计算机组成原理与体系结构结构分析
- 格式:ppt
- 大小:361.78 KB
- 文档页数:41
计算机组成与系统结构1冯•诺依曼计算机设计思想:依据存储程序,执行程序并实现控制。
2. 早期计算机由运算器、控制器、存储器、输入设备和输出设备五大部分组成。
3软件系统爆过两大部分:系统软件和应用软件。
4.计算机的层次结构分为:微程序或逻辑硬件、机器语言、操作系统、汇编语言、高级语言、应用语言。
5计算机系统结构、组成与实现之间的区别与联系:①计算机结构:也称为计算机体系结构,是一个系统在其所处环境中最高层次的概念;是对计算机系统中各机器级之间界面的划分和定义,以及对各级界面上、下的功能进行分配。
②计算机组成:也常译为计算机组织或成为计算机原理、计算机组成原理。
在计算机系统结构确定了分配给硬件子系统的功能及其概念之后,计算机组成的任务是研究硬件子系统各部分的内部结构和相互联系,以实现机器指令级的各级功能和特性。
③计算机实现:指的是计算机组成的物理实现,主要研究个部件的物理结构,机器的制造技术和工艺等,包括处理机、主存等部件的物理结构,器件的集成度、速度和信号。
器件、模块、插件、底板的划分与连接,专用器件的设计,电源、冷却、装配等技术。
6Flynn分类法:按照计算机在执行程序时信息流的特征分为单指令单数据流计算机(SISD)单指令多数据流计算机(SIMD)、多指令单数据流计算机(MISD)、多指令多数据流计算机(MIMD).劝卩速比Sp=1/{(1-Fe)+Fe/Re},Fe为可改进比例,Re为部件加速比。
8•在计算机中有两种信息在流动,一种是控制流,即控制命令,由控制器产生并流向各个部件;另一种是数据流,它在计算机中被加工处理。
9•摩尔定律得以延续的理由:集成电路芯片的集成度每18个月翻一番。
10•冯•诺依曼计算机的执行过程:将要处理的问题用指令编程成程序,并将程序存放在存储器中,在控制器的控制下,从存储器中逐条取出指令并执行,通过执行程序最终解决计算机所要处理的问题。
11数据编码的好处:用更少的数据表示更多的信息。
计算机组成与系统结构1.冯·诺依曼计算机设计思想:依据存储程序,执行程序并实现控制。
2.早期计算机由运算器、控制器、存储器、输入设备和输出设备五大部分组成。
3.软件系统爆过两大部分:系统软件和应用软件。
4.计算机的层次结构分为:微程序或逻辑硬件、机器语言、操作系统、汇编语言、高级语言、应用语言。
5.计算机系统结构、组成与实现之间的区别与联系:①计算机结构:也称为计算机体系结构,是一个系统在其所处环境中最高层次的概念;是对计算机系统中各机器级之间界面的划分和定义,以及对各级界面上、下的功能进行分配。
②计算机组成:也常译为计算机组织或成为计算机原理、计算机组成原理。
在计算机系统结构确定了分配给硬件子系统的功能及其概念之后,计算机组成的任务是研究硬件子系统各部分的内部结构和相互联系,以实现机器指令级的各级功能和特性。
③计算机实现:指的是计算机组成的物理实现,主要研究个部件的物理结构,机器的制造技术和工艺等,包括处理机、主存等部件的物理结构,器件的集成度、速度和信号。
器件、模块、插件、底板的划分与连接,专用器件的设计,电源、冷却、装配等技术。
6.Flynn分类法:按照计算机在执行程序时信息流的特征分为单指令单数据流计算机(SISD)、单指令多数据流计算机(SIMD)、多指令单数据流计算机(MISD)、多指令多数据流计算机(MIMD).7.加速比Sp=1/{(1-Fe)+Fe/Re},Fe为可改进比例,Re为部件加速比。
8.在计算机中有两种信息在流动,一种是控制流,即控制命令,由控制器产生并流向各个部件;另一种是数据流,它在计算机中被加工处理。
9.摩尔定律得以延续的理由:集成电路芯片的集成度每18个月翻一番。
10.冯·诺依曼计算机的执行过程:将要处理的问题用指令编程成程序,并将程序存放在存储器中,在控制器的控制下,从存储器中逐条取出指令并执行,通过执行程序最终解决计算机所要处理的问题。
计算机考研十大核心考点总结
一、计算机组成原理
