简单的线性规划问题学案
- 格式:pdf
- 大小:145.05 KB
- 文档页数:4
3.3.2简单的线性规划问题导学案(1)班级 姓名【学习目标】1、了解线性规划的意义及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;2、能根据条件,建立线性目标函数;3、了解线性规划问题的图解法,并会用图解法求线性目标函数的最大(小)值。
【学习过程】一、自主学习(1)目标函数:(2)线性目标函数:(3)线性规划问题:(4)可行解:(5)可行域:(6) 最优解:二、合作探究在约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≥+00221y x y x y x 下所表示的平面区域内, 探索:目标函数2P x y =+的最值?(1)约束条件所表示的平面区域称为(2)猜想在可行域内哪个点的坐标00(,)x y 能使P 取到最大(小)值?(3)目标函数2P x y =+可变形为y= ,p 的几何意义:(4)直线2y x p =-+与直线2y x =-的位置关系(5)直线2y x p=-+平移到什么位置时,在y 轴上的截距P 最大? (6)直线2y x p=-+平移到什么位置时,在y 轴上的截距P 最小? 三、交流展示1、已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x ,求2t x y =-的最值。
规律总结:用图解法解决简单的线性规划问题的基本步骤?四、达标检测A 组:1.下列目标函数中,Z 表示在y 轴上截距的是( )A.yx z -= B.y x z -=2 C.y x z += D.y x z 2+= 2.不等式组 x –y+5≥0 x + y ≥0 x ≤3表示的平面区域的面积等于( )A 、32B 、1214C 、1154D 、6323.若⎪⎩⎪⎨⎧≤+≥≥100y x y x ,则yx z -=的最大值为( ) A.-1 B.1 C.2 D.-24.已知x ,y 满足约束条件5003x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,则24z x y=+的最小值为( ) A .5 B .6- C .10 D .10-5.若⎪⎩⎪⎨⎧≥≤+≤--0101x y x y x ,则目标函数yx z +=10的最优解为( ) A .(0,1),(1,0) B.(0,1),(0,-1)C.(0,-1),(0,0)D.(0,-1),(1,0)6. 若222x y x y ⎧⎪⎨⎪+⎩≤≤≥,则目标函数2z x y =+的取值范围是( )A .[26],B .[25],C .[36],D .[35],7.若A(x, y)是不等式组 –1<x <2 –1<y <2)表示的平面区域内的点,则2x –y 的取值范围是( )A 、(–4, 4)B 、(–4, –3)C 、(–4, 5)D 、(–3, 5)B 组:1.在不等式组 x >0 y >0 x+y –3<0表示的区域内,整数点的坐标是 。
简单的线性规划学习内容总析线性规划位于不等式和直线方程的结合点上,是培养学生转化能力和熟练运用数形结合能力的重要内容。
这一节的知识内容形成了一条结构紧密的知识链条:以二元一次不等式(组)表示的平面区域为基础,根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法解决简单的线性规划问题。
学情总析本节内容是在学习了直线方程、二元一次不等式(组)所表示的平面区域的基础上,强调应用转化思想和数形结合思想来解决线性规划问题。
三维教学目标知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。
过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数学思想方法;③提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力。
情感、态度与价值观:①在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。
教学重点及应对策略1、教学重点:根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;2、应对策略:将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题,然后借助直线方程的知识进行解决。
教学难点及应对策略1、教学难点:①借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系;②用数学语言表述运用图解法求解线性规划问题的过程。
2、应对策略:在理论解释的同时,可用动画进行演示辅助理解。
教学过程设计。
3.3.2简单的线性规划问题学案(一)预习案(限时20分钟)学习目标:1.了解线性规划的意义,了解线性规划的基本概念;2.掌握线性规划问题的图解法.3.能用线性规划的方法解决一些简单的实际问题,提高学生解决实际问题的能力.学习重点,难点:会画二元一次不等式(组)所表示的平面区域及理解数形结合思想,求目标函数的值。
预习指导:预习课本P87-911.如果两个变量y x ,满足一组一次不等式组,则称不等式组是变量y x ,的约束条件,这组约束条件都是关于y x ,的 次不等式,故又称 条件.2.关于y x ,的一次式),(y x f z =是达到最大值或最小值所涉及的变量y x ,的解析式,叫线性目标函数.3.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为 规划问题.4.可行解、可行域和最优解:在线性规划问题中,①满足线性约束条件的解(,)x y 叫 ;②由所有可行解组成的集合叫做 ; ③使目标函数取得最大或最小值的可行解叫线性规划问题的 解.线性规划问题,就是求线性目标函数在线性约束条件下的最大值或最小值的问题.预习检测1.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-12102y x y x y x ,则目标函数y x z +=2的最大值为 ( )A .。
