山西省大同市一中2014-2015学年高一上学期期末考试数学试题
- 格式:doc
- 大小:267.00 KB
- 文档页数:7
高二12月月考数学(理)试题一、选择题: (每题3分,共36分)1. 已知命题p :R x ∈∀,1cos ≤x ,则( ) A. 1cos ,:≥∈∃⌝x R x p B. 1cos ,:≥∈∀⌝x R x p C. 1cos ,:00>∈∃⌝x R x pD. 1cos ,:>∈∀⌝x R x p2. 若命题“p q ∧”为假,且“p ⌝”为假,则( )A p 或q 为假B q 假C q 真D 不能判断q 的真假3. 命题:“若220(,)a b a b R +=∈,则0a b ==”的逆否命题是( )A .若0(,)a b a b R ≠≠∈,则220a b +≠B.若0(,)a b a b R =≠∈,则220a b +≠ C .若0,0(,)a b a b R ≠≠∈且,则220a b +≠ D.若0,0(,)a b a b R ≠≠∈或,则220a b +≠ 4. “12m =-”是“直线(m -2)x+3m y+1=0与直线(m +2)x+(m -2)y-3=0相互垂直”的 ( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要5. 正方体1111D C B A ABCD -的棱长为a ,M ,N 分别为B A 1和AC 上的点,AN M A =1=a 32,则MN 与平面BB 1C 1C 的位置关系是( ) A. 相交 B. 平行 C. 垂直 D. 不能确定6. 下列四个命题:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确命题的个数为( )A 、 0B 、 1C 、 2D 、 3 7. 若方程a a x y -=-31lg 22表示焦点在x 轴上的椭圆,则a 的取值范围是( )A. )31,0(B. ),31(∞+C. )101,0( D. )31,101( 8. 椭圆1422=+y m x 的焦距等于2,则m 的值为( )A. 5或3B. 8C. 5D. 3 9.已知,a b 均为单位向量,它们的夹角为60,那么3a b +等于( )A B C D .410. 下列命题中不正确的命题个数是()① 若A ,B ,C ,D 是空间任意四点,则有0AB BC CD DA +++= ② b a b a +=-是b a ,共线的充要条件 ③ 若b a ,共线,则a 与b 所在的直线平行④ 对空间任意点O 与不共线的三点,A ,B ,C ,若OC z OB y OA x OP ++=(其中R z y x ∈,,),则P ,A ,B ,C 四点共面 A. 1 B. 2 C. 3 D. 411. 已知A (1,-2,11),B (4,2,3),C (6,-1,4)为三角形的三个顶点,则ABC ∆是 A. 直角三角形 B. 钝角三角形 C. 锐角三角形 D. 等腰三角形 12. 如图1所示,已知四边形ABCD ,EADM 和MDCF 都是边长为a 的正方形,点P 是ED 的中点,则P 点到平面EFB 的距离为( )A.a 36 B. a 33 C. a 43 D. a 66 二、填空题: (每题3分,共12分)13. 有下列四个命题: ①、命题“若1=xy ,则x ,y 互为倒数”的逆命题; ②、命题“面积相等的三角形全等”的否命题;③、命题“若1m ≤,则022=+-m x x 有实根”的逆否命题;④、命题“若AB B =,则A B ⊆”的逆否命题其中是真命题的是 (填上你认为正确的命题的序号)14. 已知矩形ABCD 中,1,(0),AB BC a a PA ==>⊥平面AC ,且1PA =,若在BC边上存在点Q ,使得PQ QD ⊥,则a 的取值范围是 。
2014-2015学年高一上学期期末考试数学试题(文科班)一、选择题(每小题4分,共40分)1.已知集合{}1,0,1-=A ,{}11<≤-=x x B 则B A ⋂等于( )A. {}0B. {}1-C. {}0,1-D. {}1,0,1-2.若,54cos ,53sin -==αα则在角α终边上的点是( ) A. )3,4(- B. )4,3(- C. )3,4(- D. )4,3(-3.已知函数的定义域为[]2,0,值域为[]4,1,则函数的对应法则可以为( )A. x y 2=B. 12+=x yC. xy 2= D. x y 2log =4.已知)(x f 是偶函数,且0>x 时,ax x x f +=2)(,若2)1(=-f ,则)2(f 的值是( )A. -1 B . 1 C . 3 D . 65.函数),0,0(),sin()(R x A x A x f ∈>>+=ωϕω的部分图象如右图所示,则函数的表达式为( ) A. )834sin(4)(ππ+=x x f B. )834sin(4)(ππ-=x x f C. )438sin(4)(ππ-=x x f D. )88sin(4)(ππ+=x x f 6.若0cos 2sin =-αα,则αα2sin cos 12+的值为( ) A . -2 B . -1 C . 1 D . 27.若函数)1(log )(++=x a x f a x 在[]1,0上的最大值和最小值之和为a ,则a 的值是( )A. 4B.41 C. 2 D. 21 8.已知0>ω, πϕ<<0,直线4π=x 和45π=x 是函数B x A x f ++=)sin()(ϕω图像的两条相邻的对称轴,则ϕ为( ) A. 2π B. 3π C. 4π D. 43π 9.已知函数x x m x f sin 3sin log )(2+-=在R 上的值域为[]1,1-,则实数m 的值为( ) A . 1 B . 2 C . 3 D . 4二、填空题(每小题4分,共20分)11.