静电场习题课.
- 格式:ppt
- 大小:1.66 MB
- 文档页数:31
习题课基础练1. 如图1所示,电子由静止开始从A 板向B 板运动,到达B 板的速度为v ,保持两板间的电压不变,则( )图1A .当增大两板间的距离时,速度v 增大B .当减小两板间的距离时,速度v 减小C .当减小两板间的距离时,速度v 不变D .当减小两板间的距离时,电子在两板间运动的时间增大 答案 C解析 由动能定理得eU =12m v 2.当改变两极板间的距离时,U 不变,v 就不变,故C 项正确;粒子做初速度为零的匀加速直线运动,v =d t ,v 2=d t ,即t =2dv,当d 减小时,电子在板间运动的时间变小,故D 选项不正确.2. 图2为示波管中电子枪的原理示意图,示波管内被抽成真空.A 为发射电子的阴极,K 为接在高电势点的加速阳极,A 、K 间电压为U ,电子离开阴极时的速度可以忽略,电子经加速后从K 的小孔中射出时的速度大小为v .下面的说法中正确的是( )图2A .如果A 、K 间距离减半而电压仍为U ,则电子离开K 时的速度仍为vB .如果A 、K 间距离减半而电压仍为U ,则电子离开K 时的速度变为v /2C .如果A 、K 间距离不变而电压减半,则电子离开K 时的速度变为22vD .如果A 、K 间距离不变而电压减半,则电子离开K 时的速度变为v /2 答案 AC3.几种混合带电粒子(重力不计),初速度为零,它们从同一位置经同一电场加速后,又都垂直场强方向进入另一相同的匀强电场,设粒子射出偏转电场时都打在荧光屏上,且在荧光屏上只有一个亮点,则到达荧光屏的各种粒子( )A .电荷量一定相等B .质量一定相等C .比荷一定相等D .质量、电荷量都可能不等 答案 D解析 只要带同种电荷;粒子经同一电场加速又经同一电场偏转,则偏移量相同. 4.如图3所示,氕、氘、氚的原子核自初速度为零经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,那么( )图3A .经过加速电场过程,电场力对氚核做的功最多B .经过偏转电场过程,电场力对三种核做的功一样多C .三种原子核打在屏上时的速度一样大D .三种原子核都打在屏上的同一位置上 答案 BD解析 同一加速电场、同一偏转电场,三种粒子带电荷量相同,在同一加速电场中电场力对它们做的功都相同,在同一偏转电场中电场力对它们做的功也相同,A 错,B 对;由于质量不同,所以打在屏上的速度不同,C 错;再根据偏转距离公式或偏转角公式y =l 2U ′4dU,tan φ=lU ′2dU知,与带电粒子无关,D 对.5. 两个共轴的半圆柱形电极间的缝隙中,存在一沿半径方向的电场,如图4所示.带正电的粒子流由电场区域的一端M 射入电场,沿图中所示的半圆形轨道通过电场并从另一端N 射出,由此可知( )图4A .若入射粒子的电荷量相等,则出射粒子的质量一定相等B .若入射粒子的电荷量相等,则出射粒子的动能一定相等C .若入射粒子的电荷量与质量之比相等,则出射粒子的速率一定相等D .若入射粒子的电荷量与质量之比相等,则出射粒子的动能一定相等 答案 BC解析 由图可知,该粒子在电场中做匀速圆周运动,电场力提供向心力qE =m v 2R得R=m v 2qE ,R 、E 为定值,若q 相等则12m v 2一定相等;若q m 相等,则速率v 一定相等,故B 、C 正确.6.在平行板电容器A 、B 两板上加上如图5所示的交变电压,开始B 板的电势比A 板高,这时两板中间原来静止的电子在电场力作用下开始运动,设电子在运动中不与极板发生碰撞,则下述说法正确的是(不计电子重力)( )图5A .电子一直向A 板运动B .电子一直向B 板运动C .电子先向A 板运动,然后向B 板运动,再返回A 板做周期性来回运动D .电子先向B 板运动,然后向A 板运动,再返回B 板做周期性来回运动 答案 B解析 电子先向B 板做匀加速运动,然后向B 板做匀减速运动,以后一直重复这两种运动,所以B 选项正确.7. 