金属切削温度测量方法的研究
- 格式:pdf
- 大小:428.95 KB
- 文档页数:3
钻削温度测量方法研究陈雷明,杨润泽,张治军械工程学院摘要:通过对现有的切削温度在线检测方法进行综合评述,介绍了各种测温方法的原理、优缺点和应用范围,提出了钻削过程中一种新的测温方法原理和应用范围并通过试验验证可行性。
关键词:金属切削;切削温度;测量方法中图分类号:TG5 文献标志码:AResearch on Method of Drilling Temperature MeasurementChen Leiming,Yang Runze,Zhang ZhiAbstract:This paper introduces several kinds of principle,advantages and disadvantages,application fields of the methods of temperature measurement by reviewing existing online detection of cutting temperature.And a new theory and application fields of temperature measurement in drilling has been proposed and the feasibili ty has been proved by experi ments.Keywords:metal cutting;cutting temperature;measurement1 引言在机械制造加工过程中,虽然各种检测技术不断发展和完善,但在应用过程中,温度检测技术仍然占据主导地位。
这不仅仅是由于温度信号的方便提取,而且较其它方法而言,这种检测方法不易受到干扰。
所以对切削温度在线检测技术进行系统分类和研究具有重大的现实意义。
切削温度的测量方法可以分为以下几类:切削温度测量方法接触法自然热电偶法人工热电偶法半人工热电偶法非接触法光和热辐射法红外热像仪法间接法光纤测温法扫描电镜法2 切削温度测量方法2.1 接触法热电偶的原理是两种不同材料的金属焊接在一起,当参考端和测量端有温差时,就会产生热电势,根据该热电势与温度的单值关系就可以测量温度。
第1篇一、实验目的本次实验旨在探究切削参数(切削深度、进给量、切削速度)对切削量(切削力、切削温度、表面粗糙度)的影响,为实际生产中切削参数的优化提供理论依据。
二、实验内容与方法1. 实验设备:高速切削实验台、电主轴、刀具、测力仪、温度计、表面粗糙度仪等。
2. 实验材料:45号钢。
3. 实验参数:- 切削深度:0.5mm、1.0mm、1.5mm- 进给量:0.2mm/r、0.4mm/r、0.6mm/r- 切削速度:300m/min、400m/min、500m/min4. 实验方法:- 将45号钢材料固定在高速切削实验台上,调整切削参数。
- 使用刀具进行切削实验,记录切削力、切削温度、表面粗糙度等数据。
- 对比不同切削参数下切削量的变化规律。
三、实验结果与分析1. 切削力:实验结果表明,切削力随切削深度、进给量的增加而增大,随切削速度的增加而减小。
在相同切削参数下,切削深度对切削力的影响最为显著。
2. 切削温度:实验结果表明,切削温度随切削深度、进给量的增加而升高,随切削速度的增加而降低。
在相同切削参数下,切削深度对切削温度的影响最为显著。
3. 表面粗糙度:实验结果表明,表面粗糙度随切削深度、进给量的增加而增大,随切削速度的增加而减小。
在相同切削参数下,切削速度对表面粗糙度的影响最为显著。
四、结论1. 切削力、切削温度、表面粗糙度均受到切削参数的影响,其中切削深度的影响最为显著。
