汽车运动控制系统仿真设计
- 格式:doc
- 大小:237.00 KB
- 文档页数:10
《运动控制系统》课程设计报告时间 2014.10_学院自动化_专业班级自1103 _姓名曹俊博 __学号 41151093指导教师潘月斗___成绩_______摘要本课程设计从直流电动机原理入手,建立V-M双闭环直流调速系统,设计双闭环直流调速系统的ACR 和ASR结构,其中主回路采用晶闸管三相桥式全控整流电路供电,触发器采用KJ004触发电路,系统无静2021.03.09差;符合电流超调量σi≤5%;空载启动到额定转速超调量σn≤10%。
并详细分析系统各部分原理及其静态和动态性能,且利用Simulink对系统进行各种参数给定下的仿真。
关键词:双闭环;直流调速;无静差;仿真AbstractThis course is designed from DC motor, establish the principles of V-M double closed loop DC speed control system design, the double closed loop dc speed control system and the structure, including ACR ASR the main loop thyristor three-phase bridge type all control the power supply and trigger the rectifier circuit KJ004 trigger circuit, the system without the static poor; Accord with current overshoots sigma I 5% or less; No-load start to the rated speed overshoot sigma n 10% or less. And detailed analysis of the system principle and the static and dynamic performance, and the system of simulink to various parameters set simulation.2021.03.09 欧阳法创编2021.03.09Key Words:double closed loop;DC speed control system;without the static poor;simulation2021.03.09 欧阳法创编2021.03.09目录摘要0Abstract1引言11 实验内容12实验设备13 实验设计原理13.1 V-M系统原理13.2 三相桥式整流电路23.3 保护电路部分23.4 直流电源电路43.5 VT触发电路53.6 ASR控制电路53.7 ACR控制电路73.7 电流检测电路83.7 转速检测电路94 系统工作原理95 调节器参数的计算过程105.1 参数以及设计要求105.2 相关参数计算115.3 电流环设计125.4 转速环设计146 Matlab仿真196.1 启动过程仿真192021.03.09 欧阳法创编2021.03.097心得体会 (19)参考文献21附录221 主电路原理图222 仿真模型图223启动波形图232021.03.09 欧阳法创编2021.03.09引言《运动控制系统》课程设计需综合运用所学知识针对一个较为具体的控制对象或过程进行系统设计、硬件选型。
基于Matlab的汽车运动控制系统设计
Matlab是一款强大的工具,它可以用于汽车动力学控制系统
的建模、仿真和优化。
下面是基于Matlab的汽车运动控制系
统的设计流程:
1. 汽车运动学建模,包括车辆加速度、速度、位置等基本变量的建模,并建立数学模型。
2. 汽车动力学建模,包括发动机、传动系统、制动系统等的建模,推导出相关的动力学方程。
3. 设计控制器,选择合适的控制算法,并根据模型参数进行控制器设计。
4. 建立仿真模型,将汽车运动学、动力学模型以及控制器整合在一起,建立仿真模型,并进行仿真。
5. 分析仿真结果,通过仿真结果分析系统的性能,包括控制效果、鲁棒性等。
6. 修改设计,对仿真结果进行修改,优化设计,重新进行仿真。
7. 实现控制器,将控制器转换为代码并实现到实际控制系统中。
8. 验证系统性能,进行实车测试,验证系统性能及仿真结果的准确性。
总体而言,基于Matlab的汽车运动控制系统设计可以提高设计效率,减少设计成本,确保系统性能及仿真结果的准确性。
长沙学院CHANGSHA UNIVERSITY 专业综合设计报告系部:专业年级班级:学生姓名:学号:成绩评定:(指导教师填写)2014年1 月2010届电气专业综合设计任务书系(部):电子与通信工程系专业:电气工程及其自动化学生姓名指导教师课题名称基于PLC的小车运动控制系统设计内容及任务一、设计内容小车以慢速左行(右行)5s后稳定,稳定后速度变为快速。
其中,当小车到达左限位(右限位)时,小车向相反的方向运行,如此往返运行。
而且,在稳定后能实现小车高低速、左右行的自由切换。
同时,当按下停止按钮,电机不管出于任何运动状态,都必须立即停止。
二、设计任务1、确定PLC的输入设备(包括按钮、行程开关等)、输出设备(包括接触器线圈、指示等),选择电器元件型号,列出明细表。