34B .2C .23D .23- 2.若变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥≤+≤1,1y y x x y 且y x z +=2的最大值和最小值分别为m 和n ,则n m -=( )A .5B . 6C . 7D . 83.若y x ,满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则目标函数2z x y =-的最小值为__________4.求35z x y =+的最大值和最小值,使式中的y x ,满足约束条件5315153x y y x x y +≤⎧⎪≤+⎨⎪-≥⎩.巩固练习1.某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,且广告总费用不超过9万元,甲、乙两个电视台的收费标准分别为500元/分钟和200元/分钟,已知甲、乙两个电视台每分钟所做的广告能给该公司带来的收益分别为3.0万元和2.0万元.设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,则线性目标函数为 ( )A .y x z +=B .z=3000x+2000yC .z=200x+500yD .z=500x+200y2.在△ABC 中,三个顶点分别为)0,1(),2,1(),4,2(C B A -,点P (x ,y )在△ABC 的内部及其边界上运动,则x y -的取值范围为 ( )A .[]3,1B . []1,3-C .[]3,1-D .[]1,3--3.已知实数y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥+-≤+02202202y x y x y x ,则目标函数z=x+y 的最大值为 .4.某企业生产B A ,两种产品,生产每一吨产品所需的劳动力和煤、电耗如下表:已知生产每吨A 产品的利润是7万元,生产每吨B 产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业生产B A ,两种产品各多少吨,才能获得最大利润?5.点),(y x 位于曲线1-=x y 与直线2=y 所围成的封闭区域内,在直角坐标系中画出该区域,并求y x -2的最小值.6.给出平面可行域(如图),若使目标函数y ax z +=取最大值的最优解有无穷多个,则=a ( ) A .41 B . 53 C .4 D .35产品品种劳动力(个) 煤(吨) 电(千瓦) A 产品3 94 B 产品10 4 53.3.2简单的线性规划问题学案(二)解题思想1.问题的切入点是赋予“z ”恰当的几何意义:纵截距或横截距或其他;2.线性目标函数的最大值、最小值一般在可行域的顶点处取得;3.线性目标函数的最大值、最小值也可能在可行域的边界上取得,即满足条件的最优解有无数多个,此时目标函数的图象一定与区域中的一条边界直线平行.一、基础练习1.若变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,则y x +2的最大值是 ( )A. 3B. 2C. 4D. 52.若变量x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≤≤≥-+≥+3002202y x y x y x ,则目标函数z=x+y 的最大值为 ( ) A. 32 B. 1 C. 23 D. 3 3.设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为 ( )A.3B.4C. 18D. 404.设z=kx+y ,其中实数x ,y 满足⎪⎩⎪⎨⎧≤--≥+-≥0420422y x y x x ,若z 的最大值为12,则实数k= .5.已知x ,y 满足约束条件k k y x x y y (020⎪⎩⎪⎨⎧≤++≤≥为常数),且目标函数z=x+3y 的最大值为12,则k 的值为 .二、已知目标函数的最值求参数.6.已知变量x ,y 满足条件230,330,10.x y x y y +-≤⎧⎪+-≥⎨⎪-≤⎩若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是 ( ). A.1,2⎛⎫-∞- ⎪⎝⎭ B. 1,02⎛⎫- ⎪⎝⎭ C. 10,2⎛⎫ ⎪⎝⎭ D. 1,2⎛⎫+∞ ⎪⎝⎭7.若,x y 满足约束条件1,1,22,x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩目标函数2z ax y =+仅在点(1,0)处取得最小值,则a 的取值范围( ) A.(-1,2) B.(-4,2) C(-4,0) D.(-2,4)8.已知实数,x y 满足1,21,,y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩如果目标函数z x y =-的最小值为1-,则实数m 等于 A.7 B.5 C.4 D.39.已知点P (x ,y )的坐标满足约束条件⎪⎩⎪⎨⎧≥+-≥-+≤-022010y x y x y x 若z=x+3y+m 的最小值为6,则m= ( ) A .1 B .2 C .3 D .4三、非线性目标函数10.