2. 在实际生产中,应根据工件材料、加工要求等因素,合理选择切削参数,以获得最佳的切削效果。
3. 高速切削技术具有切削速度高、切削力小、切削温度低等优点,有利于提高加工效率、降低生产成本。
五、实验总结本次实验通过探究切削参数对切削量的影响,为实际生产中切削参数的优化提供了理论依据。
实验结果表明,切削深度、进给量、切削速度对切削力、切削温度、表面粗糙度具有显著影响。
在实际生产中,应根据工件材料、加工要求等因素,合理选择切削参数,以获得最佳的切削效果。
金属切削温度测量方法研究以《金属切削温度测量方法研究》为标题,撰写一篇3000字的中文文章一、绪论金属切削过程中,温度是影响金属切削性能的关键因素。
一方面,温度依据物理机械钝化规律,影响切削刀具的硬度及强度;另一方面,温度高低对被加工材料的塑性变形有直接影响,当温度不正确时,会造成材料的损伤及产品质量的下降。
因此,准确的金属切削温度测量是提高金属切削产品质量的关键一步,同时也是推动金属加工领域发展的重要因素。
本文将探讨金属切削温度测量方法,以期提供科学准确的金属切削温度控制策略,从而获得优质的金属加工制品。
二、金属切削温度测量方法2.1向热流计量法切向热流计量法是定量测量切削过程中的热量转移量的一种方法,通过测量切削液或切削热量转移的冷却器内的温度变化量来反映金属切削温度的变化。
切向热流计量法的测量,可以采用多种形式。
如利用涡街流量计测量冷却剂的流量,并通过变温实验法计算出切削液的热吸收率等,以及利用液力传感器测量冷却剂的温度变化,以及利用温度分布嘴测量热量在切削过程中的分布情况等等方法。
2.2释电传感器测量法热释电传感器测量法也被称为红外测温法,是利用热释电特性测量金属切削温度的一种方法。
其核心原理是利用被测物体的热辐射能量来检测,并计算出物体的温度。
热释电传感器测量法的优点是,其可以在短时间内快速准确的测量出金属切削的温度,同时可以精确的检测出切削过程中温度的变化趋势,从而获得更加精确的金属切削参数。
2.3电阻传感器测量法热电阻传感器测量法也被广泛应用于金属切削温度测量中,热电阻传感器测量法的核心原理是利用热电阻特性测量金属切削过程中的温度变化。
其优点是,热电阻传感器测量法可以有效的抑制由于高温和低温环境的影响,具有较强的稳定性,还可以抵抗高温和多变性,同时可以避免温度量程及温度测量精度的影响,从而获得更准确的温度测量结果。
三、结论金属切削温度测量方法是控制金属切削质量的一个关键因素,同时也是金属切削技术发展的基础。
切削过程中切削热的影响及分析摘要切削金属时,由于切屑剪切变形所作的功和刀具前面、后面摩擦所作的功都转变为热,这种热叫切削热。
使用切削液时,刀具、工件和切屑上的切削热主要由切削液带走;不用切削液时,切削热主要由切屑、工件和刀具带走或传出,其中切屑带走的热量最大,传向刀具的热量虽小,但前面和后面上的温度却影响着切削过程和刀具的磨损情况,所以了解切削温度的变化规律是十分必要的。
关键词:切削热;切削温度;测量方法;热量分布;影响因素目录1切削热的产生 (1)2切削热的测量 (2)2.1.热电偶法 (2)2.2自然热电偶法 (5)2.3人工热电偶法 (5)2.4半人工热电偶法 (5)2.5等效热电偶法 (6)2.6.切屑颜色与切削温度的关系 (6)2.7光热辐射法 (7)2.8其他因素 (8)3切削热的影响因素 (8)3.1、切削用量的影响 (8)3.2、刀具几何参数的影响 (9)3.3、刀具磨损的影响 (11)3.4、切削液的影响 (11)3.5工件材料 (11)3.6其他因素 (11)4切削热的分布 (12)5对工件的影响 (13)6 解决措施 (13)7 切削热的利用 (14)结论 (17)致谢 (18)参考文献 (19)1切削热的产生切削热被切削的金属在刀具的作用下,发生弹性和塑性变形而耗功,这是切削热的一个重要来源。