计算机组成原理是计算机科学的一个基础,是考研计算机的重要科目,它涉及计算机系统体系结构的概念,关系的数据处理技术等。
其中,主要
考察计算机体系结构、计算机存储器,CPU结构,机器指令等方面的相关
知识,是考研计算机考试的重要考点。
1.计算机系统概述
计算机系统包括硬件、软件、中断、存储器以及I/O系统,其中硬件
由处理器、控制器、存储器和接口组成,软件由操作系统、辅助工具和应
用程序组成。
计算机系统中的数据在系统设计、实施和管理过程中起着重
要作用,是系统可靠性和性能的主要考量因素。
2.CPU体系结构
CPU是计算机系统中的中央处理器,主要负责数据的存取、处理和控制,它经历了多次改进和升级,现代计算机CPU一般由指令集、控制单元、内部总线和外部总线等组成,有了这些组成部件,CPU就可以实现指令系
统的运行和控制,保证数据的处理和控制。
3.存储器体系结构
存储器可以分为两类,一类是主存储器,一类是外存储器,外存储器
分为磁盘和移动存储器,而主存储器又分为物理内存和虚拟内存。
计算机体系结构与组成原理计算机体系结构与组成原理讨论了计算机系统的基本原理、组成结构和相互关系。
它研究了计算机的硬件和软件组件,并介绍了计算机如何执行指令以及数据在计算机内部的处理方式。
本文将从计算机体系结构和计算机组成原理两个方面来探讨这一主题。
一、计算机体系结构计算机体系结构是指计算机硬件和操作系统之间的接口关系。
它定义了计算机的结构、功能和性能特征,包括内存、输入输出设备和处理器等组件。
计算机体系结构的设计决定了计算机系统的可扩展性和性能。
1. 冯·诺依曼体系结构冯·诺依曼体系结构是一种广泛应用的计算机体系结构,是由冯·诺依曼于1945年提出的。
它包括了一个存储器、一个运算器、一个控制器、输入设备和输出设备等组件。
其中存储器用于存储数据和指令,运算器用于执行算术和逻辑运算,控制器用于指挥各个组件的操作。
2. 硬件层次结构计算机体系结构还可以按照硬件的层次结构进行分类。
常见的硬件层次结构包括计算机系统、总线、处理器和存储器等。
计算机系统是最高层次的硬件,它由多个处理器和存储器组成,并通过总线进行连接。
二、计算机组成原理计算机组成原理研究了计算机硬件的内部结构和功能,包括处理器、存储器、输入输出设备等。
它关注计算机内部数据的存储、传输和处理方式。
1. 处理器处理器是计算机的核心组件,负责执行指令和处理数据。
它由控制器和算术逻辑单元组成。
控制器用于解析和执行指令,算术逻辑单元用于执行算术和逻辑运算。
2. 存储器存储器用于存储计算机内部的数据和指令。
根据存取方式的不同,存储器可以分为随机存取存储器(RAM)和只读存储器(ROM)。
RAM用于临时存储数据和程序,而ROM则用于存储固定的指令和数据。
3. 输入输出设备输入输出设备用于将数据和指令传递给计算机系统,或将计算结果输出到外部设备。
常见的输入输出设备包括键盘、鼠标、显示器和打印机等。
三、计算机体系结构与组成原理的关系计算机体系结构和组成原理是相互关联的,在计算机系统设计和优化过程中起着重要作用。
计算机组成-冯·诺依曼体系结构计算机组成 - 冯·诺依曼体系结构⽬录计算机组成原理⽬录:计算机组成原理在整个计算机课程中的地位如下图所⽰:图1:计算机体系结构计算机组成原理这门课会围绕冯·诺依曼体系的五⼤组成部分展开,分别介绍运算器、控制器、存储器、输⼊设备和输出设备。
运算器、控制器、存储器、输⼊设备和输出设备。
1. 冯·诺依曼体系结构冯·诺依曼体系结构(Von Neumann architecture),也叫存储程序计算机。
什么是存储程序计算机呢?这⾥⾯其实暗含了两个概念:可编程计算机:计算机是由各种门电路组合⽽成的,然后通过组装出⼀个固定的电路板,来完成⼀个特定的计算程序。
⼀旦需要修改功能,就要重新组装电路。
这样的话,计算机就是“不可编程”的。
如计算器就是不可编程的。
存储计算机。
⽐如内存和硬盘都是存储设备。
图2:冯·诺依曼体系结构⽰意图处理器单元(Processing Unit):⾸先是⼀个包含算术逻辑单元(Arithmetic Logic Unit,ALU)和处理器寄存器(ProcessorRegister)的处理器单元(Processing Unit),⽤来完成各种算术和逻辑运算。