如图6所示,匀强电场场强方向竖直向下,在此电场中有a 、b 、c 、d 四个带电粒子(不计粒子间的相互作用),各以水平向左、水平向右、竖直向上和竖直向下的速度做匀速直线运动,则下列说法错误的是( )图6A.c、d带异种电荷B.a、b带同种电荷且电势能均不变C.d的电势能减小,重力势能也减小D.c的电势能减小,机械能增加答案AC解析a、b、c、d均做匀速直线运动,所以它们受的重力与电场力平衡,都带负电.a、b所受电场力不做功,c所受电场力做正功,因此可判断A、C说法是错误的.【提升练】8. 如图7所示,有一质量为m、带电荷量为q的油滴,被置于竖直放置的两平行金属板间的匀强电场中.设油滴是从两板中间位置,并以初速度为零进入电场的,可以判定()图7A.油滴在电场中做抛物线运动B.油滴在电场中做匀加速直线运动C.油滴打在极板上的运动时间只取决于电场强度和两板间距离D.油滴打在极板上的运动时间不仅取决于电场强度和两板间距离,还取决于油滴的比荷答案BD解析粒子从静止开始,受重力和电场力作用,两个力都是恒力,所以合力是恒力,粒子在恒力作用下做初速度为零的匀加速直线运动,选项B、D对9. 如图8所示,一带负电的液滴,从坐标原点O以速率v0射入水平的匀强电场中,v0的方向与电场方向成θ角,已知油滴质量为m,测得它在电场中运动到最高点P时的速率恰为v0,设P点的坐标为(x P,y P),则应有()图8A.x P<0 B.x P>0C.x P=0 D.条件不足无法确定答案 A解析由于液滴在电场中既受电场力又受重力,由动能定理得:-mgh+W电=m v20/2-m v20/2=0.即W电=mgh,电场力做正功.由于是负电荷所受电场力方向向左,要使电场力做正功,因而位移方向必须也向左,则必有x P<0,故A正确,B、C、D错.10.α粒子的质量是质子质量的4倍,电荷量是质子电荷量的2倍,它们从静止起,经同一电场加速,获得的动能之比Eα∶E P=________,获得的速度之比vα∶v P=________.答案2∶11∶ 2解析qU=E k,所以E k∝q,则Eα∶E P=2∶1.又E k=12m v2,所以vα∶v P=1∶ 2.11. 如图9带电小颗粒质量为m,电荷量为q,以竖直向上的初速度v0自A处进入方向水平向右的匀强电场中.当小颗粒到达B处时速度变成水平向右,大小为2v0,那么,该处的场强E 为________,A 、B 间的电势差是________.图9答案 2mg/q2m v 20/q解析 由动能定理:qU -mgh =12m(2v 0)2-12m v 20.又h =v 202g ,所以U =2m v 20q ,所以E =U d =U 2h =2mg q.12.两个半径均为R 的圆形平板电极,平行正对放置,相距为d ,极板间的电势差为U ,板间电场可以认为是匀强电场.一个α粒子从正极板边缘以某一初速度垂直于电场方向射入两极板之间,到达负极板时恰好落在极板中心.已知质子电荷量为e ,质子和中子的质量均视为m ,忽略重力和空气阻力的影响,求:(1)极板间的电场强度E ;(2)α粒子在极板间运动的加速度a ; (3)α粒子的初速度v 0.答案 (1)U d (2)eU 2md (3)R 2d eUm解析 (1)极板间场强E =Ud(2)α粒子带电荷量为2e ,质量为4m所受电场力F =2eE =2eUdα粒子在极板间运动的加速度a =F 4m =eU2md(3)由d =12at 2得t = 2d a =2d meUv 0=R t =R 2d eU m13. 如图10所示,一质量为m 、带电荷量为q 的小球,用绝缘细线悬挂在水平向右的匀强电场中,静止时悬线向左与竖直方向成θ角,重力加速度为g.图10(1)判断小球带何种电荷. (2)求电场强度E.(3)若在某时刻将细线突然剪断,求经过t 时间小球的速度v . 答案 (1)负电 (2)mgtan θ/q (3)gt/cos θ解析(1)负电.(2)小球受力如右图所示,其中电场力F=qE,由平衡条件得:F=mgtan θ,E=mgtan θ/q.(3)剪断细线后小球做初速度为零的匀加速直线运动F合=mg/cos θ=ma,v=at,所以v=gt/cos θ速度方向与竖直方向夹角为θ斜向左下方.。