此外,切屑与前刀面、工件与后刀面之间的摩擦也要耗功,也产生出大量的热量。
因此,切削时共有三个发热区域,即剪切面、切屑与前刀面接触区、后刀面与过渡表面接触区,如图示,三个发热区与三个变形区相对应。
所以,切削热的来源就是切屑变形功和前、后刀面的摩擦功。
切削塑性材料时,变形和摩擦都比较大,所以发热较多。
切削速度提高时,因切屑的变形减小,所以塑性变形产生的热量百分比降低,而摩擦产生的热量百分比增高。
切削脆性材料时,后刀面上摩擦产生的热量在切削热中所占的百分比增大。
切削热来源于三个变形区切屑变形功刀具切屑间摩擦功刀具工件间摩擦功切削热产生比例Q=Qs+Qγ+Qα 根据切削条件:切塑性金属时切屑为带状切屑,塑性变形和前刀面的摩擦比较厉害,切屑为带状切屑,塑性变形和前刀面的摩擦比较厉害, Qs+QX占主导切脆性金属时切屑为崩碎切屑,后刀面摩擦占百分比↑,所以Q 切屑为崩碎切屑,后刀面摩擦占百分比↑,所以Qα占主导速度较高时切屑的变形↓,塑性变形产生的热百分比↓ 摩擦热占切屑的变形↓,塑性变形产生的热百分比↓,摩擦热占百分比↑ 百分比↑ ,Qγ+Qα占主导速度较低时切屑的变形↑ 塑性变形Q 切屑的变形↑,塑性变形Qs占主导2切削热的测量尽管切削热是切削温度上升的根源,但直接影响切削过程的却是切削温度,切削温度一般指前刀面与切屑接触区域的平均温度。
金属切削原理下刀具智能监测与预警技术研究在制造业领域中,金属切削是一项常见的工艺,其广泛应用于机械加工过程中。
金属切削加工的质量和效率往往依赖于刀具的运行状态。
然而,由于长时间使用和金属材料的高硬度,刀具的磨损、断裂和变形等问题经常发生,导致工艺质量下降和生产效率下降。
因此,对刀具的智能监测和预警技术的研究具有重要意义。
刀具智能监测与预警技术的目标是实现对刀具运行状态的实时监测和预测,以便在刀具出现故障前提前采取措施,从而避免生产故障和额外的维修成本。
该技术涉及到数据采集、信号处理、算法分析等多个方面。
下面将对这些方面的研究进展进行综述。
首先,数据采集是刀具智能监测与预警技术研究的基础。
常见的数据采集方法包括传感器监测、振动信号采集和温度监测等。
传感器监测可以通过安装在刀具上的传感器实时采集刀具的运行状态数据,如压力、温度和振动等。
振动信号采集能够提供更加详细的信息,可以通过加速度传感器或振动传感器捕捉刀具振动特征,以检测刀具是否存在磨损或断裂等问题。
温度监测可以通过红外线测温仪等设备测量刀具的表面温度,为刀具状态评估提供参考依据。
其次,信号处理是对采集到的数据进行预处理和分析的过程。
预处理包括滤波、噪声消除和信号增强等操作,以减小数据中的噪声和干扰,保留有用的信号。
分析则基于处理后的数据,运用统计学方法、机器学习算法等,提取特征,并建立模型进行数据分析和预测。
刀具的振动信号分析通常采用频域分析和时域分析的方法,以获得不同频率成分的能量分布和时间序列的变化趋势。
最后,算法分析是对处理得到的数据进行模型建立和预测的过程。
常用的算法包括基于统计学的方法、人工神经网络和支持向量机等。
统计学方法可以利用已有的数据集,通过计算相关统计指标来预测刀具状态的变化趋势。
人工神经网络是一种模拟人脑神经系统工作方式的算法,通过训练网络模型,对刀具状态进行识别和预测。
支持向量机是一种监督学习算法,能够通过训练样本,建立一个分类器进行状态判别。
切削热与切削温度》教学设计方案专业年级:电钳专业一年级教材:机修钳工工艺学授课时间:2013 年12 月22 日切削热与切削温度》教案专业年级:电钳专业一年级教材:机修钳工工艺学授课时间:2013 年12 月22 日一、 切削热和由此产生的切削温度能改变前刀面上的摩擦系数,直接影响刀具的磨损和刀具耐用度;切削温度能改变工件材料的性能,影响积屑 瘤的产生和消失,直接影响工件的加工精度和表面质量。