对于函数m x y =,若21)41(=f ,则m =________. 12.已知31)4cos(-=-απ,则)43cos(απ+的值为____ ____. 13.函数)4sin()(x x f -=π的单调增区间为________.14.已知函数⎥⎦⎤⎢⎣⎡-∈=2,2,sin )(ππx x x f ,若0)21(cos )(sin =-+ααf f ,则=⋅ααcos sin ____________.15.已知函数⎩⎨⎧≤++>=m x x x m x x f ,24,2)(2,若函数x x f x F -=)()(恰有三个不同的零点, 则实数m 的取值范围是____________.三、解答题(本大题共4题,共40分)17.已知函数)0,0(,11)(>>-=x a ax x f . (1)若)(x f 在[]2,1上的最小值为41,求实数a 的值; (2)若存在),0(,+∞∈n m ,使函数)(x f 在[]n m ,上的值域为[]m n --,,求实数a 的取值范围;19. 设是R 上的奇函数,且当时,,. (1)若1)1(=f ,求的解析式;(2)若,不等式0)14()2(>++⋅x x f k f 恒成立,求实数的取值范围; (3)若的值域为,求的取值范围.。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
山西省大同市第一中学2014-2015学年高一上学期期中考试地理试题第Ⅰ卷客观卷(共60分)一、选择题(每小题2分,共60分)电影《2012》讲述在2012年,地球因为异常的太阳活动而面临毁灭,到处都是天崩地裂、岩浆喷发。
据此回答1~2题。
1.下列关于太阳活动的说法中正确的是A.一定会引发地震、火山喷发B.可能引发干旱、洪涝等灾害C.使青藏高原海拔升高D.一定使人类遭受灭顶之灾2.下列属于地球上存在生命的条件的是A.黄赤交角的存在B.地球自转和公转周期较长C.适宜的温度、液态水和大气D.地球不透明、不发光欧洲天文学家宣布,他们在太阳系外发现了50多颗行星,其中有一颗与地球形态相似,它距离地球约35光年。
研究表明,它的运行轨道与它的母星橙矮星距离适宜,且像地球一样主要由岩石构成,而液态水可能存在于这颗行星的表面,它的大气中存在氧气、二氧化碳和氮的成分,极有可能存在生命。
据此回答3~4题。
3.下列与材料中所说的“橙矮星”属于同一类天体的是A.太阳B.地球C.月球D.哈雷彗星4.天文学家研究判断新发现的这颗行星极有可能存在生命的主要依据是A.这颗行星与地球形态相似B.这颗行星距离地球很近,只有约35光年C.这颗行星像地球一样主要由岩石组成D.这颗行星可能存在液态水及含有氧气的大气太阳源源不断地向外辐射能量,虽然到达地球的能量只占22亿分之一,但对地球的影响却是巨大的。
据此完成5~ 6题。
5.有关太阳辐射对地理环境形成和变化的影响,叙述正确的是A.太阳辐射的不均匀,引起了空气的水平运动B.喜马拉雅山的隆起形成C.全球气温有可能变暖D.泥石流和滑坡现象的发生6.以下能源的形成与太阳辐射有关的是A.地热能B.核能C.煤炭、石油D.潮汐能根据多年来对某地区各朝向建筑墙面上接受太阳辐射热量的实测值,计算出最冷月(一月)和最热月(七月)日辐射总量,并绘出太阳辐射热量日总量变化图,读图判断7~ 8题。
7.该地区一月和七月建筑墙面上接受太阳辐射热量的日总量小于4186千焦/平方米·日的墙面A.分别朝北、朝东B.分别朝南、朝西C.分别朝西、朝南D.均朝北8.经研究发现该地区一天中日出、日落时墙面接受的太阳辐射热量最小,其原因是①太阳高度角最小②气温最低③经过大气层的路径最长④反射作用最强A.①②B.①③C.②③D.①④读秀丽的黄果树景观图,回答9~10题。
山西省大同市第一中学2014-2015学年高一上学期期末考试政治试题第Ⅰ卷客观卷(共60分)一、选择题(每小题只有一个选项符合题目要求,共30小题,每小题2分,共60分)1、2014年9月3日,澳大利亚慈善家魏基成夫妇向中国云南省鲁甸县地震灾区捐赠3万件棉服,发放给当地受灾群众。
材料中的棉服A.是商品,因为有使用价值B.不是商品,因为没有用于交换C.是商品,因为有价值D.不是商品,因为不是劳动产品2、小王一家“五一”期间到花果山旅游,标价为30元的旅游纪念品,通过讨价还价最终25元买到。
这里的30元、25元分别执行货币的()职能。
A.价值尺度、支付手段B.流通手段价格尺度C.价值尺度、流通手段D.世界货币、贮藏手段3、2013年某国生产甲商品100万件,每件商品的价值量为6元。
如果2014年该国生产甲商品的社会劳动生产率提高20%,其他条件不变,则甲商品的价值总量与单位商品的价值量分别为A.600万元,6元B.500万元,5元C.600万元,5元D.720万元,7.2元4、2012年9月19日,100美元=631.60元人民币;9月27日,100美元=630.63元人民币。
如果此后一段时间汇率持续这样的趋势,则①利于中国产品更多出口到美国市场;②中国赴美留学学生的教育成本增加,人数可能减少;③我国企业在美国投资办厂的成本降低;④美国游客到中国旅游的人数可能下降A.①②B.①③C.②④D.③④5、假定甲商品和乙商品是替代品,甲商品和丙商品是互补品。
如果市场上甲商品的价格大幅度下降,那么,在其他条件不变时①乙商品的需求量减少;②乙商品的需求量增加;③丙商品的需求量减少;④丙商品的需求量增加A.①③B.②④C.①④D.②③6、“明前茶”专指清明节前所采摘、制作的茶叶。
清明节前采制的春茶积蓄了数月的营养成分,芽叶细嫩,味醇形美,是茶中佳品;同时由于清明节前气温普遍较低,发芽数量有限,生长速度较慢,能达到采摘标准的产量很少,所以有“明前茶,贵如金”之说。