2、对PLC的输入输出通道进行分配,列出I/O通道分配表(包括I/O编号、设备代号、设备名称及功能),画出I/O接线图。
根据工艺要求,将所需的定时器、计数器、辅助继电器等也进行分配。
3、画出功能表图;4、进行PLC控制系统的软件设计,画出梯形图。
对编制的梯形图进行调试,直到满足要求为止。
长沙学院课程设计鉴定表企业现代化生产规模的不断扩大和深化,使得生产物的输送成为生产物流系统中的一个重要环节。
运料小车自动控制正是用来实现输送生产物的控制系统,随着PLC的发展,国外生产线上的运输控制系统非常广泛的采用该控制系统,而且有些制造厂还开发研制了出了专用的逻辑处理控制芯片,我国的大部分工控企业的小车自动控制系统都是从外引进的,成本高,为了满足现代化生产流通的需要,让PLC技术与自动化技术相结合,充分的利用到我国的工控企业生产线上,让该系统在各种环境下都能够工作,而且成本低,易控制,安全可靠,效率高。
本设计在分析小车自动控制系统的结构和工作基本过程的基础上,介绍了基于PLC的小车自动控制系统的设计过程,详细阐述了系统的硬件和软件设计。
给出了控制系统主电路接线图、PLC硬件接线图、指令表、梯形图等。
运动控制系统仿真实验报告——转速、电流反馈控制直流调速系统的仿真双闭环直流调速系统仿真对例题3.8设计的双闭环系统进行设计和仿真分析,仿真时间10s 。
具体要求如下: 在一个由三相零式晶闸管供电的转速、电流双闭环调速系统中,已知电动机的额定数据为:60=N P kW , 220=N U V , 308=N I A , 1000=N n r/min , 电动势系数e C =0.196 V·min/r , 主回路总电阻R =0.18Ω,变换器的放大倍数s K =35。
电磁时间常数l T =0.012s,机电时间常数m T =0.12s,电流反馈滤波时间常数i T 0=0.0025s,转速反馈滤波时间常数n T 0=0.015s 。
额定转速时的给定电压(U n *)N =10V,调节器ASR ,ACR 饱和输出电压U im *=8V,U cm =7.2V 。
系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量i σ≤5% ,空载起动到额定转速时的转速超调量n σ≤10%。
试求:(1)确定电流反馈系数β(假设起动电流限制在1.3N I 以内)和转速反馈系数α。
(2)试设计电流调节器ACR.和转速调节器ASR 。
(3)在matlab/simulink 仿真平台下搭建系统仿真模型。
给出空载起动到额定转速过程中转速调节器积分部分不限幅与限幅时的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),指出空载起动时转速波形的区别,并分析原因。
(4)计算电动机带40%额定负载起动到最低转速时的转速超调量σn 。
并与仿真结果进行对比分析。
(5)估算空载起动到额定转速的时间,并与仿真结果进行对比分析。
(6)在5s 突加40%额定负载,给出转速调节器限幅后的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),并对波形变化加以分析。
(一)实验参数某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下: • 直流电动机:220V ,136A ,1460r/min ,C e=0.132Vmin/r ,允许过载倍数λ=1.5; • 晶闸管装置放大系数:K s=40; • 电枢回路总电阻:R =0.5Ω ; • 时间常数:T i=0.03s , T m=0.18s ;• 电流反馈系数:β=0.05V/A (≈10V/1.5I N )。
摘要汽车驾驶模拟器是一种用于汽车产品开发、“人—车—环境”交通特性研究或驾驶培训的重要工具。
近年来,由于具有安全性高、再现性好、可开发性强、成本低等显著特点,研究开发驾驶模拟器已经成为国内外一个重要发展方向。
本文在查阅国内外大量资料的基础上,结合老师的研究课题主要对六自由度汽车驾驶模拟器液压系统部分进行设计。
六自由度汽车运动模拟器采用液压伺服阀控制液压缸来驱动模拟平台的运动,以实现汽车驾驶模拟器运动姿态模拟。
本文主要进行机械机构的设计、液压伺服系统设计、液压泵站设计和液压缸的设计等。
通过模拟器的机构设计和驱动液压伺服系统设计,结合电气系统能够实现汽车在不同运行状态的模拟,当驾驶员坐在驾驶舱系统的座椅上进行模拟驾驶时,完全能够感受到实际汽车驾驶的各种体感,为实车训练驾驶提供了可替代的模拟平台;本设计也为今后的进一步研究及其在娱乐模拟器、动感电影等产业的实际推广和应用方面奠定了基础。
