∴
E
0,
( r R)
E的方向垂直轴线沿径向, > 0则背离轴线;
R ˆ, ( r R ) r 0r
< 0则指向轴线。
11、无限大的均匀带电平面,电荷面密度为,P点与 平面的垂直距离为d,若取平面的电势为零,则P点的 电势 V p d / 2 0 ,若在P点由静止释放一个电子(其 质量为m,电量绝对值为e)则电子到达平面的速率为:
3、一均匀静电场,场强 E (400i 600 j )V m 1 , 则点a(3、2)和点b(1、0)之间的电势差为 Vab 2000V
解 : E 400i 600 j
b b a a
dl dxi dyj
Vab E dl (400i 600 j ) (dxi dyj )
侧 面 EdS E 侧 面 dS 2πrhE
(1) r < R时,
qi 0 ,
qi 由高斯定理 Φ ε0
即 2πrhE 0, 得 E 0 (2) r > R时, q i 2πRhσ ,
qi 由高斯定理 Φ ε0
σR 即 2πrhE 2πRhσ / ε0 , 得 E ε0 r
2
10.( 第一章习题二 .9) 无限长均匀带电圆柱面,电荷 面密度为,半径为R,求圆柱面内外的场强分布。
解:作一半径为r,高为h的同轴圆柱面
R r
E
为高斯面, 根据对称性分析,圆柱面 侧面上任一点的场强大小相等, 方向
h E
S
ˆ r
沿矢径方向。 Φ S E dS 上底 E dS 下底 E dS 侧面 E dS