复变函数总结完整版
- 格式:doc
- 大小:807.00 KB
- 文档页数:12
复变函数重要知识点总结复变函数是数学中一个非常重要的分支,它在数学、物理、工程等领域都有着广泛的应用。
下面将对复变函数的一些重要知识点进行总结。
一、复数的基本概念复数是由实数和虚数组成的数,通常表示为$z = x + yi$,其中$x$ 称为实部,$y$ 称为虚部,$i$ 是虚数单位,满足$i^2 =-1$。
复数的模长定义为$|z| =\sqrt{x^2 + y^2}$,表示复数在复平面上的距离。
复数的辐角定义为$\theta =\arctan\frac{y}{x}$,表示复数与实轴正方向的夹角。
二、复变函数的定义复变函数是定义在复数域上的函数,通常表示为$w = f(z)$,其中$z$ 是自变量,$w$ 是因变量。
复变函数的导数定义与实函数类似,但需要满足柯西黎曼方程:$\frac{\partial u}{\partial x} =\frac{\partial v}{\partial y}$,$\frac{\partial u}{\partial y} =\frac{\partial v}{\partial x}$,其中$f(z) = u(x,y) + iv(x,y)$。
三、解析函数如果一个复变函数在某点及其邻域内可导,就称该点为函数的解析点。
如果函数在一个区域内处处解析,就称该函数为解析函数。
解析函数具有很多良好的性质,如柯西定理、柯西积分公式等。
四、复变函数的积分复变函数的积分定义为沿着一条曲线对函数进行积分。
柯西定理指出,如果函数在一个单连通区域内解析,那么沿着该区域内任何一条闭合曲线的积分都为零。
柯西积分公式则给出了函数在某点的值与沿着该点周围闭合曲线的积分之间的关系。
五、级数复级数包括幂级数和 Laurent 级数。
幂级数是形如$\sum_{n=0}^{\infty} a_n (z z_0)^n$ 的级数。
收敛半径可以通过比值法或根值法求得。
Laurent 级数是在圆环域内展开的级数,包括正则部分和主要部分。
(完整版)复变函数知识点总结复变函数知识点总结1. 复数与复变函数- 复数是实数和虚数的组合,可表示为a + bi的形式,其中a和b分别是实部和虚部。
- 复变函数是以复数为自变量和因变量的函数,例如f(z)。
2. 复变函数的运算规则- 复变函数的加法和减法:对应实部和虚部进行分别运算。
- 复变函数的乘法:使用分配律进行计算。
- 复变函数的除法:使用共轭形式并应用分配律和除法规则。
3. 复变函数的解析表示- 复变函数可以用级数形式表示,即幂级数或洛朗级数。
- 幂级数表示为f(z) = ∑(c_n * (z - z_0)^n),其中c_n是幂级数的系数,z_0是展开点。
- 洛朗级数表示为f(z) = ∑(c_n * (z - z_0)^n) + ∑(d_n * (z -z_0)^(-n))。
4. 复变函数的性质- 全纯性:如果一个函数在某个区域内都是解析的,则称其为全纯函数。
- 解析性:如果一个函数在某一点附近有解析表示,则称其为解析函数。
- 保角性:保持角度的变化,即函数对角度的保持。
- 映射性:函数之间的对应关系,实现从一个集合到另一个集合的映射。
5. 复变函数的应用- 物理学:用于描述电磁场、电路等问题。
- 工程学:用于信号处理、图像处理等领域。
- 统计学:用于数据分析、模型拟合等方面。
6. 复变函数的计算方法- 积分计算:使用路径积分或者柯西公式进行计算。
- 极限计算:使用洛朗级数展开或级数加和求解极限。
- 零点计算:使用代数方法或数值解法求解函数的零点。
以上是复变函数的知识点总结,希望对您有所帮助!。
第一章复数1 i 2=-1 i = ∙, -1 欧拉公式z=x+iy实部Re Z 虚部Im Z2运算① z1≡z2^ Rez1=Rez2Imz1=Imz2②(z1±z2)=Re(z1±z2)+lm(z1±z2)= (Rez1±Rez2)+(lm z1+ Im Z2)乙Z2③=χ1 iy1 χ2 iy2X1X2iχ1y2iχ2y1- y1y2=X1X2 -y』2 i χ1y2 χ2y1④z1 _ z1z2 一χ1 i y1 χ2 -iy2 _ χ1χ2 y1y2 i y1χ2 -χ1y22 2 2 2Z2 Z2Z2 χ2 iy2 χ2 -iy2 χ2 y2 χ2 y2⑤z = X - iy 共轭复数z z =(x+iy I x — iy )=χ2+ y2共轭技巧运算律P1页3代数,几何表示^X iy Z与平面点χ,y-------- 对应,与向量--- 对应辐角当z≠0时,向量Z和X轴正向之间的夹角θ ,记作θ =Arg z= V0■ 2k二k= ± 1 ± 2± 3…把位于-∏v二0≤∏的厲叫做Arg Z辐角主值记作^0= argz04如何寻找arg Zπ例:z=1-i4πz=i2πz=1+i4z=-1 π5 极坐标: X = r CoSr , y = r sin 二Z=Xiy = r COSr isin利用欧拉公式e i 71 =COS71 i Sin71例2 f Z = C 时有(C )=0可得到z=re°Z z2=r1e i J r2e i72=r1r2e iτe i72= r1r2e i 71'y^ 6高次幂及n次方n n in 「nZ Z Z Z ............ z=re r COS 1 Sin nv凡是满足方程国=Z的ω值称为Z的n次方根,记作CO =^Z☆当丄二f Z o时,连续例1 证明f Z =Z在每一点都连续证:f(Z f(Z o )= Z - Z o = Z - Z o τ 0ZT Z o 所以f z = Z在每一点都连续3导数f Z o Jm fZ一f zoz-⅛z°Z-Z o,2n第二章解析函数1极限2函数极限①复变函数对于任一Z- D都有W FP与其对应川=f Z注:与实际情况相比,定义域,值域变化例f z = zZ—Z o 称f Z当Z-:Z o时以A为极限df(z lZ=Zo1例2 f Z = C 时有(C )=0根据C-R 条件可得2x =0,2y = 所以该函数在Z =O 处可导4解析若f z 在Z 00= X = 0,^0的一个邻域内都可导,此时称用C-R 条件必须明确u,v 四则运算 f 一 g =「- g rkf =kf f g = f g f gf Z 在Z 0处解析。
复变函数积分方法总结[键入文档副标题]acer[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。
就复变函数: z=x+iy i²=-1 ,x,y 分别称为z 的实部和虚部,记作x=Re(z),y=Im(z)。
arg z =θ₁ θ₁称为主值 -π<θ₁≤π ,Arg=argz+2k π 。
利用直角坐标和极坐标的关系式x=rcos θ ,y=rsin θ,故z= rcos θ+i rsin θ;利用欧拉公式e i θ=cos θ+isin θ。
z=re i θ。
1.定义法求积分:定义:设函数w=f(z)定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点ξk 并作和式S n =∑f(ξk )n k−1(z k -z k-1)= ∑f(ξk )n k−1∆z k 记∆z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k≤n {∆S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即ξk 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:∫f(z)dz c=lim δ 0∑f(ξk )nk−1∆z k设C 负方向(即B 到A 的积分记作) ∫f(z)dz c−.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c(C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。
(1) 解:当C 为闭合曲线时,∫dz c=0.∵f(z)=1 S n =∑f(ξk)n k−1(z k -z k-1)=b-a ∴lim n 0Sn =b-a,即1)∫dz c=b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设ξk =z k-1,则∑1= ∑Z n k−1(k −1)(z k -z k-1) 有可设ξk =z k ,则∑2= ∑Z n k−1(k −1)(z k -z k-1)因为S n 的极限存在,且应与∑1及∑2极限相等。
复变函数公式及常用方法总结复变函数是指在复平面上定义域为复数集的函数。
复变函数与实变函数不同,其定义域和值域都是复数集合,因此需要引入复数的运算和性质来研究这类函数。
复变函数在数学以及物理、工程学等领域有广泛的应用,如电路分析、信号处理、流体力学等。
1.复变函数的定义与性质:复变函数可以用以下形式表示:f(z) = u(x, y) + iv(x, y),其中z = x + iy;u(x, y)和v(x, y)为实变量x和y的实函数。
复变函数的一些性质如下:(1)复变函数可以进行加减、乘法和除法运算;(2)复变函数的连续性:若f(z)在特定点z0处连续,则其实部和虚部在该点均连续;(3)复变函数的解析性:若f(z)在特定点z0处可导,则其在该点解析;若f(z)在定义域内每一点都解析,则称其为全纯函数;(4)复变函数的实部和虚部都满足拉普拉斯方程式:∂^2u/∂x^2+∂^2u/∂y^2=0和∂^2v/∂x^2+∂^2v/∂y^2=0。