山西省大同市第一中学2014-2015学年高二上学期期中考试数学文试题第Ⅰ卷 客观卷(共36分)一、选择题(本题共12小题,每小题3分,共36分) 1. 圆2240x y x +-=的圆心坐标和半径分别是A .(0,2)2B .(2,0)4C .(-2,0)2D .(2,0)22.已知两直线0x ky k --=与(1)y k x =-平行,则k 的值为A .1B .-1C .1或-1D .23. 在空间直角坐标系中,点(1,3,5)P -关于XOY 面对称的点的坐标是A .(1,3,5)--B .(1,3,5)-C .(1,3,5)D .(1,3,5)--4.已知直线0ax by c ++=(0abc ≠)与圆221x y +=相切,则三条边长分别为||a 、||b 、||c 的三角形是A .锐角三角形B .直角三角形C .钝角三角形D .不存在5.与圆222212:26260,:4240C x y x y C x y x y ++--=+-++=都相切的直线有A .1条B .2条C .3条D .4条6.关于空间两条直线a 、b 与平面α,下列命题正确的是A .若//,a b b α⊂,则//a αB .若//,a b αα⊂,则//a bC .//,//a b αα,则//a bD .若,,a b αα⊥⊥则//a b7.已知矩形ABCD 的顶点在半径为13的球O 的球面上,且AB=8,BC=6,则棱锥O-ABCD 的高为A .12B .13C .14D .58.如图,1111ABCD A B C D -为正方体,下面结论错误..的是A .//BD 平面11CB D B .1AC BD ⊥C .平面ACC 1A 1⊥平面11CBD D .异面直线AD 与1CB 所成的角为60°9. 圆2226150x y x y ++--=与直线(13)(32)4170m x m y m ++-+-=的交点个数是A .2B .1C .0D .与m 有关10.已知两点(2,3)M -、(3,2)N --,直线l 过点(1,1)P 且与线段MN 相交,则直线l 的斜率k 的取值范围是A .344k -≤≤ B .34k ≥或4k ≤- C .344k ≤≤D .344k -≤≤11.若直线:l x y m +=与曲线:C y =有且只有两个公共点,则m 的取值范围是A .(B .[C .D .12.圆221:(2)(3)1C x y -+-=,圆222:(3)(4)9C x y -+-=,M 、N 分别是圆1C ,2C 上的动点,P 为x 轴上的动点,则||||PM PN +的最小值A .4-B 1-C .6-D第II 卷 主观卷(共64分)二、填空题(本题共5小题,每小题4分,共20分)13.一个球的外切正方体的表面积等于6,则此球的表面积为 . 14. 一个几何体的三视图如图,则该几何体的体积为 .15.以点A (1,4),B (3,-2)为直径的两个端点的圆的一般式方程为___________. 16.如图,在棱长为2的正方体1111ABCD A B C D -中,E 是1BC 的中点,则直线DE 与平面ABCD 所成角的正切值为____________.17.已知圆O :224x y +=,直线l : x y m +=,若圆O 上恰有3个点到l 的距离为1,则实数m= ____________.14题 16题19.(10分)已知直线l 经过两点A (2,1),B (6,3) (1)求直线l 的方程(2)圆C 的圆心在直线l 上,并且与x 轴相切于点(2,0),求圆C 的方程 (3) 若过B 点向(2)中圆C 引切线,BS 、BT ,S 、T 分别是切点,求ST 直线的方程.20(12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,已知3,2,2AB AD PA ===,60PD PAB ︒=∠=(I )证明AD ⊥平面PAB ;(II )求异面直线PC 与AD 所成的角的正切值; (III )求四棱锥P ABCD -的体积。
2014-2015学年第一学期高一数学期末考试模拟卷考试时间:120分钟;满分:150第I 卷(选择题)一、选择题1.已知函数23(0)()log (0)x x f x x x ⎧≤=⎨>⎩ ,那么)]41([f f 的值为 ( )A . 9B .91C .9-D .91-2.函数)23(log 21-=x y 的定义域是( )A .[)+∞,1B .),32(+∞C .]1,32[D .]1,32(3.在△ABC 中,=1,=2,则AB 边的长度为( ) (A)1(B)3(C)5(D)94.已知向量)2,1(=,)4,2(--=,5||=,若25)(=⋅+,则与的夹角为( )(A ) 30 (B ) 60 (C )120 (D )150 5.已知函数1()()sin 2x f x x =-,()f x 在[0,2]π上的零点个数有( ) A.1个 B.2个 C.3个 D.4个6.已知函数()323f x x tx x =-+,若对于任意的[]1,2a ∈,(]2,3b ∈,函数()f x 在区间(),a b 上单调递减,则实数t 的取值范围是( )A.(],3-∞B.(],5-∞C.[)3,+∞D.[)5,+∞7.已知函数|lg |,010()16,102x x f x x x <≤⎧⎪=⎨-+>⎪⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是A 、(1,10)B 、(5,6)C 、(10,12)D 、(20,24)8.设全集{|05},{1,3},{|,}U x z x A B y y x x A =∈≤≤===∈集合,则集合C ∪(A ∪B )=() A .{0,4,5} B .{2,4,5} C .{0,2,4,5}D .{4,5}9..已知函数()3sin()6f x x πω=-(0)ω>和()3cos(2)g x x ϕ=+的图象的对称中心完全相同,若[0,]2x π∈,则()f x 的取值范围是 ( )A .3[,3]2- B .[3,3]- C.1[2- D. 10.