的三维地球表面投射到二维地图上的过程,通过这一过程可以解决地球表面的曲面变换问题。
一、地图投影的基本概念地球是一个不规则的椭球体,而地图是一个平面。
由于地球的形状和地图的平面形状不一样,所以需要进行地图投影。
地图投影就是将地球上的经纬度坐标投影到平面坐标上的过程。
在地图投影中,有很多种投影方法可供选择,每种投影方法都有其独特的优势和特点。
下面将介绍几种常见的地图投影方法。
二、等角地图投影等角地图投影是指投影后的地图上,任意两条曲线的夹角等于地球上对应两条经线的夹角。
这种地图投影方法可以保持角度的真实性,因此在地图上的形状和方位保持得相对准确。
最著名的等角地图投影是墨卡托投影。
墨卡托投影在航海和航空中得到广泛应用,其特点是经纬线呈直线排列,但在高纬度地区会出现严重变形。
墨卡托投影在航海导航和地图制作中得到广泛应用。
三、等面积地图投影等面积地图投影是指投影后的地图上,任意两个区域的面积比在地球上保持不变。
这种地图投影方法可以保持地图上相对大小的真实性,因此在面积统计和地理分析中具有重要的意义。
兰勃特投影是一种常见的等面积地图投影,其特点是保持区域形状和面积的真实性,但在投影后的地图上,经纬线呈不规则曲线排列。
兰勃特投影在地理统计和地质勘探中得到广泛应用。
四、等距地图投影等距地图投影是指投影后的地图上,任意两个点之间的距离在地球上保持不变。
这种地图投影方法可以保持地图上的距离和比例的真实性,因此在测量和导航中非常重要。
鲁宾投影是一种常见的等距地图投影,其特点是保持地图上任意两个点之间的直线距离不变。
鲁宾投影在航空地图和地理勘探中得到广泛应用。
五、斯特雷格投影斯特雷格投影是一种将球面投影到平面上的方法,其特点是保持图形在大面积上的形和相对距离。
这种地图投影方法在气候学、地质学和地理信息系统中得到广泛应用。
测绘中常用的地图投影方法地图作为一种常见的信息呈现方式,在测绘工作中扮演着重要的角色。
而地图投影方法则是地图制作过程中不可或缺的一环。
地图投影是将地球表面的三维信息投射到二维平面上的过程,由于地球是一个近似于椭球体的三维地理模型,所以将其表现在平面上会引起一些形状、大小和方向的失真。
本文将介绍一些测绘中常用的地图投影方法。
一、等距投影法等距投影法是一种保持地球表面上各点距离不变的地图投影方法。
其中最著名的等距投影法是墨卡托投影法。
墨卡托投影法是一种圆柱投影法,即将地球投影到一个接触地球表面的圆柱体上,再展开成平面图。
墨卡托投影法具有以下特点:1. 在赤道附近地图形状保持几乎不变,适合用来制作大尺寸地图。
2. 北纬高于赤道的地区会呈现出纵向拉长的形状,而南纬高于赤道的地区则是纵向收缩。
二、等面积投影法等面积投影法是一种保持地球表面上各个区域面积比例不变的地图投影方法。
其中最常见的等面积投影法是兰勃托投影法。
该投影法将地球投影到一个接触地球表面的圆锥体上,再展开成平面图。
兰勃托投影法具有以下特点:1. 在地图上,各个区域的面积比例与实际相符,适合用来制作区域面积比例重要的地图。
2. 高纬度地区形状会发生压缩和形变。
三、正轴等距投影法正轴等距投影法是一种使某一点保持在地图上的位置与实际相符的地图投影方法。
其中最常见的正轴等距投影法是汇卢卓投影法。
该投影法将地球投影到一个接触地球表面的切平面上,再展开成平面图。
汇卢卓投影法具有以下特点:1. 在地图上,特定地点的位置保持不变。
2. 地图整体形状会产生扭曲和拉伸。
四、等经纬度投影法等经纬度投影法是一种直接将地球经纬线映射到平面图上的地图投影方法。
其中最常见的等经纬度投影法是正投影法。
该投影法将地球投影到一个与地球相切的平面上,使得地图上经纬线直线简单。
正投影法具有以下特点:1. 经纬线在地图上表现为直线。
2. 不同纬度上的东西向距离不同,形成等经线。
综上所述,地图投影方法在测绘工作中起到至关重要的作用。
测绘技术中的地图投影类型与选择在日常生活中,地图是我们获取空间信息的重要工具之一。
然而,地球是一个球体,而地图是平面的,这就需要使用地图投影来将球面上的地理信息转换到平面上。
地图投影类型的选择对地图的准确性和可视化效果具有重要影响。
本文将介绍测绘技术中常用的地图投影类型,并讨论选择合适的地图投影的方法。
1. 地图投影类型的分类地图投影类型可以根据其投影方式、形状变形特点等进行分类。
