离散数学试题带答案(五)
- 格式:doc
- 大小:1.57 MB
- 文档页数:31
习题5.11.设A=⎨a,b,c⎬,B=⎨1,2,3⎬,试说明下列A到B二元关系,哪些能构成A到B的函数?⑴f1=⎨<a,1>,<a,2>,<b,1>,<c,3>⎬⑵f2=⎨<a,1>,<b,1>,<c,1>⎬⑶f3=⎨<a,2>,<c,3>⎬⑷f4=⎨<a,3>,<b,2>,<c,3>,<b,3>⎬⑸f5=⎨<a,2>,<b,1>,<b,2>⎬解:⑴不能构成函数。
因为<a,1>∈f1且<a,2>∈f1⑵能构成函数⑶不能构成函数。
因为dom f3≠A⑷不能构成函数。
因为<b,2>∈f4且<b,3>∈f4⑸能构成函数。
2.试说明下列A上的二元关系,哪些能构成A到A的函数?⑴A=N(N为自然数集合),f1=⎨<a,b>| a∈A∧b∈A∧a+b<10⎬⑵A=R(R为实数集合),f2=⎨<a,b>| a∈A∧b∈A∧b=a2⎬⑶A=R(R为实数集合),f3=⎨<a,b>| a∈A∧b∈A∧b2=a⎬⑷A=N(N为自然数集合),f4=⎨<a,b>| a∈A∧b∈A∧b为小于a的素数的个数⎬⑸A=Z(Z为整数集合),f5=⎨<a,b>| a∈A∧b∈A∧b=|2a|+1⎬解:⑴不能构成函数。
由于1+1<10且1+2<10,所以<1,1>∈f1且<1,2>∈f1。
⑵能构成函数。
⑶不能构成函数。
由于12=1且(-1)2=1,所以<1,1>∈f3且<1,-1>∈f3。
⑷能构成函数。
⑸能构成函数。
3. 回答下列问题。
⑴设A=⎨a,b⎬,B=⎨1,2,3⎬。
求B A,验证|B A|= |B||A|。
离散数学第五章习题答案题目1: 定义一个关系R在集合A上,如果对于所有的a, b, c属于A,满足以下条件:- 如果(a, b)属于R,则(b, a)属于R。
- 如果(a, b)属于R且(b, c)属于R,则(a, c)属于R。
证明R是传递的。
答案:根据题目给出的条件,R是对称的和传递的。
首先,对称性意味着如果(a, b)属于R,那么(b, a)也必须属于R。
其次,传递性意味着如果(a, b)和(b, c)都属于R,那么(a, c)也必须属于R。
结合这两个性质,我们可以得出结论:对于任意的a, b, c属于A,如果(a, b)和(b, c)都属于R,那么(a, c)也属于R,从而证明了R的传递性。
题目2: 给定一个函数f: A → B,如果对于A中的每个元素a,都有唯一的b属于B使得f(a) = b,那么称f为单射(或一一映射)。
证明如果函数f是单射,那么它的逆函数f^-1也是单射。
答案:要证明f^-1是单射,我们需要证明对于B中的任意两个元素b1和b2,如果f^-1(b1) = f^-1(b2),则b1 = b2。
假设f^-1(b1) = a且f^-1(b2) = a',其中a, a'属于A。
由于f是单射,我们知道f(a) = b1且f(a') = b2。
根据f^-1的定义,我们有b1 = f(a) = f(a') = b2。
因此,如果f^-1(b1) = f^-1(b2),则b1必须等于b2,这证明了f^-1是单射。
题目3: 证明一个函数f: A → B是满射(或到上映射)当且仅当对于B中的每个元素b,都存在A中的元素a使得f(a) = b。
答案:首先,我们证明如果f是满射,那么对于B中的每个元素b,都存在A 中的元素a使得f(a) = b。
假设f是满射,这意味着B中的每个元素都是A中某个元素的像。
因此,对于B中的任意元素b,我们可以找到一个a属于A,使得f(a) = b。
习题答案(P151~P153)1.用枚举法给出下列集合解:(2){-3,2}(4){5,6,7,8,9,10,11,12,13,14,15}2.用抽象法说明下列集合解:(2){x|x为素数,10<x<20}(4){x|x为中国的省会}(6){x|x=2k+1,k∈I}3.判断下列哪些∈关系成立,为什麽?解:根据只有集合中的元素才与该集合有∈关系,故(1)、(4)、(6)、(7)成立,(2)、(3)、(5)、(8)不成立。
4.判断下列哪些集合相等(全集是整数集合I)解:A=G,B=E,C=F6.写出下列集合的幂集解:(2)ρ({1,∅})={∅,{1},{∅},{1,∅}}(4)ρ({∅,{a},{∅}})={∅,{∅},{{a}},{{∅}},{∅,{a}},{∅,{∅}},{{a},{∅}},{∅,{a},{∅}}}7.当把“⊆”插入空位时哪一个为真?解:(1)、(2)、(3)、(6)为真,(4)、(5)为假。
8.设A、B、C分别是集合,若A∈B,B∈C,哪麽A∈C一定成立吗?解:不一定,例如,A={a},B={{a}},C={{{a}}},虽然A∈B,B∈C,但A∈C不成立。