2.常用的复变函数:(1)幂函数:f(z)=z^n,其中n为整数;(2) 指数函数:f(z) = e^z = e^(x+iy) = e^x * e^(iy) = e^x * (cosy + isiny);(3) 对数函数:f(z) = ln(z);(4) 三角函数:正弦函数f(z) = sin(z),余弦函数f(z) = cos(z),正切函数f(z) = tan(z)等;(5) 双曲函数:双曲正弦函数f(z) = sinh(z),双曲余弦函数f(z)= cosh(z),双曲正切函数f(z) = tanh(z)等。
3.复变函数的常用方法:(1)极坐标表示法:将复数z表示为模长r和辐角θ的形式:z=r*e^(iθ)。
在极坐标下,复变函数的运算更加方便,例如可以用欧拉公式将指数函数表示为e^(iθ)的形式。
(2) 复变函数的导数:复变函数的导数可以用极限的形式表示,即f'(z) = lim(h→0) [f(z+h) - f(z)] / h。
复变函数知识点总结复变函数是数学中重要的概念,它在分析学、微分几何、数学物理等领域都有着广泛的应用。
本文将对复变函数的基本概念、性质和常见定理进行总结,希望能够帮助读者更好地理解和掌握复变函数的相关知识。
1. 复数与复变函数。
复数是由实部和虚部组成的数,通常表示为z=x+iy,其中x为实部,y为虚部,i为虚数单位,满足i^2=-1。
复数可以用平面上的点来表示,称为复平面,实部x对应横坐标,虚部y对应纵坐标。
复变函数是定义在复平面上的函数,通常表示为f(z),其中z为复数变量。
2. 复变函数的导数与解析函数。
与实变函数类似,复变函数也有导数的概念,称为复导数。
如果一个函数在某点处可导,并且在该点的邻域内处处可导,那么称该函数在该邻域内解析。
解析函数具有很多良好的性质,比如在其定义域内可以展开成幂级数。
3. 共轭与调和函数。
对于复数z=x+iy,其共轭复数定义为z的实部不变,虚部取相反数,记为z=x-iy。
对于复变函数f(z),如果它满足柯西-黎曼方程,即满足一阶偏导数存在且连续,并且满足偏导数的连续性条件,那么称f(z)为调和函数。
4. 柯西-黎曼方程与全纯函数。
柯西-黎曼方程是复变函数理论中的重要定理,它建立了解析函数与调和函数之间的联系。
柯西-黎曼方程指出,如果复变函数f(z)=u(x,y)+iv(x,y)在某点处可导,那么它满足柯西-黎曼方程,即u和v满足一阶偏导数的连续性条件。
满足柯西-黎曼方程的函数称为全纯函数,也称为解析函数。
5. 柯西积分定理与留数定理。
柯西积分定理是复变函数理论中的重要定理之一,它指出如果f(z)在闭合区域内解析,并且沿着闭合区域的边界进行积分,那么积分结果为0。
留数定理是计算闭合曲线积分的重要方法,它将积分结果与函数在奇点处的留数联系起来,从而简化了积分的计算。
6. 应用领域。
复变函数在物理学、工程学、经济学等领域都有着重要的应用,比如在电路分析中的传输线理论、振动理论中的阻尼比计算、流体力学中的势流与涡流等方面都需要用到复变函数的知识。
复变函数总结复变函数,又称为复数函数,是数学中重要的一个分支。
它在物理、工程、经济等领域具有广泛的应用。
复变函数的研究主要涉及复数、复平面、复数域的性质,以及复数函数的导数、积分等基本理论。
在本文中,我将对复变函数的基本概念、性质和常见应用进行总结。
一、复数的基本概念复数是由实数和虚数构成的数,通常表示为a+bi,其中a为实部,b为虚部,而i为虚数单位,满足i²=-1。
复数可以表示平面上的一个点,实部对应横坐标,虚部对应纵坐标。
复数的加法、减法、乘法和除法规则与实数的运算规则相似。
二、复平面与复函数复平面是由复数构成的平面,以复数的实部和虚部作为坐标轴。
复函数是定义在复数域上的函数,可以将复数作为自变量和因变量。
复函数在复平面上的图像通常是曲线、点或者区域。
三、复变函数的性质1. 解析性:复变函数在一个区域内解析,意味着它在该区域内具有连续性和光滑性,并且在该区域内无奇点。
2. 洛朗级数展开:复变函数可以用洛朗级数展开,即可以由一个主要部分和无穷个幂级数按次幂递减的项组成。
3. 共轭函数:对于复变函数f(z),其共轭函数为f*(z),实部相同,虚部取相反数。
4. 解析函数的判别:柯西-黎曼方程是判断一个函数在某一点是否解析的重要工具,同时也是复变函数的基本性质之一。
5. 调和函数:调和函数是一类特殊的复变函数,满足拉普拉斯方程。