关键词:汽车驾驶模拟器六自由度运动平台液压伺服系统运动姿态控制AbstractThe Automobile-driving i an important tool which used for the development of auto mobile product and the study of the transportation characteristics of “man-car-environment”or the driver training .In recent years, the study of the automobile-driving simulator used for development has become an important development direction in the world because of the notable characteristics of high safety, well reappearance of scene, easy to develop and low cost.This article is based on searching the large quantity of information about at home and abroad, and combines with the tea cher’s research task which mainly designs the part of 6-dof driving Simulator of hydraulic system .The 6-dof motion simulator adopts valves of hydraulic servo to control actuator to drive the movement of driving simulation platform, and to achieve the movement posture simulation of the automobile driving simulator. This article is mainly about the designing of machine, the system of hydraulic servo, hydraulic pump station, and actuator and so on.According to the designing of agencies of simulator and hydraulic servo system, it can combines the electrical system which can bring out the imitation of cars in different movement conditions, when the driver simulating drive on the seat of cockpit system, you can feel the feeling of driving a true car, and it also offer the simulator platform which can be replaced for true driving training. At the same time, this designing is also establishes for the further researches and the practice extension and use.Keywords:Driving-automobile simulator, 6-dof of motion platform, the system of hydraulic servo, the control of campaign attitude目录1绪论 (1)引言 (1)国内外发展现状 (2)1.2.1国内外研究和发展概述 (2)1.2.2驾驶模拟器的应用和发展 (3)课题任务 (5)论文的主要研究内容 (5)2 运动学及力学分析 (6)六自由度运动模拟器机构位置反解 (6)2.1.1坐标系的建立 (6)2.1.2广义坐标定义 (6)2.1.3坐标变换矩阵 (7)2.1.4液压缸铰支点坐标的确定 (8)2.1.5位置反解 (10)六自由度运动模拟器机构位置正解 (11)静力学分析 (11)3 机械及液压部分设计 (12)运动模拟平台的设计 (12)3.1.1液压缸内壁D活塞杆直径d的计算 (12)3.1.2液压缸壁厚和外径的计算 (14)3.1.3缸盖壁厚的确定 (14)3.1.3液压缸工作行程的确定 (15)3.1.4缸体长度的确定 (15)3.1.5液压系统的计算 (15)液压泵站 (17)铰链的设计 (18)执行机构单元组成 (21)电液伺服控制单元与液压系统 (22)反馈单元 (23)4 电气部分设计 (24)电气原理及接口设计 (24)4.1.1MCS-51系列单片机的引脚及其功能 (24)4.1.2单个电液伺服液压缸位置控制电路设计 (26)4.1.3扩展电路 (26)电气原理图 (27)5 结论 (28)本文结论 (28)本文研究工作的不足 (28)参考文献 (29)致谢 (30)1绪论引言驾驶模拟器是一种用于汽车产品开发、“人-车-环境”交通特性研究或驾驶培训的重要工具。
基于多体动力学的运动控制系统设计与仿真一、引言动力学是研究物体运动规律的学科,而多体动力学则是研究多个物体之间相互作用下的运动规律。
在众多领域中,如机械工程、航空航天、汽车工程等,多体动力学的应用十分广泛且重要。
本文将品析基于多体动力学的运动控制系统设计与仿真的过程和相关技术。
二、多体动力学多体动力学是研究多个物体在相互作用力的作用下所产生的运动规律的学科。