10.设U={1,2,3,4,5},A={1,4},B={1,2,5}和C={2,4}试写出下列集合(8)ρ(A)-ρ(C)解:ρ(A)-ρ(C)={∅,{1},{4},{1,4}}-{∅,{2},{4},{2,4}}={{1},{1,4}}11.证明下列恒等式(1)A-(B⋂C)=(A-B)⋃(A-C)(2)(A-B)⋂B=∅解:(1)A-(B⋂C)= A⋂~(B⋂C)= A⋂(~B⋃~C)=(A⋂~B)⋃(A⋂~C)=(A-B)⋃(A-C)(2)(A-B)⋂B=(A⋂~B)⋂B= A⋂(~B⋂B)= ∅12.设A、B、C是集合,下列等式成立的条件是什么?(1)(A-B)⋃(A-C)=A(2)(A-B)⋃(A-C)= ∅解:(1)因为(A-B)⋃(A-C)= (A⋂~B)⋃(A⋂~C)= A⋂(~B⋃~C)= A⋂~(B⋂C)= A-(B⋂C)所以(A-B)⋃(A-C)=A 当且仅当A-(B⋂C)=A 由-的定义可知A⋂(B⋂C)=∅(2)由(1)可知,(A-B)⋃(A-C)=A-(B⋂C)所以(A-B)⋃(A-C)=∅当且仅当A-(B⋂C)=∅由定理5.11可知A⊆(B⋂C)13. 设A,B是集合(1)A-B=B,问A和B有何关系?(2)A-B=B-A, 问A和B有何关系?解:(1)A=B=φ。
离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为。
6.设A={1,2,3,4},A 上关系图为则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c dA BCa b cda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。
10.下图所示的偏序集中,是格的为。
二、选择20% (每小题2分)1、下列是真命题的有()A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。
2、下列集合中相等的有()A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。
3、设A={1,2,3},则A上的二元关系有()个。
A.23 ;B.32 ;C.332⨯;D.223⨯。
4、设R,S是集合A上的关系,则下列说法正确的是()A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C.若R,S 是对称的,则SR 是对称的;D.若R,S 是传递的,则SR 是传递的。
5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下|}||(|)(,|,{tsApt st sR=∧∈><=则P(A)/ R=()A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。
《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。
答:某,y,某,z5、判断下列语句是不是命题。
若是,给出命题的真值。
((1)北京是中华人民共和国的首都。
(2)陕西师大是一座工厂。
),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。
(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。
(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。
(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p :李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是p q ∧(9)只有天下大雨,他才乘班车上班解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p →(11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→15、设p :2+3=5.q :大熊猫产在中国.r :太阳从西方升起.求下列复合命题的真值:(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→解:p=1,q=1,r=0, ()(110)1p q r ∧∧⌝⇔∧∧⌝⇔,(())((11)0)(00)1p q r ⌝∨⌝→⇔⌝∨⌝→⇔→⇔()(())111p q r p q r ∴∧∧⌝↔⌝∨⌝→⇔↔⇔19、用真值表判断下列公式的类型:(2)()p p q →⌝→⌝解:列出公式的真值表,如下所示:20、求下列公式的成真赋值:(4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒00p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。