四、复变函数的应用1. 电路分析:复变函数可以用来分析交流电路中的电流和电压,特别是在包含电感和电容的电路中,通过构造复变函数的拉普拉斯变换可以简化问题。
2. 流体力学:复变函数在描述流体的速度场、压力场和流线的分析中具有重要作用,特别是在无旋场和无散场的情况下。
3. 光学:复变函数可用于描述光波的传播和干涉现象,以及计算透镜的成像和衍射效应。
4. 统计学:复数也可应用于统计学中,如复数正态分布在处理随机变量时具有一定的优势。
5. 量子力学:复变函数是量子力学中运动状态和波函数的基础,通过复变函数可以描述粒子的行为以及能量的量子化。
复变函数总结复变函数,即复数域上的函数,是数学中重要的研究领域之一。
在复变函数的研究过程中,人们发现了许多有趣且重要的性质和定理。
本文将对复变函数的一些基本概念、性质以及常见定理进行总结,并探讨它们的应用。
一、复数的基本概念复数是由实部和虚部构成的,以形如a + bi的形式表示,其中a 为实部,b为虚部,i为虚数单位。
复数域上的运算包括加法、减法、乘法和除法。
二、复变函数的定义与性质复变函数可看作是以复数为定义域和值域的函数。
复变函数的导数概念在复数域上进行推广,被称为复导数。
复导数的定义如下:设f(z) = u(x, y) + iv(x, y)是定义在某区域上的复变函数,若当点z在该区域内变动时,极限f'(z_0)=lim(f(z)-f(z_0))/(z-z_0)在极限存在时,则称f(z)在z_0处可导。
复变函数的可导性与解析性密切相关。
如果一个函数在某区域上处处可导,则称该函数在该区域内解析。
解析函数具有许多重要的性质,如可导函数的连续性和可微性。
三、柯西-黎曼方程与调和函数柯西-黎曼方程是解析函数的一个重要条件,其表达式为:∂u/∂x = ∂v/∂y 和∂u/∂y = -∂v/∂x其中u(x, y)为解析函数的实部,v(x, y)为解析函数的虚部。
柯西-黎曼方程表明,解析函数的实部与虚部之间存在一定的关系。
调和函数是满足柯西-黎曼方程的实函数,它在物理学和工程学中应用广泛。
调和函数具有许多有趣的性质,如最大值原理和平均值性质。
四、复变函数的积分与实变函数类似,复变函数也存在积分的概念。
复积分常用路径积分表示,即沿着某条曲线对函数进行积分。
路径积分与路径有关,沿不同路径积分的结果可能不同。
当沿闭合路径进行积分时,根据柯西积分定理可知,对于解析函数来说,积分结果为0。
这是柯西积分定理的基本形式。
另外,在某些情况下,复积分可通过取局部极值来求解,这一方法称为留数法。
留数法是复变函数积分的一个重要工具,在计算复积分中发挥着重要的作用。
复变小结1.幅角(不赞成死记,学会分析).2argtg 20,0,0,0,arctg 0,0,20,arctg arg πππππ<<-⎪⎪⎪⎩⎪⎪⎪⎨⎧=<≠<±≠=±>=x y y x y x x y y x x x y z 其中 -∏<arg z ≤∏Arg(z1z2)=Argz1+Argz2 Arg(z1/z2)=Argz1-Argz2 2. 求根:由z=θi e =r(cos θ+isin θ)得z n =e in θ=r n (cosn θ+isinn θ) 当r=1时,)sin (cos θθi n +=)sin (cos θθn i n + (*1) 当z w n =w= (*2) z arg =θ 例: 可直接利用(*1)式求解可令z=1+i,利用(*2)式求解 3.复函数:a. 一般情况下:w=f(z),直接将z=x+iy 代换求解但遇到特殊情况时:如课本P12例1.13(3)可考虑: z=θi e =r(cos θ+isin θ)代换。
()222cos sin 0,1,2,,1k k n n k i n n n n z rer i k n θπθπθπ+++==+=-L 求方根公式(牢记!):其中。
10(sin cos )55i ππ+41i+b.对于P12例题 1.11可理解为高中所学的平面上三点(A,B,C )共线所满足的公式:(向量) OC=tOA+(1-t )OB=OB+tBAc.对于P15例题1.14中可直接转换成X 和Y 的表达式后判断正负号来确定其图像。
d.判断函数f(z)在区域D 内是否连续可借助课本P17定义1.84.解析函数,指数,对数,幂、三角双曲函数的定义及表达式,能熟练计算,能熟练解初等函数方程a.在某个区域内可导与解析是等价的。
但在某一点解析一定可导,可导不一定解析。
b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加)c.指数函数:复数转换成三角的定义。
复变知识点总结1. 复变函数的定义复变函数是指自变量为复数,因变量也为复数的函数。