若函数R x x x x f ∈+=,cos sin )(ωω3,又02=-=)(,)(βαf f ,且βα-的最小值为43π,则正数ω的值是( ) A. 31 B. 32 C.34 D.2311.全集{}1,2,3,4,5U =,集合{}{}1,3,4,2,3A B ==,则图中阴影部分表示的集合为A .{2}B .{3}C .{1,4}D .{1,2,3,4}12.已知集合{}20A x x a =-≤,{}40B x x b =->,N b a ∈,,且{}()2,3A B N ⋂⋂=,由整数对()b a ,组成的集合记为M,则集合M 中元素的个数为 A .5B .6C .7D .813.将函数sin()3y x π=-的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移3π个单位,则所得函数图像对应的解析式为( ) A .1sin()26y x π=- B .1sin()23y x π=-C .1sin 2y x =D .sin(2)6y x π=-14.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为减函数的是( )A .xx f ⎪⎭⎫ ⎝⎛=23)( B .1)(2+=x x fABUC.3)(x x f -= D.)lg()(x x f -=15.已知,(1)()(4)2,(1)2x a x f x ax x ⎧>⎪=⎨-+≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围为 ( )A .(1,+∞)B .(1,8)C .(4,8)D .[4,8) 16.已知1a >,函数x y a =与log ()a y x =-的图像可能是( )A B C D17.设311(2sin ,),(,cos )264a xb x ==,且//a b ,则锐角x 为 A .6π B .3π C .4π D .512π18.已知函数f (x )=122,021,0,x x x x x ⎧⎪⎨⎪⎩+ <--≥,若方程f (x )+2a -1=0恰有4个实数根,则实数a 的取值范围是 ( )(A )(-12,0 ] (B )[-12,0 ] (C )[1,32) (D )(1,32]19.(9)已知x 是函数f(x)=2x + 11x-的一个零点.若1x ∈(1,0x ), 2x ∈(0x ,+∞),则 (A )f(1x )<0,f(2x )<0 (B )f(1x )<0,f(2x )>0 (C )f(1x )>0,f(2x )<0 (D )f(1x )>0,f(2x )>020.[2013·四川高考]函数y =331x x -的图象大致是( )21.已知函数y =1-x +sin x ,则 A .函数为R 上增函数 B .函数为R 上减函数C .在(0, π]上单调递增,在[π,2π) 上单调递减D .在(0, π]上单调递减,在[π,2π) 上单调递增 22.已知函数()cos 2f x x π=+(x R ∈),则下列叙述错误的 ( )A .()f x 的最大值与最小值之和等于πB .()f x 是偶函数C .()f x 在[]4,7上是增函数 D .()f x 的图像关于点,22ππ⎛⎫⎪⎝⎭成中心对称 23.若{}21A x x ==,{}2230B x x x =--=,则A B =( )A.{}3B.{}1C.∅D.{}1-24.将函数)3cos(π-=x y 的图象上各点的横坐标伸长到原的2倍(纵坐标不变),再向左平移6π个单位,所得图象的一条对称轴方程为( ) A.9π=x B. 8π=x C. 2π=x D. π=x25.函数()sin cos f x x x =最小值是( )A .-1B .12- C . 12 D .126.设向量a.b 满足11,,a+22a b a b b ===-=则( )(A (B (C (D 27.在平面直角坐标系中,如果不同的两点),(b a A ,),(b a B -在函数)(x f y =的图象上,则称),(B A 是函数)(x f y =的一组关于y 轴的对称点(),(B A 与),(A B 视为同一组), 则函数31,0,()2log ,0,xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩关于y 轴的对称点的组数为( )A .0B .1C .2D .428.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是 ( )29.已知0<c ,则下列不等式中成立的一个是 ( )A .c c 2>B .c c )21(>C .cc )21(2>D .cc )21(2<30.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.11,66⎡⎤-⎢⎥⎣⎦B.⎡⎢⎣⎦ C.11,33⎡⎤-⎢⎥⎣⎦D.⎡⎢⎣⎦31.若向量)3,(x =(R x ∈),则“4=x5=”的( )A .充分不必要条件 B. 必要不充分条件C .充要条件 D. 既不充分也不必要条件32.集合}22|{<<-=x x A ,}02|{2≤-=x x x B ,则=B A ( )A .)2,0(B .]2,0( C. ]2,0[ D. )2,0[ 33.设集合{1,2}A =,则满足{1,2,3}A B =的集合B 的个数是( )A .1B .3C .4D .834.下列函数中,值域为),0(∞+的是( )A :xy -=215B :xy -=1)31( C :1)21(-=x y D :xy 21-=35.函数ln ||||x x y x =的图像可能是( )ABCD-36.已知向量(1,)a x =,(1,2)b x =-,若//a b ,则x =( ) A .-1或2 B .-2或1 C .1或2 D .