已知实数x ,y 满足约束条件⎪⎩⎪⎨⎧≥-≥+≤2222y x y x x ,则x y k =的取值范围是 ( ) A .[]1,0 B . ⎥⎦⎤⎢⎣⎡1,21 C .⎥⎦⎤⎢⎣⎡34,0 D .⎥⎦⎤⎢⎣⎡1,31 11.已知实数x ,y 满足不等式组⎪⎩⎪⎨⎧≤-+≥≥-0001a y x y x ,若11+-=x y z 的最大值为1,则正数a 的值为 ( ) A .21 B .1 C .2 D .412.已知x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≥≥100y x y x ,则(x+3)2+y 2的最小值为 ( )A .10B .22C .8D .1013.在平面直角坐标系xOy 中,M 为不等式组⎪⎩⎪⎨⎧≥≥-+≤-+0020632y y x y x 所表示的区域上一动点,则OM 的最小值是 .14.变量x ,y 满足⎪⎩⎪⎨⎧≥≤-+≤+-102553034x y x y x ,(1)设y x z 34-=,求z 的最大值;(2)设xy z =,求z 的最小值; (3)设22y x z +=,求z 的取值范围.。
简单的线性规划问题(导学案)班级姓名【学习目标】1. 巩固二元一次不等式和二元一次不等式组所表示的平面区域;2.能根据实际问题中的已知条件,找出约束条件,抽象出一些简单的二元线性规划问题,并加以解决;3. 体会线性规划的化归、数形结合的数学思想,增强观察、联想以及作图的能力.【知识清单】1.线性规划的实际应用主要解决两类问题:(1)在人力、物力、资金等资源一定的条件下,如何使用它们来完成的任务;(2)给定一项任务,如何合理安排和规划,能以的人力、物力、资金等资源来完成该项任务.2.线性规划的有关概念:①约束条件:由变量x、y组成的;线性约束条件:由变量x、y组成的不等式组.②目标函数:欲达到最大值或最小值的关于x、y的;线性目标函数:欲达到最大值或最小值的关于x、y的.③线性规划问题:一般地,在线性约束条件下求线性目标函数的或的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(x,y)叫;由所有可行解组成的集合叫做;使目标函数取得最大或最小值的可行解叫线性规划问题的.3.用图解法解决线性规划问题的一般步骤:【问题探究】在生产与营销活动中,我们常常需要考虑:怎样利用现有的资源(人力、物力、资金……),取得最大的收益,或者,怎样以最少的资源投入去完成一项给定的任务,我们把这类问题称为“最优化”问题。
例:某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。
该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可能的一个生产周期的安排是什么?并画出相应的平面区域。
问:进一步,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,那么采用哪种生产方式该企业可获得最大利润?【典例精析】、目标函数的最值转化例1.已知x 、y 满足条件⎪⎩⎪⎨⎧≤+-≤-≥3053431y x y x x 求:(1) 求y x z +=2的最大值和最小值;(2)求y x z -=2的最大值和最小值;(3)若目标函数y ax z +=取得最大值的最优解有无穷多个,求a 的值;(4)求11+-=x y z 的最大值和最小值. (5))求22y x z +=的最大值和最小值【知能达标】1.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤≤222y x y x ,则y x z 2+=的取值范围是( )A. [2,6]B. [2,5]C. [3,6]D. (3,5)2.在△ABC 中,三顶点坐标为A (2,4),B (-1,2),C (1,0),点),(y x P 在ABC ∆内部及边界运动,则y x z -=的最大、最小值是( )A. 3,1B. -1,-3C. 1,-3D. 3,-13. 在如图所示的可行域内,目标函数z x ay =+取得最小值的最优解有无数个,则a 的一个可能值是( ).A. 3-B. 3C. 1-D.1思考题:若y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≥-+01032033my x y y x y x ,且y x +的最大值为9,则实数m 值为 。
高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。
2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。
2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。
3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。
三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。
2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。
四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。
2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。
五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。
2. 提醒学生在做作业时要注意思考问题的建模和求解方法。
六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。