一般地,复变函数可表示为f(z)=u(x,y)+iv(x,y),其中z = x+iy,u(x,y)和v(x,y)分别为实部和虚部。
2. 复数的表示复数可以用直角坐标形式z=x+iy表示,也可以用极坐标形式z=re^(iθ)表示,其中r为模,θ为幅角。
3. 复平面和复函数的几何表示复数z=x+iy可以在复平面上表示为点(x,y),复变函数f(z)可以在复平面上表示为一条曲线或曲面。
二、解析函数与全纯函数1. 解析函数的定义如果一个复变函数在某个区域内能够展开成洛朗级数,并且在该区域内收敛,那么称该函数在该区域内是解析的。
2. 全纯函数的定义如果一个解析函数的导数处处存在且连续,那么该函数就是全纯函数。
3. 解析函数的充要条件一个函数在某个区域内解析的充要条件是它在该区域内连续,并且满足柯西-黎曼方程。
三、柯西-黎曼方程1. 柯西-黎曼方程的定义对于复变函数f(z)=u(x,y)+iv(x,y),如果它满足下面的条件:∂u/∂x = ∂v/∂y∂u/∂y = -∂v/∂x那么称它满足柯西-黎曼方程。
2. 柯西-黎曼方程的意义柯西-黎曼方程是解析函数的充要条件,它描述了解析函数的实部和虚部之间的关系,是研究解析函数性质的基本工具。
四、共形映射1. 共形映射的概念如果一个复变函数在一个区域内保持角度和方向不变,那么就称它为共形映射。
2. 共形映射的性质共形映射保持圆周和直线的相交角度不变,它在复平面上的几何性质与保持形状不变,是复变函数理论中的重要概念。
五、留数定理1. 留数的概念对于解析函数f(z),如果z=a是f(z)的孤立奇点,那么f(z)在z=a处的留数定义为Res(f;a)=1/(2πi)∫f(z)dz,积分路径沿着一个围绕z=a的简单闭合曲线C。
2. 留数定理如果f(z)在复平面上有限个孤立奇点,那么它在整个有限区域内的积分等于所有孤立奇点的留数和,即∮f(z)dz=2πiΣRes(f;a)。
复变函数知识点总结1. 复数及复平面- 复数由实部和虚部组成,形式为 `z = a + bi`,其中 `a` 为实部,`b` 为虚部,`i` 为虚数单位。
- 复平面将所有复数表示为二维平面上的点,实轴表示实部,虚轴表示虚部。
- 复数可用极坐标和指数形式表示。
2. 复变函数的定义与性质- 复变函数是将复数域映射到复数域的函数。
- 复变函数的导数称为复导数,由极限定义及柯西—黎曼方程求得。
- 复变函数的连续性与分析性与实变函数类似。
3. 元素函数- 复指数函数:`exp(z) = e^z`,其中 `e` 为自然对数的底数。
- 复对数函数:`Log(z) = ln|z| + i(arg(z) + 2πn)`,其中 `arg(z)` 是复数 `z` 的辐角。
- 复正弦函数:`sin(z) = (e^(iz) - e^(-iz))/(2i)`。
- 复余弦函数:`cos(z) = (e^(iz) + e^(-iz))/2`。
4. 复变函数的级数展开- 柯西—黎曼方程可推导出复变函数的泰勒级数展开。
- 复变函数的泰勒级数展开在某一区域内收敛于该函数。
5. 复积分- 路径积分:沿曲线的积分,路径可用参数方程表示。
- 狭义路径积分与宽义路径积分分别对应于可积与不可积的情况。
- 围道积分:路径围成的图形内积分。
6. 复变函数的解析性- 柯西—黎曼方程刻画了函数在一个区域内的解析性。
- 解析函数满足柯西—黎曼方程,其导函数也是解析函数。
7. 复变函数的应用- 复变函数在电路分析、流体力学、量子力学等领域具有广泛应用。
以上是对复变函数的一些知识点的总结,希望能为您提供参考。
复变函数重点知识点总结复变函数是数学分析中的一门重要课程,主要研究复数域上的函数。
复变函数具有许多特殊性质和重要应用,在数学、物理学等领域有广泛的运用。
以下是复变函数的一些重点知识点总结。
1.复变函数的定义及运算法则:-复变函数是定义在复数域上的函数,可以表示为f(z)=u(x,y)+i*v(x,y),其中z=x+i*y为复数,u(x,y)和v(x,y)为实函数,分别称为f的实部和虚部。
-复变函数的加法、减法、乘法和除法运算法则与实数类似,可以进行复数的加减乘除运算。
-复变函数可以表示为级数形式,如幂级数、三角级数等。
2.复变函数的解析性:- 解析函数是指在其定义域内可导的函数,复变函数的解析性与其实部和虚部的连续性及Cauchy-Riemann条件密切相关。
- Cauchy-Riemann条件是解析函数必须满足的条件,即函数的实部和虚部的偏导数满足一定的关系。
-如果一个复变函数在其定义域内解析,则其在该域内无穷次可导,并且导数处处存在。
3.高阶导数及全纯函数:-复变函数的高阶导数可以通过对复变函数的导数进行重复求导得到。
-如果一个复变函数在其定义域内高阶导数均存在,则称该函数为全纯函数。