习题课(静电场中的导体和电介质)1、半径为R 1的导体球带正电Q 1其内外半径分别为R 2和R 3,球壳带正电Q 2(1)此带电系统的场强分布;(2)球的电势U 1和球壳的电势U 2; (3)球与球壳的电势差;(4)若用导线将球和球壳相连,U 1和U 2解:(1)电量均匀分布在球面上,即R 1球面电量为Q 1,R 2球面电量为-Q 1,R 3球面电量为Q 1+Q 2 ,利用均匀带电球面在空间任一点场强的结果和场强叠加原理,可求得场强分布为: r < R 1: E 1 = 0; R 1 < r <R 2 : E 2 = Q 1/4πε0r 2; R 2 < r < R 3 : E 3 = 0 r > R 3: E 4 = (Q 1+Q 2)/4πε0r 2(2) 30214243R Q Q dr E U Rπε+==⎰∞dr E dr E dr E U R R R R R ⎰⎰⎰∞++=332214321302121014)11(4R Q Q R R Q πεπε++-=(3) )11(421012112R R Q U U U -=-=πε (4) 3021214R Q Q U U πε+== 2、如图,在半径为a 的金属球外有一层外半径为b 的均匀电介质球壳,电介质的相对电容率为εr (1)介质层内外的场强大小;(2)介质层内外的电势; (3)金属球的电势;(4)电场的总能量; (5)解:(1)电量Q 均匀分布在半径为a r的球面为高斯面,利用高斯定理可求得场强分布 r < a : E 1 = 0; a < r < b : 2024rQ E r επε=; r > b : rQ E 034πε=(2) r > b : rQ dr E U r0334πε==⎰∞a < r <b : b Q b r Q dr E dr E U r bb r 003224)11(4πεεπε+-=+=⎰⎰∞r < a : b Q b a Q dr E dr E dr E U r bb a a r 0032114)11(4πεεπε+-=++=⎰⎰⎰∞(3)金属球的电势等于U 1(4)abb a a Q dV E dV E W r r b r baεπεεεεε022302208)(2121+-=+=⎰⎰∞ (5)ba a ab U Q C r r +-==εεπε014 3、在半径为R 的导体球壳薄壁附近与球心相距为d(d >R)的P 点处,放一点电荷q ,求:(1)球壳表面感应电荷在的球心O 处产生电势和场强; (2)空腔内任一点的电势和场强; (3)若将球壳接地,计算球壳表面感应电荷的总电量。
第十七讲 §5.6静电场的能量—习题课 一、电容和电容器1、电容:UqC =是描述孤立导体带电而引起自身电势变化的物理量。
即孤立导体的电容。
2、电容器:BA U U qC -=是描述两个导体组成电容器的电容,二者是相互关联的,即将一个导体放在无限远处就为孤立导体的电容。
二、电容器的储能(电容器的能量):静电场是一个物理场。
此物是否是物质的?其中的一个重要特性就是是否具有能量的特性,即在静电场中移动电荷是需要静电场力做功,这说明静电场是具有能量的。
下面通过对静电场形成能量的过程来说明静电场是具有能量的。
1、带电体的能量:外力做功就等于带电体的能量(电势能)P E W = ①把dq 从∞转移到带电体上,需外力做的微功:()Udq dqU dW U U dq dW A U B B A B ==−−−→−-==∞→0, q Q②把Q 从∞源源不断的转移到带电体上,需外力做的总功:⎰⎰==QUdq dW W 02、电容器的能量:通过电容器储能的过程来推导电容器能量的公式。
①把dq 从A B →上,需外力做的微功:Udq dW = −−→−=UqC dq CqdW =②把Q 从A B →上,需外力做的总功:QU CU C Q dq C q dW W Q21212220=====⎰⎰③电容器的能量:外力所做的总功就等于电容器的能量。
QU CU C Q dq C q dW W Qe 21212220=====⎰⎰可见,外力克服静电力所做的功,就是电容器的带电过程,即非静电能转化为静电能的过程,满足能量守恒定律。
上述三个表达式都非常有用,希望能熟记。
3、静电场的能量 能量密度①电场的能量密度(能量的体密度):单位体积内电场的能量。
()2020221V 2121E Ed d SV CU V W w e e εε==== Sd V = 可见,电能存在于电场之中,电场是电能的携带者,电场的能量是电场物质性的一个重要标志!静电场是物质的,是不以人们的意志为转移,是非精神的。