它是从牛顿力学推导而来的,通过建立物体之间的运动方程,求解这些方程来获得物体的位移、速度和加速度等物理量。
多体动力学的研究对象通常具有复杂的结构和运动方式,如机器人、飞机、汽车等。
三、运动控制系统设计运动控制系统设计是基于多体动力学理论和控制原理,结合具体应用需求,设计出适合特定任务的运动控制系统。
一个完善的运动控制系统需要包括运动控制器、传感器、执行机构等组成部分。
其中,运动控制器负责接收传感器信息、执行控制算法,并输出控制指令驱动执行机构进行相应的运动。
在运动控制系统设计中,关键的一步是建立多体系统的模型。
根据具体应用的要求和系统特点,可以选择不同的建模方法。
常见的建模方法有拉格朗日法、牛顿-欧拉法、有限元法等。
建模的目的是描述物体之间的相互作用关系以及受力情况,为后续的控制算法设计提供基础。
根据多体系统的模型,可以进行运动仿真。
通过求解多体系统的运动方程,可以获得物体的运动轨迹和其他相关物理量。
仿真软件可以有效地模拟多体系统的运动过程,在设计和优化控制算法时起到关键作用。
仿真结果可以进行动态分析和可视化展示,帮助分析系统的性能和评估系统的控制策略。
四、多体动力学的控制方法基于多体动力学的运动控制系统设计中,控制方法的选择和设计是关键。
常见的控制方法有经典控制和优化控制两种,根据实际需求和控制目标选择合适的方法。
在经典控制方法中,常用的有位置控制、速度控制和力控制等。
而在优化控制方法中,常用的有模糊控制、神经网络控制和遗传算法控制等。
位置控制是指通过控制物体的位置来达到预定目标位置的控制方法。
一、摘要 2二、课程设计任务 31.问题描述 3 2.设计要求 3三、课程设计容 41、系统的模型表示 42、利用Matlab进行仿真设计 43、利用Simulink进行仿真设计 9 总结与体会 10 参考文献 10本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m 文件来实现汽车运动控制系统的设计。
其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。
仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。
关键词:运动控制系统PID仿真稳态误差最大超调量一、课程设计任务1. 问题描述如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。
根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为:⎩⎨⎧==+vy u bv v m 系统的参数设定为:汽车质量m =1000kg ,比例系数b =50 N ·s/m ,汽车的驱动力u =500 N 。
根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒达到10m/s 的最大速度。
由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。
这样,该汽车运动控制系统的性能指标可以设定为:上升时间:t r <5s ;最大超调量:σ%<10%;稳态误差:e ssp <2%。
2.设计要求1.写出控制系统的数学模型。
2.求系统的开环阶跃响应。
3.PID 控制器的设计(1)比例(P )控制器的设计(2)比例积分(PI )控制器的设计(3)比例积分微分(PID )控制器的设计利用Simulink 进行仿真设计。
二、课程设计容1.系统的模型表示假定系统的初始条件为零,则该系统的Laplace 变换式为:⎩⎨⎧==+)()()()()(s V s Y s U s bV s msV 即 )()()(s U s bY s msY =+ 则该系统的传递函数为:bms s U s Y +=1)()( 如果用Matlab 语言表示该系统的传递函数模型,相应的程序代码如下: num=1;den=[1000,50];sys=tf(num,den)同时,系统的数学模型也可写成如下的状态方程形式:⎪⎩⎪⎨⎧=+-=vy u m v m b v 1如果用Matlab 语言表示该系统状态空间模型,相应的程序代码如下:A=-50/1000;B=1/1000;C=1;D=0;sys=ss(A,B,C,D)2. 利用Matlab 进行仿真设计I .求系统的开环阶跃响应在Matlab 命令窗口输入相应的程序代码,得出该系统的模型后,接着输入下面的指令:step(u*sys)可得到该系统的开环阶跃响应曲线,如下图所示:从图上可看出该系统不能满足系统设计所要求达到的性能指标,需要加上合适的控制器。
II .PID 控制器的设计PID 控制器的传递函数为:sK s K s K s K s K K I P D D I P ++=++2在PID 控制中,比例(P )、积分(I )、微分(D )这三种控制所起的作用是不同的。
下面分别讨论其设计过程。
(1)比例(P )控制器的设计增加比例控制器之后闭环系统的传递函数为:)()()(P P K b ms K s U s Y ++= 由于比例控制器可以改变系统的上升时间,现在假定Kp =100,观察一下系统的阶跃响应。