-全纯函数具有许多优良性质,如解析、无奇点等。
4. 路径积分及Cauchy定理:-路径积分是指沿着一条曲线对复变函数进行积分的操作,复变函数的路径积分与路径无关。
- Cauchy定理是复分析中的重要定理之一,它指出如果一个函数在一个简单连通区域内解析,那么它在该区域中的曲线积分等于零。
5.解析延拓及解析函数的唯一性定理:-解析延拓是指将一个函数的定义域扩展到更大的区域上,使得该函数在扩展后的区域内解析。
-解析函数的唯一性定理是指如果两个解析函数在一些区域内相等,那么它们在该区域内处处相等。
-解析函数的唯一性定理是复分析中的一个重要定理,它可以用于证明解析函数的存在性、奇点的性质等。
6.高阶亚纯函数及留数计算:-亚纯函数是指解析函数和有限阶极点函数的叠加,亚纯函数可以表示为f(z)=P(z)+Q(z),其中P(z)为解析函数,Q(z)为有限阶极点函数。
第一章复数与复变函数、复数几种表示(1)代数表示z =x • yi(2)几何表示:用复平面上点表示(复数z、点z、向量z视为同一概念)(3)三角式:z = r(cosv isi nr)(4)指数式:z = re iT1辐角Argz =arg z 2k 二|zh ,x2y2yarctan丄,x》0,xyarcta n丄+兀,x<0,y〉0xargz={ yarcta n± - x,x<0,yc0x兀/2, x = 0, y:>0-■: /2, x =0,y : 0z - z2i、乘幕与方根(1)乘幕:(2)方根:re i-____ 2k n/t argz.R'z=n:|z|e n , k= 0,1,2,…n—1第二章解析函数一、连续、导数与微分概念类似于一元实变函数求导法则与一元实变函数类似注:(1)点解析=点可导,点可导推不出点解析(2)区域内解析与可导等价二、定理1 W = f (z)=u • iv在Z o可导二u,v在Z o可微,满足C-R方程定理2 w二f⑵二u • iv在区域D内解析(可导)二u,v在区域D内可微,满足C-R方程讨论1 u,v在区域D内4个偏导数存在且连续,满足C-R方程=w = f (z)二u iv在区域D内解析(可导)三、解析函数和调和函数的关系1、定义1调和函数:满足拉普拉斯方程,且有二阶连续偏导数的函数。
定义2设(x,y)^ (x, y)是区域D内调和函数,且满足C-R方程, xx,则称是「的共轭调和函数。
2、定理1解析函数的虚部与实部都是调和函数。
定理2函数在D内解析二虚部是实部的共轭调和函数。
3、问题:已知解析函数的实部(或虚部),求虚部(或实部)理论依据:(1)虚部、实部是调和函数。
(2)实部与虚部满足C-R方程。
求解方法:(例如已知v)(1)偏积分法:先求u x,u y,再求u = udx (y),得出(y)(2)利用曲线积分:求u x,u y,du,再u = u x dx u y dy c(x o,y o)(3)直接凑全微分:求u x,u y,du,再du四、初等函数1、 指数函数 w=e z =e x e iy =e x (cosy i sin y )性质:(1) e z 是单值函数,(2) e z 除无穷远点外处处有定义(3) e z = 0(4) e z 处处解析,(e z )'eZ(5) e z1 Z2 =e Zl e Z2(6) e z 是周期函数,周期是2k 「:i2、 对数函数w =Lnz =ln |z| i argz i2k 二 (多值函数)主值(枝)ln z=l n | z| iargz (单值函数)性质:(1)定义域是z = 0,(2) 多值函数(3) 除去原点和负实轴的平面内连续(5) Ln(wz 2) = Lnz j Lnz 2 Ln 三二 Ln^ - Lnz 2J3、幕函数w = z ,e-Lnz (z = 0「是复常数)(1) 为正整数,函数单值、处处解析,(2) 〉为负整数,函数单值、除去z = 0及其负实轴处处解析,4、三角函数欧拉公式 e i = c 0'S i s i n(4)除去原点和负实轴的平面内解析,1 1(Lnz) (In z): z ,z或 eJe 乂cos , s i n 二 2 2iiz _iz iz _iz定义: e +e . e -e cosz , sin z 二 2 2itan z=sin z/cosz, cot z = cosz/sin zsecz =1/cosz, cscz =1/sin z性质: 周期性、可导性、奇偶性、零点、等于实函数一样各种三角公式、求导公式照搬注: sin z, cosz 的有界性 保护成立。
