Ω={(x,y):aaxb,0yM},并设(X,Y)是在Ω上均匀分
布的二维随机向量,其联合密度函数为
p
x, y
M
1 b a 1axb,0 yM
b
则易见, f xd是x Ω中曲线f(x)下方面积。
a
假设我们向Ω中投点,若点落在y=f(x)下方称为中的,
则点中的概率为
p
M
1
b
a
b
a
f
例2.1 设X的密度函数为
n
n
p x i pi x 其中,i 0, i 1
i 1
i 1
由合成法,X的随机数可如下抽取: i1
i
1)取u~U(0,1);
2)取0
0,确定i,使
j
j0
u j j0
3) 由pi(x)抽取x.
2.3 筛选抽样 当p(x)难以直接抽样时,如果可以将p(x) 表示成
jj
c
2 jl
l 1
至此,我们可以给出k维正态分布的抽样步骤:
1)迭代计算 cij ,i 1,..., k, j 1,..., i;
2)由N(0,1)分布独立抽取k个随机数 z z1,L , zk ;
3)计算 x Cz
2.5 随机模拟计算 2.5.1 随机投点法
b
考虑积分 f xdx ,设a,b有限,0f(x)M,令
b
n
a
n i 1
f
X
i
1 n
b
a
b a
f
2
x
dx
2
Var
ˆ1
2.5.3 降低方差的技术
Monte Carlo 方法中一类重要的研究课题是考虑一 些降低估计方差的技术。常用的方法有:重要抽样 法,分层抽样法,关联抽样法等。