按照投影方式,常见的地图投影类型有圆柱投影、球面投影和锥面投影。
圆柱投影是通过将地球的经纬线投影到一个垂直于地球轴线的圆柱面上。
球面投影则是将地球表面投影到一个球面上。
锥面投影则是将地球投影到一个锥面上。
2. 常见地图投影类型的特点不同的地图投影类型各有其特点,适用于不同的地理区域和测绘需求。
接下来,我们将介绍一些常见的地图投影类型及其特点。
2.1 正射投影正射投影是一种常见的等角投影,其特点是保持方向性,即保持从地球上的任何点到地图上的连线与真实地面上的方向一致。
这使得正射投影在航空摄影和遥感影像处理中广泛应用。
然而,正射投影在大范围地图上存在面积失真的问题。
2.2 麦卡托投影麦卡托投影是一种圆柱投影,其特点是纬线等间距,经线等角度分布。
这使得麦卡托投影在海洋和大陆等大范围地图中具有较好的可视化效果。
然而,麦卡托投影在高纬度地区会出现形状失真和面积失真的问题。
2.3 兰勃托投影兰勃托投影是一种球面等面积投影,其特点是保持地球上的面积比例不变。
兰勃托投影在大范围地图绘制中常用,尤其适用于对地理统计分析进行准确度量的场景。
然而,兰勃托投影在极地地区会出现形状和方位失真的问题。
3. 地图投影的选择方法选择合适的地图投影类型需要考虑多方面因素。
以下是一些选择地图投影的方法。
3.1 地理区域根据绘制地图的地理区域的特点,选择适合该区域的地图投影类型。
例如,如果绘制的地图是涵盖极地地区的,则应选择适合极地地区的地图投影类型,以减小形状和方位的失真。
常见地图投影欧阳芳地图投影:按变形性质分类:等角投影,等积投影,任意投影按几何构成方法分类:方位投影,圆柱投影,圆锥投影按非几何构成方法分类:伪方位投影,伪圆柱投影,伪圆锥投影,多圆锥投影按照投影面积与地球相割或相切分类:割投影,切投影这里只介绍常见常用的地图投影。
1.常见的地图投影按变形性质分为:等角投影:定义为投影前后对应的微分面积保持图形相似,即角度变形为零,也称正形投影。
其在一点上任意方向的长度比都相等,但在不同地点长度比是不同,即不同地点上的变形椭圆大小不同。
等积投影:定义为即在投影平面上任意一块面积与椭球面上相应的面积相等,即面积变形等于零。
等距投影:在任意投影上,长度、面积和角度都有变形,它既不等角又不等积。
但是有一种比较常见的等距投影,定义为沿某一特定方向的距离,投影前后保持不变。
在这种投影图上并不是不存在长度变形,它只是在特定方向上没有长度变形。
等距投影的面积变形小于等角投影,角度变形小于等积投影。
其变形性质在微分圆上的表示列表对比为:名称特点适用范围等角投影无角度变形航海、空图、洋流图、风向图、气象图及军用地图等积投影无面积变形经济图,行政区图和人口图等距投影(属于任意投影的特殊情况)特定方向上无长度变形沿某一特定方向量测距离的地图、教学地图和交通地图2.常用的几何投影:方位投影:以平面作为投影面,使平面与球面相切或相割,将球面上的经纬线投影到平面上而成。
其中球心投影常用于航空及航海图,外心投影常用于空间透视投影。
圆柱投影:以圆柱面作为投影面,使圆柱面与球面相切或相割,将球面上的经纬线投影到圆柱面上,然后将圆柱面展为平面而成。
圆锥投影:以圆锥面作为投影面,使圆锥面与球面相切或相割,将球面上的经纬线投影到圆锥面上,然后将圆锥面展为平面而成。
圆锥投影,圆柱投影,以及方位投影的情况分别用图形表示为:方位投影,圆锥投影,圆柱投影的异同分析(此表格中不加特别说明则默认为正轴投影):名称方位投影圆柱投影圆锥投影投影面平面圆柱面圆锥面纬线投影特点同心圆平行直线同心圆圆弧经线投影特点同心圆的半径与纬线投影成的平行直线垂直的平行直线垂直于同心圆弧且相交于一点的直线束投影变形分析经线间的夹角与实地经度差相等,其等变形线为圆其变形只与纬度有关,与经差无关,同纬度上各点其变形只与纬度有关,与经差无关,同纬度上各点形的变形相同的变形相同适用范围具有圆形轮廓的区域和两极地区低纬度沿纬线伸展的区域中纬度处沿纬线伸展的区域习惯特殊投影方式及用途1.正轴等角方位投影:极球面2.等积方位投影:小比例尺地图,东西半球图3.正轴等距方位投影:南北极图4.横轴等距方位投影:东西半球图5.斜轴等距方位投影:航空中心站,地震观测中心,气象站等需满足到中心距离相等的勘测中心。