第一章 复数12i =-11-=i 欧拉公式z=x+iy实部Rez 虚部Imz2运算①2121Re Re z z z z =⇔≡21Im Im z z =②()()()()()2121212121Im Im Re Re Im Re z z z z z z z z z z ++±=±+±=±③((1111x x x z z ===⋅④21z z =⑤z =z 运算律3x z +=辐角当 把位于4例:z=i2π z=1+i 4πz=-1π5极坐标:θcos r x =,θsin r y =()θθsin cos i r iy x z +=+=利用欧拉公式θθθsin cos i e i +=可得到θi re z =6高次幂及n 次方凡是满足方程z n =ω的ω值称为z 的n 次方根,记作n z =ω()nk i rez ωπθ==+2即nr ω=nr 1=ω第二章解析函数1极限2① 对于任一例()z f =②(→f z z 0lim ☆ 当A 例1证:(z f 所以(z f 3导数例2()z f 证:对∀00→∆→∆z z 例3证明()z z f =不可导 解:令0z z -=ω()()iyx iyx z z z z z z z z z z z f z f +-==--=--=--ωω000000 当0→ω时,不存在,所以不可导。
定理:()()()y x iv y x u z f ,,+=在iy x z +=处可导⇔u ,v 在()y x ,处可微,且满足C-R 条件y v x u ∂∂=∂∂x v y u ∂∂-=∂∂且()xv i x u z f ∂∂+∂∂=' 例4证明()z z f =不可导解:()iy x z z f -==其中()x y x u =,()y y x v -=,u,v 关于x,y 可微11-=∂≠=∂∂v x u 不满足C-R 条件所以在每一点都不可导例5(z f 解:(z f 1≠=∂∂x u 例6:f 解:(z f 根据4解析若()z f 用C-R ()g f '⋅例:证明()z e z f =()zzee ='解:()y ie y e e z f x x z sin cos +== 则()y e y x u x cos ,=()ye y x v x sin ,=y e yv y e x u x x cos cos =∂∂==∂∂ y e xvy e y u x x sin sin -=∂∂-=-=∂∂任一点iy x z +=处满足C-R 条件所以z e 处处解析()z x x e y ie y e xv i x u z f =+=∂∂+∂∂='sin cos 练习:求下列函数的导数解:()()()()32233223222y y x i xy x iy xy y ix x iy x y x z z z f +++=+++=++=⋅=()23,xy x y x u +=()32,y y x y x v +=所以223y x xu+=∂∂223y x y v +=∂∂ xy y u 2=∂∂xy v2-=∂-根据C-R 方程可得222233y x v y x u +=∂=+=∂所以当z Ⅰ常数可用:z 过程:z 所以ω=例:求Ⅳ幂函数对于任意复数α,当0≠z 时例1:求i i +1的值 解:()()()()()()⎪⎭⎫⎝⎛+-⎪⎭⎫⎝⎛+++++=====+ππππk i k i i i iArg i i Lni i ii eeee e i i221221ln 11ln 11⋅⋅⋅⋅⋅⋅±±=2,1,0k例2:求()()()()()⎪⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛+-++-+-+===-+ππk i i i i i iee e i i242ln 2131ln 31ln 331Ⅴ三角函数定义:对于任意复数iy x z +=,由关系式可得z 的余弦函数和正弦函数 例:求()i +1sin ()i +5cos 解:()()()[]i i i i e e ii +-+-=+11211sin 第三章复变函数的积分1复积分定理3.1设C 是复平面上的逐段光滑曲线()()()y x iv y x u z f ,,+=在C 上连续,则()z f =()dx y x ,C :(t z ②C :1★2例:⎰C :以解:C :θρi e a z +=iy x z +=πθ20≤≤()()()()()()()110111*********≠=⎪⎩⎪⎨⎧=--==-⎰⎰---n n i n d e i n i d e i e a z i n i n n Cni nπθπθθθπθρρ ☆ 积分与路径无关:①单联通②处处解析例:求()⎰++Cdz z z 1822,其中C 是连接O 到点()a π2,0的摆线:()()⎩⎨⎧-=-=θθθcos 1sin a y a x解:已知,直线段L 与C 构成一条闭曲线。