在MATLAB 命令窗口输入指令:num=100;den=[1000,150];sys=tf(num,den);step(500*sys)上升时间为40s 远远大于5s ,不能满足设计要求,稳态误差为(500-333)/500远远大于2%,因此系统不满足设计要求若减小汽车的驱动力为10N ,重新进行仿真,仿真结果为:num=100;den=[1000,150];sys=tf(num,den);step(10*sys)如果所设计的比例控制器仍不能满足系统的稳态误差和上升时间的设计要求,则可以通过提高控制器的比例增益系数来改善系统的输出。
例如把比例增益系数Kp从100提高到10000重新计算该系统的阶跃响应,结果为:程序:num=10000;den=[1000,10050];sys=tf(num,den);step(10*sys)此时系统的稳态误差接近为零,系统上升时间也降到了0.5s以下。
这样做虽然满足了系统性能要求,但实际上该控制过程在现实中难以实现。
因此,引入比例积分(PI)控制器来对系统进行调节。
(2)比例积分(PI )控制器的设计采用比例积分控制的系统闭环传递函数可表示为:IP I P K s K b ms K s K s U s Y ++++=)()()(2 增加积分环节的目的是减小系统的稳态误差,假设比例系数Kp =600,积分系数K I =1,编写相应的MATLAB 程序代码如下:num=[600,1];den=[1000,650,1];sys=(num,den)可以调节控制器的比例和积分系数来满足系统的性能要求。
例如选择比例系数K P =800,积分系数K I =40时,可得系统阶跃响应曲线为:num=[800,40];den=[1000,850,40];sys=(num,den);step(500*sys)可见,此时的控制系统已经能够满足系统要求达到的性能指标设计要求。
但此控制器无微分项,而对于有些实际控制系统往往需要设计完整的PID 控制器,以便同时满足系统的动态和稳态性能要求。
(3)比例积分微分(PID )控制器的设计采用PID 控制的系统闭环传递函数为:IP D I P d K s K b s K m K s K s K s U s Y ++++++=)()()()()(22 假设该控制器的比例系数K P =1,积分系数K I =1,微分系数K D =1,编写MATLAB 程序代码如下:num=[1,1,1];den=[1001,51,1];sys=(num,den)运行上述程序,并且调整PID控制器的控制参数,直到控制器满足系统设计的性能指标要求为止。
num=[10,650,50];den=[1010,700,50];sys=tf(num,den);step(500*sys)最后,选择K P=650,K I =50,K D=10,此时系统的阶跃响应曲线如下:从图中可以看出该系统能够满足设计的总体性能要求。
3.利用Simulink进行仿真设计I.求系统的开环阶跃响应利用Simulink建立系统阶跃响应模型,如下图所示。
双击Step模块,设置模块属性:跳变时间为0;初始值为0;终止值为10;采样时间为0。
单击◢按钮开始仿真,双击Scope模块,可得系统阶跃响应曲线。
II.PID控制器的设计在Simulink的模型窗口建立一个包含PID控制器的闭环系统阶跃响应模型,如图所示:分别双击Kp、Ki、Kd模块设定比例、积分、微分系数,点击◢按钮开始仿真,双击Scope模块,观察系统的阶跃响应曲线,直到满足要求为止。
最终选取K P= 680 ,K I= 50 ,K D= 15 ,此时控制器能满足系统设计所要求达到的性能指标,Simulink仿真的汽车运动PID控制系统的阶跃响应曲线如下:总结与体会通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab和Simulink进行系统仿真的基本方法。
从该设计我们可以看到,对于一般的控制系统来说,应用PID控制是比较有效的,而且基本不用分析被控对象的机理,只根据Kp,Ki和Kd的参数特性以及MATLAB绘制的阶跃响应曲线进行设计即可。
在MATLAB环境下,我们可以根据仿真曲线来选择PID参数。
根据系统的性能指标和一些基本的整定参数的经验,选择不同的PID参数进行仿真,最终确定满意的参数。
这样做一方面比较直观,另一方面计算量也比较小,并且便于调整。
通过这次试验,我懂得了更多的知识,虽然刚开始时好多都不懂。
但是经过和同学的讨论,在各位老师的悉心培育下,对MATLAB的Simulink仿真有了更深的理解。
设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。
然后再按照仿真结果进行PID控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。
通过此次课程设计,使我们对基本知识掌握的更加的扎实,掌握了一些控制仿真方面的知识,在做的过程中也遇到了一些问题,不断的尝试,不断的修改,努力做好此次课程设计。
通过自己动手实验,使知识掌握的更加的牢固,更加方面自己理解。
参考文献[1] 阮毅,伯时.电力拖动自动控制系统. :机械工业,2009[2] 国勇等.计算机仿真技术与CAD. :电子工业,2008[3] 王正林等.MATLAB/Simulink与控制系统仿真,电子工业,2012[4] 涂植英等.自动控制原理.大学,2005。