2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。
§4.3简单线性规划的应用导学案[学习目标]:从实际情景中抽象出简单的二元线性规划问题,并加以解决.[学习过程]:一.知识回顾:1. 如果两个变量,x y满足二元一次不等式,求这两个变量的一个线性函数的最大值或最小值,那么我们就称这个线性函数为_______________,称一次不等式组为_______________,像这样的问题叫做_________________,满足约束条件的解(,)x y成为______________,由所有可行解组成的集合称为_______________,使目标函数取得最小值或最大值的可行解成为这个问题的____________________.2. 在线性约束条件4335251x yx yx-≤-⎧⎪+≤⎨⎪≥⎩下,目标函数2z x y=+的取值范围是_____________,最优解是__________________.二.新知探究:1. 从实际情景中抽象出二元一次不等式组(约束条件),再将二元一次不等式组表示在平面区域中(可行域).该厂有工人200人,每天只能保证160的用电额度,每天用煤不得超过150t,请在直角坐标系中画出每天甲乙两种产品允许的产量范围.强化练习:某市政府准备投资1200万元兴办一所中学.经调查,班级数量以20至30个班为宜,每个初、高中班硬件配置分别为28万元和58万元.将办学规模(初、高中班的班级数量)在直角坐标系中表示出来.2. 进一步找出目标函数,并求出最优解.(1)一项任务确定后,如何统一安排,做到以最少的人力和物力安排任务?例2.医院用甲乙两种原料为手术后的病人配寄养餐,甲种原料每10g含5单位蛋白质,和10单位铁质,售价2元;乙种原料每10g含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质,试问:应如何使用甲乙原料,才能既满足营养,又使费用最省?强化练习: 两类药丸中含有相同的成分:阿司匹林,小苏打和可特因,甲类药丸中含有2g阿司匹林,5g小苏打和1g可特因;乙类药丸中含有1g阿司匹林,8g小苏打和4g可特因.若果要求至少提供12g阿司匹林,74g小苏打和28g可特因,这两类药丸的最小数量是多少?(2).在一定量的人力和物力条件下,如何安排和使用以发挥最大的效益?例3.某货运公司拟用集装箱托运甲乙两种货物,一个大集装箱能够装所托运货物的总体积m,总质量不能低于650千克.甲乙两种货物每袋体积,质量和可获得的利润,列不能超过243问:在一个大集装箱内,这两种货物各装多少袋(不一定都是整袋)时,可获得最大利润?强化练习:某厂生产一种产品,其成本为27元/kg,售价为50元/kg.生产中,每千克产品产生m的污水,污水有两种排放方式:0.33方式一:直接排入河流.方式二:经厂内污水处理站处理后排入河流,但受污水处理站技术水平的限制,污水处理m/h,处理污水的成本是5元/3m.率只有85%.污水处理站最大处理能力是0.93m,且允许该厂排入河流中的污另外,环保部门对排入河流的污水收费标准是17.6元/3m/h.那么该厂应选择怎样的生产与排污方案,可使其每时净收益最水的最大量是0.2253大?三. 方法归纳:利用现行规划解决实际问题的方法和步骤:(1)找:找出实际问题中的________________和_________________;(2)画:画出线性约束条件所表示的_______________;(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;(4)求:通过解方程组求出_________________;(5)答:作出答案,即可用5个字来概括:找、画、移、求、答.[反馈练习]:1.A,B两个产地生产同一规格的产品,产量分别是1.2万t,0.8万t,而D,E,F三地分别需要该产品0.8万t,0.6万t,0.6万t,从产地A运往D,E,F三地每万吨的运价分别为40万元,50万元,60万元;从产地B运往D,E,F三地每万吨的运价分别为50万元,20万元,40万元,怎样确定调运方案可使总的运费最少?2.某宾馆准备建造一幢住宿楼,它设有单人房和双人房若干间,按要求,必须符合下列条件:m,双人房间每间面积152m,且全部该住宿楼最少能容纳50人住宿;单人房间每间面积102m;双人房的数目不得超过单人房数目.已知住宿楼建成开业后,房间所占面积不超过4802每间单人房与每间双人房每月获益分别为250元与300元,试问:如何安排单人间与双人间的数目才能使每月总的获益最大?。
简单的线性规划问题复习课学案
考纲要求
1、了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。
2、解决一些简单的二元线性规划问题。
知识梳理
二元一次不等式与平面区域
1、画二元一次不等式表示的平面区域,常采用 的方法,当边界不过原点时,常把原点作为特殊点。
2、包括边界的区域将边界画成 ,不包括边界的区域将边界画成 。
解线性规划问题的步骤
1、找: 找出 、 ;
2、画:画出线性约束条件所表示的 ;
3、移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距 的直线;
4、求:通过解方程组求出 。
基础自测
1、画出下列不等式表示的平面区域。
(1)x +4y <4 (2) 4x -3y ≤12
2、请画出下列不等式组表示的平面区域。
410652200x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩
3、设z=2x -y ,变量x 、y 满足下列条件
求z 的最大值和最小值。
4、已知 ,z=2x+y ,求z 的最大值和最小值。
变题:上例若改为求z=x-2y 的最大值、最小值呢?