-1或-237.已知全集U=R ,集合A={x x |<3},B={x x 3log |>0},则A CUB=( ) A .{x |1<x <3} B .{x |1≤x <3} C .{x |x <3} D .{x |x ≤1}38.2(lg5)lg2lg5lg20++的值是( ) A 、0 B 、1 C 、2 D 、339.已知集合{}12,A x x x Z =-≤≤∈,集合{}420,,=B ,则B A ⋃ 等于( ) A .{}4,2,1,0,1- B .{}4,2,0,1- C .{}420,,D .{}4210,,, 40.如图,在ABC △中,1AB =,3AC =,D 是BC 的中点,则AD BC ⋅=( ).A .3B .4C .5D .不能确定第II 卷(非选择题)二、填空题41.设πθ20<≤时,已知两个向()()θθθθcos 2,sin 2,sin ,cos OP 21-+==OP ,而||21P P 的最大值为_________,此时=θ_________。
山西省大同市第一中学2014-2015学年高二上学期期中考试数学理试题第Ⅰ卷 客观卷(共36分)一、选择题(本大题共12个小题,每小题3 分,共36 分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知某几何体的三视图如图所示,则该几何体的体积为A .8π3 B .3πC .10π3D .6π2.已知正方体外接球的体积是323π,那么正方体的棱长等于A .2 2B .223C .423D .4333.直线x -2y +1=0关于直线x =1对称的直线方程是A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=04.在空间直角坐标系中,O 为坐标原点,设A(12,12,12),B(12,12,0),C(13,13,13),则A .OA ⊥ABB .AB ⊥ACC .AC ⊥BCD .OB ⊥OC5.若P(2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为A .x -y -3=0B .2x +y -3=0C .x +y -1=0D .2x -y -5=06.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是A .若m ∥α,n ∥α,则m ∥nB .若α⊥γ,β⊥γ,则α∥βC .若m ∥α,m ∥β,则α∥βD .若m ⊥α,n ⊥α,则m ∥n7.如图,在长方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱BB 1,B 1C 1的中点,若∠CMN =90°,则异面直线AD 1和DM 所成角为 A .30° B .45° C .60° D .90°8.已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是A .(-22,22)B .(-2,2)C .(-24,24) D .(-18,18) 9.在三棱柱ABC -A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是A .30°B .45°C .60°D .90°10.过点M(-2,4)作圆C :(x -2)2+(y -1)2=25的切线l ,且直线l 1:ax +3y +2a =0与l 平行,则l 1与l 间的距离是( ) A .85 B .25 C .285D .12511.点P(4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是A .(x -2)2+(y +1)2=1B .(x -2)2+(y -1)2=4C .(x -4)2+(y -2)2=1D .(x -2)2+(y -1)2=112.设P(x ,y)是圆x 2+(y +4)2=4上任意一点,则(x -1)2+(y -1)2的最小值为A .26+2B .26-2C .5D .6第II 卷 主观卷(共36分)二、填空题(本大题共4小题,每小题4分,共16分)13.顺次连结A(1,0),B(1,4),C(3,4),D(5,0)所得到的四边形绕y 轴旋转一周,所得旋转体的体积是________.14.经过点P(1,2)的直线,且使A(2,3),B(0,-5)到它的距离相等的直线方程为________. 15.圆x 2+y 2+Dx +Ey +F =0关于直线l 1:x -y +4=0与直线l 2:x +3y =0都对称,则D =________,E =________.16.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为________. 三、解答题(本题共6个小题,每小题8分)17.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD. (1) 证明PA ⊥BD ;(2) 设PD =AD =1,求棱锥D -PBC 的高.18.如图,矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为x -3y -6=0,点T(-1,1)在AD 边所在直线上. (1) 求AD 边所在直线的方程; (2) 求矩形ABCD 外接圆的方程.19.已知圆的半径为10,圆心在直线y =2x 上,圆被直线x -y =0截得的弦长为42,求圆的方程.20.如图,几何体E -ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD. (1) 求证:BE =DE ;(2) 若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC.21.