因为它能够完成各种数据的处理或者计算⼯作,因此也有⼈把这个叫作数据通路(Datapath)或者运算器。
控制器单元(Control Unit/CU):是⼀个包含指令寄存器(Instruction Register)和程序计数器(Program Counter)的控制器单元(Control Unit/CU),⽤来控制程序的流程,通常就是不同条件下的分⽀和跳转。
在现在的计算机⾥,上⾯的算术逻辑单元和这⾥的控制器单元,共同组成了我们说的 CPU。
存储器存储器:⽤来存储数据(Data)和指令(Instruction)的内存。
以及更⼤容量的外部存储,在过去,可能是磁带、磁⿎这样的设备,现在通常就是硬盘。
组成原理与计算机体系结构计算机是一个非常复杂的系统,它在现代社会中扮演着至关重要的角色。
那么,计算机是如何诞生的呢?它的组成原理又是什么呢?本文将为大家介绍计算机的组成原理和体系结构,希望能够帮助大家更好地理解计算机。
一、计算机的组成原理计算机是由许多不同的部件组成的,这些部件需要相互配合才能正常工作。
计算机的主要组成部分包括:中央处理器(CPU)、随机存储器(RAM)、硬盘、输入设备和输出设备等。
下面将分别介绍这些部件。
1、中央处理器中央处理器是计算机的“大脑”,它负责处理所有的指令和数据。
中央处理器包括两个重要的部分:控制单元和算术逻辑单元。
控制单元的主要功能是从内存中取出指令并执行它们,而算术逻辑单元则是负责执行各种算数和逻辑运算。
2、随机存储器随机存储器是计算机的内存,它用于暂时存储数据和指令。
随机存储器的容量和速度非常重要,它们直接影响计算机的性能。
3、硬盘硬盘是计算机的主要存储设备,它用于长期存储数据和程序。
硬盘的容量随着技术的发展而不断增加,目前最大的硬盘容量已经达到数十TB。
4、输入设备和输出设备输入设备和输出设备也是计算机的主要组成部分。
输入设备包括键盘、鼠标、扫描仪等,而输出设备则包括显示器、打印机、喇叭等。
二、计算机体系结构计算机体系结构是计算机硬件和软件之间的接口,它描述了计算机的组成和运行方式。
计算机体系结构包含两个层次:指令集体系结构和微体系结构。
下面将分别介绍这两个层次。
1、指令集体系结构指令集体系结构是计算机处理器和编译器之间的接口。
它定义了计算机所支持的指令集以及这些指令的语法和语义。
指令集体系结构包含许多方面,比如地址模式、数据类型、寄存器、中断和异常等。
2、微体系结构微体系结构是计算机处理器内部的设计,它描述了如何实现指令集体系结构。
微体系结构包括处理器中的电路、指令流水线、分支预测、缓存和总线等。
三、计算机体系结构的发展计算机体系结构的发展经历了几个重要的阶段。
计算机体系结构和计算机组成原理的区别计算机体系结构和计算机组成原理是计算机科学领域中两个非常重要的概念,但它们具有不同的含义。
计算机体系结构描述了计算机系统的各个部分如何组成以及它们之间如何交互。
而计算机组成原理则更加关注计算机系统内部的各个硬件组件如何工作以及为什么工作。
具体来说,计算机体系结构包括计算机的指令集、寄存器、总线、存储器等部分。
这些部分描述了计算机系统的结构,以及这些部分之间如何进行数据传输和控制。
例如,计算机体系结构的指令集定义了计算机可执行的操作,包括加、减、乘、除、移位等等。
寄存器和存储器则用于保存程序和数据。
计算机组成原理则更加关注计算机系统内部的物理部件如何工作以及为什么工作。
这包括CPU、内存、I/O控制器等硬件组件。
例如,CPU是计算机的中央处理器,它执行指令,进行算术和逻辑运算,从内存中读取和写入数据。
计算机组成原理的学习者需要深入理解CPU的内部运作机制,例如时钟周期、流水线等等。
总的来说,计算机体系结构和计算机组成原理是紧密相关的,但它们具有不同的侧重点。
计算机体系结构关注的是计算机系统的整体结构和功能,而计算机组成原理则更多地关注计算机系统内部硬件组件的工作原理。
两个概念的深入理解和掌握对于计算机科学领域的学生和专业人士来说都是非常重要的。
- 1 -。