因()1822++=z z z f 在全平面上解析,则()⎰+-=++LC dz z z01822即()()⎰⎰++=++CLdz z z dz z z 18218222把函数沿曲线C 的积分化为沿着直线段L 上的积分。
由于故()⎰⎪⎭⎫⎝⎛++=++Ca a a dz z z 183********πππ ★关键:①恰当参数②合适准确带入z3不定积分定义定理解:0⎰i e 解:22⎰+i4例1:⎰解:=⎰z 例2:⎰解:1sin 2121212222i dz z dz z dz z z z z π=+--=-⎰⎰⎰=== 例3:()()⎰=+-2279z dz z z z解:()()()⎰⎰=-===-=---=+-22222592979z iz z z z i dz i z z zdz z z z ππ注:①C :D z ∈②z-ζ1一次分式 ③找到()z f ()z f 在D 内处处解析 例4:()⎰=-+212sin z dz z z zz解:()⎰==-+212sin z dz z z z z 5解析函数例:===⎰6调和函数若()y x g ,满足02222=∂∂+∂∂=∆y gx g g 则称()y x g ,叫做D 内的调和函数若()()()y x iv y x u z f ,,+=在D 内解析所以0222222=∂∂∂-∂∂∂=∂∂+∂∂y x vy x v y u x u把v u ,称为共轭调和函数第四章级数理论1复数到{}∞=1n n z 距离()ωω-=z z d ,谈极限对{}n z 若有D z ∈0使得()0,00→-=z z z z d n n ()∞→n 此时0z 为{}n z 的极限点记作n n z z ∞→=lim 0或0z z n →()∞→n推广:对一个度量空间()d x ,都可谈极限 23=x z n n 4{}n z n z S +=1若∞→lim n n S 性质:123⎩⎨⎧→→+1S S n n若∑〈+∞n a 若∑n a zzS n -→11〈z 时收敛,其他发散()∞→n 幂级数()∑∞=-00n nn z z C0z z -=ζ则∑∞=0n n n C ζ求收敛域⎪⎩⎪⎨⎧+∞==+∞<<==+∞→ 00lim1nn n C C 例:求∑∞=1n nnz 的收敛半径及收敛圆解:因为11lim lim1=+=∞→+∞→n nC C n nn n 所以级数的收敛半径为R=1,收敛圆为1<z()∞==n z f 例1:求解:()z f 所以在z 例2解:()z f )2<-i 则当z ∈其中()()⎰Γ+-=ζζζπd z f i C n n 1021()⋅⋅⋅±±=2,1,0n 例:将函数()()()211--=z z z f 在圆环(1)21<<z (2)+∞<<z 2内展成罗朗级数。
解:(1)在21<<z 内,由于12,11<<zz ,所以(2)在+∞<<z 2内,由于12,11<<zz ,所以 孤立奇点定义:若函数()z f 在0z 的去心邻域()+∞≤<<-<R R z z 000内解析,在0z 点不解析,则称0z 为()z f 的孤立奇点。
例:()()⋅⋅⋅++-+⋅⋅⋅-+-=!121!5!31sin 242n z z z z z n n0=z 为可去奇点=1sin 2z z z =11sinz z 第5积分iπ21记作:其中,C 例1解:因为例2解:=z 所以()⋅⋅⋅+-+⋅⋅⋅+++=-!1!11!3!21!2111n n C可得()()()⋅⋅⋅+-+⋅⋅⋅+++=!!11!3!21!2110,Re n n z f s第7章 傅里叶变换通过一种途径使复杂问题简单化,以便于研究。
定义:对满足某些条件的函数()t f 在()+∞∞-,上有定义,则称()()dt e t f F t i ωω-+∞∞-⎰⋅=为傅里叶变换。
同时()()ωωd e t f t f t i ⋅=⎰+∞∞-为傅里叶逆变换注:①傅里叶变换是把函数()t f 变为函数()ωF②傅里叶逆变换是把函数()ωF 变为函数()t f ③求傅里叶变换或傅里叶逆变换,关键是计算积分 ④两种常见的积分方法:凑微分、分部积分 复习积分:①()ααααxxxe x d e dx e ==⎰⎰1()0≠α注:例1:求解:例2:求()⎩⎨⎧=-te tf β000≥〈t t ()0〉β的()ωF解:()()()()22010ωβωβωβωωβωβωβωω+-=+-==+⋅=⋅=∞++-∞++--∞+-∞---+∞∞-⎰⎰⎰⎰i e i dte dte e dt edte tf F ti t i t i t ti t iδ-定义:则称()t δ为δ-例1:求解:(F ω例2解:(2121πω=====⎰⎰+-+-i ii F ☆()−δt 第8设()t f 在0≥t 时有定义。