在平面直角坐标系xOy 中,已知圆C 1:(x -4)2+(y -5)2=4和圆C 2:(x +3)2+(y -1)2=4.(1) 若直线l 1过点A(2,0),且与圆C 1相切,求直线l 1的方程;(2) 直线l 2的方程是x =52,证明:直线l 1上存在点P ,满足过P 的无穷多对互相垂直的直线l 3和l 4,它们分别与圆C 1和圆C 2相交,且直线l 3被圆C 1截得的弦长与直线l 4被圆C 2截得的弦长相等.22.如图已知三棱柱ABC -A 1B 1C 1中,D 、E 分别是AB 、BB 1的中点.(1) 证明:BC 1∥面A 1CD ;(2) 设AA 1=AC =CB =2,AB =22, 求三棱锥C -A 1DE 的体积.一、选择题B 、 D 、 D 、C 、 A 、D 、 D 、 C 、 C 、 D 、 A 、 B 二、填空题13、184π3 14、 4x -y -2=0或x =1 15、6 -2 16、x +y -3=0三、解答题17.(1)证明:因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD.从而BD 2+AD 2=AB 2,故BD ⊥AD.又PD ⊥底面ABCD ,可得BD ⊥PD.所以BD ⊥平面PAD.故PA ⊥BD.(2)如图,作DE ⊥PB ,垂足为E.已知PD ⊥底面ABCD ,则PD ⊥BC.由(1)知BD ⊥AD ,又BC ∥AD ,所以BC ⊥BD.故BC ⊥平面PBD ,所以BC ⊥DE.则DE ⊥平面PBC. 由题设知PD =1,则BD =3,PB =2.根据DE·PB =PD·BD ,得DE =32, 即棱锥D -PBC 的高为32.18.解: (1)因为AB 边所在直线的方程为x -3y -6=0,且AD 与AB 垂直,所以直线AD 的斜率为-3.又因为点T(-1,1)在直线AD 上,所以AD 边所在直线的方程为y -1=-3(x +1),即3x +y +2=0.(2)由⎩⎪⎨⎪⎧x -3y -6=03x +y +2=0,解得点A 的坐标为 (0,-2).因为矩形ABCD 两条对角线的交点为M(2,0),所以M 为矩形ABCD 外接圆的圆心.又r =|AM|=(2-0)2+(0+2)2=2 2.所以矩形ABCD 外接圆的方程为(x -2)2+y 2=8.19.解:方法一:设圆的方程是(x -a)2+(y -b)2=10.因为圆心在直线y =2x 上, 所以b =2a. ①解方程组⎩⎪⎨⎪⎧x -y =0,(x -a )2+(y -b )2=10,得2x 2-2(a +b)x +a 2+b 2-10=0, 所以x 1+x 2=a +b ,x 1·x 2=a 2+b 2-102.由弦长公式得2·(a +b )2-2(a 2+b 2-10)=42,化简得(a -b)2=4. ② 解①②组成的方程组,得a =2,b =4,或a =-2,b =-4.故所求圆的方程是(x -2)2+(y -4)2=10,或(x +2)2+(y +4)2=10. 方法二:设圆的方程为(x -a)2+(y -b)2=10,则圆心为(a ,b),半径r =10,圆心(a ,b)到直线x -y =0的距离d =|a -b|2.由弦长、弦心距、半径组成的直角三角形得d 2+(422)2=r 2,即(a -b )22+8=10,所以(a -b)2=4.又因为b =2a ,所以a =2,b =4,或a =-2,b =-4. 故所求圆的方程是(x -2)2+(y -4)2=10,或(x +2)2+(y +4)2=10. 20. 解:(1)设BD 中点为O ,连接OC ,OE ,则由BC =CD 知,CO ⊥BD ,又已知CE ⊥BD ,所以BD ⊥平面OCE.所以BD ⊥OE ,即OE 是BD 的垂直平分线,所以BE =DE. (2)取AB 中点N ,连接MN ,DN ,∵M 是AE 的中点,∴MN ∥BE ,∵△ABD 是等边三角形,∴DN ⊥AB.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC ⊥AB ,所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC.21. 解: (1)若直线斜率不存在,x =2符合题意;当直线l 1的斜率存在时,设直线l 1的方程为y =k(x -2),即kx -y -2k =0, 由条件得|4k -5-2k|k 2+1=2,解得k =2120,所以直线l 1的方程为x =2或y =2120(x -2),即x =2或21x -20y -42=0. (2)由题意知,直线l 3,l 4的斜率存在,设直线l 3的斜率为k ,则直线l 4的斜率为-1k ,设点P 坐标为(52,n),互相垂直的直线l 3,l 4的方程分别为:y -n =k(x -52),y -n =-1k (x -52),即kx -y +n -52k =0,-1k x -y +n +52k=0,根据直线l 3被圆C 1截得的弦长与直线l 4被圆C 2截得的弦长相等,两圆半径相等.由垂径定理得:圆心C 1到直线l 3与圆心C 2到直线l 4的距离相等.有⎪⎪⎪⎪4k -5+n -52k k 2+1=⎪⎪⎪⎪3k -1+n +52k 1k 2+1,22.解: (1)连结AC 1交A 1C 于点F ,则F 为AC 1的中点,又D 是AB 中点,连结DF ,则BC 1∥DF ,因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD.(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD ,由已知AC =CB ,D 为AB 中点,所以,CD ⊥AB ,又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1,由AA 1=AC =CB =2,AB =22得,∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D ,所以VC -A 1DE =13×12×6×3×2=1.。