二、 凡是影响切削力的因素都会影响到切削热和由此产生的切削温度 三、 切削热的来源与传出切削热来源于两个方面:一是切削层金属发生弹性和塑性变形所消耗的 能量;二是切屑与前刀面、工件与后刀面问产生的摩擦热。
切削过程中的三个变 形区就是三个发热区域,如图所示。
切削过程中所消耗能量的98% — 99%都将转化为切削热。
如忽略进给运 动所消耗的能量,则单位时间产生的切削热:Q Fc • v c式中 Q ——单位时间产生的热量,单位 J / s ;Fc ――切削力,单位:N;vc------ 切削速度单位:m / s 。
四、切削热由切屑、工件、刀具及周围的介质(空气,切削液)向外传导。
影 响散热的主要因素是:(1)工件材料的导热系数 工件材料的导热系数高,由切屑和工件传导出去的热 量就多,切削区温度低。
工件材料寻热系数低,切削热传导慢,切削区温度高, 刀具磨损快。
⑵刀具材料的导热系数 刀具材料的导热系数高,切削区的热量向刀具内部传 导快,可以降低切削区的温度。
⑶周围介质采用冷却性能好的切削液能有效地降低切削区的温度。
五、切削温度的测量教学 内容35学生自 主探 索,小 组讨 论、思 考(5 分钟)刀具前血上的切削温度分布测量切削温度的方法很多,有热电偶法、辐射热计法、热敏电阻法等。
目前 常用的是热电偶法。
用热电偶法测量切削温度有自然热电偶和人工热电偶两种方法:1. 自然热电偶法利用工件材料和刀具材料化学成分不同组成热电偶的两极。
金属切削中的刀具温度分析与测量方法刀具温度是金属切削过程中一个重要的参数,它直接影响切削性能、刀具寿命和加工质量。
因此,在金属切削过程中,准确地分析和测量刀具温度对于提高加工效率和降低成本具有重要意义。
本文将介绍金属切削中刀具温度的分析与测量方法。
一、刀具温度的分析方法1. 理论计算法理论计算法是比较常用的一种刀具温度分析方法,它通过建立刀具温度的数学模型,通过计算来预测刀具表面的温度分布。
该方法基于辐射传热原理,考虑了切削速度、切削力、热源和刀具材料特性等因素的影响。
通过使用数值模拟软件,可以进行刀具温度分析,并得到刀具温度的数值结果。
2. 热电偶测温法热电偶测温法是一种直接测量刀具温度的方法。
将热电偶焊接在刀具表面,通过热电偶感应到的温度电势信号,可以获得刀具温度的实时数据。
这种方法具有测量范围广、精度高的优点,但需要在加工过程中实时监测,并且对于高温和高速切削过程有一定的限制。
3. 红外测温法红外测温法利用红外热像仪对刀具表面的红外辐射进行测量,从而间接得到刀具温度。
这种方法可以在不接触刀具的情况下进行测量,具有非侵入性和高效率的特点。
然而,红外测温法在测量精度上存在一定的误差,尤其对于材料导热性能较好的刀具,其测量结果可能会受到周围环境和切削冷却液的影响。
二、刀具温度的测量方法1. 热电偶测温法热电偶测温法不仅可以用于刀具温度的分析,也可以用于直接测量刀具温度。
选择适当的热电偶焊接在刀具表面,并连接到测温仪器上,通过观察温度数据的变化,可以实时了解刀具的温度变化情况。
2. 红外测温法红外测温仪可以通过测量刀具表面的红外辐射来间接得到刀具的温度。
使用红外测温仪时,必须选择适当的仪器和测量方法,确保测量结果的准确性。
同时,应该注意在使用红外测温法时,忌讳强光照射和刀具表面的残留油脂等。
3. 热像仪测温法热像仪是一种高级红外测温仪器,它可以实时捕捉刀具表面的红外图像,并将其转化为温度分布图。
通过使用热像仪,可以直观地观察刀具的温度分布情况,并及时发现温度异常区域,以进行相应的调整和措施。