选做题
(2011全国高考)若变量x,y 满足约束条件
X+y 6
X-3y -2 ,则z=2x+3的最小值为A.17 B.14,C.5,D.3
X 1 ⎪⎩⎪⎨⎧≥≤+-≤-125
5334x y x y x ⎪⎩⎪⎨
⎧≥≤+-≤-125533
4x y x y
x。
简单的线性规划问题(学案)-------------各类专业好文档,值得你下载,教育,管理,论文,制度,方案手册,应有尽有---------------------------------------------------------------------精品文档------------------------------------------------------------------- 必修53、3、2 简单的线性规划问题(学案)(第2 课时)【知识要点】1、二元线性规划问题;2、线性规划问题在实际中的简单应用、【学习要求】能从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决、【预习提纲】(根据以下提纲,预习教材第89 页~第91 页)1、在线性约束条件下,最优解是唯一的吗?2、将目标函数的直线平移时应注意什么?3、在线性目标函数中,将直线向上平移时,的值;yxz23zyx23z 直线向下平移时,的值、yx 2 【基础练习】1、某厂拟生产甲、乙两种适销产品,每件销售收入分别为。
甲、乙元元、203 产品都需要在两种设备上加工,在每台设备上加工甲产品所需工时分别BA、 BA、件1 为1h、2h,加工1件乙产品所需工时分别为2h、1h,两种设备每月有效使、用台时数分别为400h和500h、如何安排生产可使收入最大?【典型例题】-----------各类专业好文档,值得你下载,教育,管理,论文,制度,方案手册,应有尽有---------------------------------------------------------------------精品文档------------------------------------------------------------------- 例1 要将两种大小不同的钢板截成三种规格,每张钢板可同时截得三种规格CBA, 的小钢板的块数如下表所示:规格类型钢板类型规格规格规格C第一种钢板211第二种钢板123 今需要三种规格的成品分别为15、18、27 块,问各截这两种钢板多少张可得CBA, 所需三种规格成品,且使所用钢板张数最少?例2 一个化肥厂生产甲、乙两种混合肥料,生产车皮甲种肥料的主要原料是磷酸盐1 、硝酸盐;生产车皮乙种肥料的主要原料是磷酸盐、硝酸盐、现库存磷酸t4t18 tt15 盐、硝酸盐、若生产1 车皮甲种肥料,产生的利润为10 000 元;生产1 车皮乙种06 肥料,产生的利润为5 000 元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?变式训练:(xx 四川卷文)某企业生产甲、乙两种产品,已知生产每吨甲产品要用-----------各类专业好文档,值得你下载,教育,管理,论文,制度,方案手册,应有尽有---------------------------------------------------------------------精品文档------------------------------------------------------------------- A 原料3 吨,B 原料2 吨;生产每吨乙产品要用 A 原料1 吨,B 原料3 吨,销售每吨甲产品可获得利润5 万元,每吨乙产品可获得利润3 万元。
简单的线性规划教案教案标题:简单的线性规划教案教学目标:1. 了解线性规划的基本概念和特点。
2. 理解线性规划问题的求解过程。
3. 能够利用线性规划方法解决简单的实际问题。
所需材料:1. 铅笔、纸张、计算器。
2. 多个线性规划问题的案例。
教学步骤:引入阶段:1. 引导学生思考:什么是线性规划?线性规划有哪些应用场景?2. 提出教学目标,并解释线性规划的定义和特点。
探究阶段:3. 解释线性约束条件和目标函数的概念。
4. 利用一个简单的例子说明线性规划问题的形式和表示方法。
5. 引导学生分析并列出问题的线性约束条件和目标函数。
实践阶段:6. 将学生分成小组,每个小组选择一个实际问题,并将其转化为线性规划问题。
7. 指导学生列出问题的线性约束条件和目标函数。
8. 引导学生运用计算器或手动计算,求解其线性规划问题。
9. 学生分享并讨论解决过程和结果。
巩固阶段:10. 提供更多复杂的线性规划问题案例,让学生独立尝试解答,并讨论解决策略和结果。
11. 简要总结线性规划的基本原理和步骤。
拓展阶段:12. 引导学生思考更高级的线性规划问题,如带有整数约束或非线性目标函数的问题。
13. 推荐相关参考书籍和网上学习资源供学生深入学习。
评估方式:1. 在实践阶段,观察学生的合作和参与情况。
2. 收集学生独立解答的线性规划问题的答案,并进行评估。
教学反思:根据学生的反馈和评估结果,适时调整教学步骤和内容,确保学生能够理解和应用线性规划的基本原理。