山西省大同市第一中学2014-2015学年高一上学期期末考试历史试题第Ⅰ卷客观卷(共60分)一、选择题(本大题共30小题,共60分,每小题2分)1.某位同学假期翻阅自家的族谱,发现自己与刘氏皇族有着渊源关系,且为大宗,此事的依据是A.分封制B.宗法制C.郡县制D.门阀制2.假设甲、乙、丙、丁四位同学回到商周时代,请判断哪位同学被封为诸侯王的可能性小A.甲同学成为商朝末年的贵族,曾带兵帮助周部落B.乙同学做了商朝末年的平民,才能、人品俱佳C.丙同学带兵攻打商纣王,立下汗马功劳D.丁同学成了西周王族成员,整日无所事事3.古希腊城邦的突出特征是A.小国寡民B.长期混战C.文明程度高D.血缘关系密切4.罗马最早的成文法是A.《十二铜表法》B.《国法大权》C.《公民法》D.《万民法》5.确立英国近代资产阶级君主立宪制的标志是A.处死了国王查理一世B.宣布了英国为共和国C.1688年“光荣革命”D.《权利法案》的通过6.“德意志民族曾经号称‘思想家和诗人的民族’,也涌现出了一流的科学家和艺术家。
…但是,这个伟大的民族也曾在一个狂人的操纵下进行过最骇人听闻的大屠杀。
”后者产生的历史根源是A.德意志民族性格的双重性B.资本主义经济发展不充分C.传统的军国主义和专制主义残余的影响D.没有形成一部真正民主的宪法7.英国发动鸦片战争的主要目的是A.保护鸦片贸易B.割占中国领土C.打开中国商品市场D.争取外交礼仪平等8.与“春愁难遣强看山,往事惊心泪欲潸。
四百万人同一哭,去年今日割台湾。
”一诗相关联的历史事件是A.鸦片战争B.甲午中日战争C.日俄战争D.抗日战争9.某同学在网上查资料时发现如下一段民谣:“还我江山还我权,刀山火海爷敢钻,哪怕皇上服了外,不杀洋人誓不完”,此民谣应出自A.太平天国运动期间B.义和团运动期间C.辛亥革命期间D.北伐战争期间10.五四运动爆发的导火线是A.巴黎和会中国外交的失败B.马克思主义C.产业工人队伍壮大D.苏俄十月革命11.“四十年前会上逢,南湖泛舟语从容。
山西省大同市第一中学2014-2015学年高一上学期期末考试数学试题第Ⅰ卷 客观卷(共36分)一.选择题(每小题3分,共36分)1.全集U ={0,1,3,5,6,8 },集合A ={ 1,5, 8 }, B ={ 2 },则集合()B A C U 为A .{ 0,2,3,6 }B .{ 0,3,6 }C .{ 1,2,5,8 }D .∅ 2.下列各函数中,表示同一函数的是A .y x =与log xa y a =(0a >且1a ≠) B .211x y x -=-与1y x =+C .1y =-与1y x =- D .lg y x =与21lg 2y x =3.已知函数()R x x x f ∈+=,112则=⎪⎭⎫⎝⎛21fA .51 B .45 C .32 D .544.下列式子中成立的是 A .0.40.4log 4log 6<B . 3.4 3.51.01 1.01>C .0.30.33.5 3.4>D .76log 6log 7<5.已知0x 是函数()24xf x e x =+-的一个零点,若10(1,)x x ∈-20(,2)x x ∈,则A .()10f x <,()20f x <B .()10f x <,()20f x >C .()10f x >,()20f x <D .()10f x >,()20f x >6.集合{2,3}A =,{1,2,3}B =从A 、B 中各取任意一个数,则这两数之和等于4的概率是A .23B .13C .12D .167.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2与49 cm 2之间的概率为A .103 B .51 C .52 D .54 8.如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为 (注:方差2222121[()()()]n s x x x x x x n=-+-++-,其中x 为1x ,2x ,…,n x 的平均数)A .5.8B .6.8C . 7.8D . 8.89.已知2)()(+=x g x f ,且)(x g 为奇函数,若3)2(=f ,则)2(-f 的值为 A .0B .3-C .1D .310.二次函数bx ax y +=2与指数函数x aby )(=在同一坐标系中的图象可能是11.若*,x R n N ∈∈,规定:(1)(2)(1)n xx x x x n H=++⋅⋅⋅⋅⋅+-,例如:44(4)(3)(2)(1)24H -=-⋅-⋅-⋅-=,则52()x f x x H -=⋅的奇偶性为A .是奇函数不是偶函数B .是偶函数不是奇偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数12.已知函数()()()()2,12log ,1a a a x x f x x x ⎧--<⎪=⎨⎪⎩≥是R 上的增函数,那么实数a 的取值范围是A .()1,2B .41,3⎛⎤ ⎥⎝⎦C .4,23⎡⎫⎪⎢⎣⎭D .()0,1第II 卷 主观卷(共64分)二、填空题(每小题3分,共12分)13.如图所示,墙上挂有一块边长为2的正方形木板,它的四个角 的空白总分都是以正方形的顶点为圆心,半径为1的扇形,某人 向此木板投镖,假设每次击中木板,且击中木板上每一个点处 的可能性都一样,则击中阴影总分的概率为 .14.用辗转相除法求两个数102、238的最大公约数是 . 15.阅读下列的程序框图,若输入4m =,3n =,则输出a = , i = .(注:框图中的赋值符号“=”,也可以写成“←”或“:=”) 16.已知定义在R 上的奇函数()f x 在()0,+∞上是增函数,且()()12f ax f x +-≤对任意1,12x ⎡⎤∈⎢⎥⎣⎦都成立, 则实数a 的取值范围是 . 三.解答题17.(8分)设集合{|02}A x x m =<-<,{}230B x x x =-+≤,分别求满足下列条件的实数m 的取值范围: (1)A B =∅; (2)A B B =.18.(8分)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12. (1) 第二小组的频率是多少?样本容量是多少? (2) 若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3) 在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.19.(8分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1) 所取的2道题都是甲类题的概率; (2) 所取的2道题不是同一类题的概率.20.(8分)已知甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是甲:8,6,7,8,6,5,9,10,4,7; 乙:6,7,7,8,6,7,8,7,9,5。
(1) 分别计算两组数据的平均数; (2) 分别计算两组数据的方差;(3) 根据计算结果,估计一下两名战士的射击水平谁更好一些.21.(10分)已知函数()121+-=x a x f . (1)求证:函数()x f 在R 上为增函数; (2)当函数()x f 为奇函数时,求a 的值;(3)当函数()x f 为奇函数时, 求函数()x f 在]2,1[-上的值域.22.(10分)已知二次函数2()5f x ax bx =++ ()x R ∈满足以下要求:①函数()f x 的值域为[1,)+∞; ②(2)(2)f x f x -+=--对x R ∈恒成立。
求:(1)求函数()f x 的解析式; (2)设(ln )()ln 1f x M x x =+,求2[,]x e e ∈时()M x 的值域。
大同一中高一期末数学试卷一、选择题(每小题3分,共36分) AADDB BBBCA BC二、填空题(每小题3分,共12分) 13、14π-14、34 15、12 , 3 16、](,5-∞-三、解答题 17、(本小题8分)解:{},2+<<=m x m x A {}3,0≥≤=x x x B 或(1)若φ=B A ,则实数m 应满足⎩⎨⎧≤+≥320m m ,解得10≤≤m(2)若B B A = ,则B A ⊂ 则实数m 应满足02≤+m 或3≥m ,解得2-≤m 或3≥m18、(本小题8分)解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组频率=第二小组频数样本容量,所以样本容量=第二小组频数第二小组频率=120.08=150.(2)由图可估计该学校高一学生的达标率约为 17+15+9+32+4+17+15+9+3×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.19、(本小题8分)解:(Ⅰ)将4道甲类题依次编号为1,2,3,4;2道一类题依次编号为5.6,任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P(A)=62.155=(Ⅱ)基本事件向(I),用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P(B)=815.20、(本小题8分)解:(1)x 甲=110(8+6+7+8+6+5+9+10+4+7)=7(环),x 乙=110(6+7+7+8+6+7+8+7+9+5)=7(环).(2)由方差公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]可求得s 2甲=3.0(环2),s 2乙=1.2(环2).(3)由x 甲=x 乙,说明甲、乙两战士的平均水平相当;又∵s 2甲>s 2乙,说明甲战士射击情况波动大,因此乙战士比甲战士射击情况稳定.21、(本小题10分)解:(1)任取R x x ∈<21则()()=⎪⎭⎫ ⎝⎛+--+-=-1211212121x x a a x f x f =+-+12112112x x )12)(12(221221++-x x x x 因为21x x <所以02221<-x x , 0121>+x ,0122>+x 故()()021<-x f x f所以()x f 函数在R 上为增函数(2)因()x f 函数在x=0 有意义,又()x f 函数为奇函数,则()00=f 即()21,0210==-=a a f 得 (3)由x ∈[-1,2]得 ⎥⎦⎤⎢⎣⎡∈+⎥⎦⎤⎢⎣⎡∈32,511214,212x x 则有()⎥⎦⎤⎢⎣⎡∈+-=10361-12121,故x x f22、(本小题10分)解:(1)222()5()524b b f x ax bx a x a a =++=++-又(2)(2)f x f x -+=-- ∴对称轴为22bx a =-=-值域为[)1,+∞∴0a >且2514b a -=∴1,4a b ==,则函数2()45f x x x =++(2)2(ln )(ln )4ln 5()ln 1ln 1f x x x M x x x ++==++2,x e e ⎡⎤∈⎣⎦∴令[]ln 1,2,3t x =+∈则t∴222(ln )4ln 5(1)4(1)52222ln 1x x t t t t t x t t t ++-+-+++===+++[]2,3∈t 2113,3t t ⎡⎤∴+∈⎢⎥⎣⎦,则21725,3t t ⎡⎤++∈⎢⎥⎣⎦ ∴所求值域为:175,3⎡⎤⎢⎥⎣⎦。