习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式,所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值:(2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式,所以成假赋值为100。
离散数学试题带答案一、选择题1、G是一棵根树,则()。
A、G一定是连通的B、G一定是强连通的C、G只有一个顶点的出度为0D、G只有一个顶点的入度为12、下面哪个语句不是命题()。
A、中国将成功举办2008年奥运会B、一亿年前地球发生了大灾难C、我说的不是真话D、哈密顿图是连通的3、设R是实数集合,在上定义二元运算*:a,b∈R,a*b=a+b-ab,则下面的论断中正确的是()。
A、0是*的零元B、1是*的幺元C、0是*的幺元D、*没有等幂元4、下面说法中正确的是()。
A、所有可数集合都是等势的B、任何集合都有与其等势的真子集C、有些无限集合没有可数子集D、有理数集合是不可数集合5、无向完全图K3的不同构的生成子图有()个。
A. 6B.5C. 4D. 36、下面哪一种图不一定是无向树?A、无回路的连通图B、有n个顶点n-1条边的连通图C、每对顶点间都有通路的图D、连通但删去一条边则不连通的图7、设集合A={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。
A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、在有界格中,若一个元素有补元,则补元( )。
A、必惟一B、不惟一C、不一定惟一D、可能惟一9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A是不封闭的?()A、x*y=max{x,y}B、x*y=min{x,y}C、x*y=GCD(x,y),即x,y的最大公约数D、x*y=LCM(x,y),即x,y的最小公倍数10、集合X 中的关系R ,其矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011101M ,则关于R 的论述中正确的是( )。
A 、R 是对称的 B 、R 是反对称的C 、R 是反自反的D 、R 中有7个元素11. 下列各组数中,哪个可以构成无向图的度数列( )。
A.1,1,1,2,2B.2,2,2,2,3C.1,2,2,4,6D.2,3,3,312. *是定义在Z 上的二元运算,y x xy y x Z y x -+=*∈∀,,,则*的幺元和零元分别是( )。
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
离散数学试题带答案一、选择题1、G是一棵根树,贝IJ ()。
A、G —住是连通的B, G —定是强连通的C、G只有一个顶点的出度为0D、G只有一个顶点的入度为12、下而哪个语句不是命题(A、中国将成功举办2008年奥运会B、一亿年前地球发生了大灾难C、我说的不是真话D、哈密顿图是连通的3、设R是实数集合,在上泄义二元运算*: a, bGR, a*b=a+b-ab,则下而的论断中正确的是()。
A、0是*的零元C、0是*的幺元4、下面说法中正确的是()。
A、所有可数集合都是等势的C、有些无限集合没有可数子集B、1是*的幺元D. *没有等幕元B、任何集合都有与其等势的真子集D、有理数集合是不可数集合5、无向完全图6的不同构的生成子图有()个。
6、下而哪一种图不一泄是无向树?A、无回路的连通图B、有n个顶点n-1条边的连通图C、每对顶点间都有通路的图D、连通但删去一条边则不连通的图7、设集合A= {{1,2, 3}, {4,5}, {6,7,8}},则下列各式为真的是()。
A. leAB. {{4,5}}uAC. {1,2, 3}cAD.0eA8、在有界格中,若一个元素有补元,则补元()0A、必惟一B、不惟一C、不一定惟一D、可能惟一9、设集合A={l,2,3/-,10},下面泄义的哪种运算关于集合A是不封闭的?()A、x*y=max{x,y}B、x*y=min{x,y}C、x*y=GCD(x,y),即x,y的最大公约数D.x*y=LCM(x z y),即x,y的最小公倍数A. 6B.5C.4D.3□・下列各组数中.哪个可以构成无向图的度数列()。
15.下列各Hasse 图中,是格的有(1 10、集合X 中的关系R,其矩阵是A/= 1 1 0 11 0,则关于R 的论述中正确的是()。
1 1A 、R 是对称的C 、R 是反自反的B 、R 是反对称的 D 、R 中有7个元素A.1, 1, 1, 2, 2B. 2, 2, 2, 2, 3C.l> 2, 2, 4, 6D.2, 3, 3, 312.水是左义在Z 上的二元运算,V A \y eZ,x*y = AT + x-y ,则木的幺元和零元分别是()oA •不存在,0 B.0> 1C.1,不存在 D ・不存在,不存在23・设N 为自然数,且若X 为奇数 若X 为偶数则 /(0)»/({0))分别是()。
离散数学第五章答案离散数学第五章答案【篇一:3~离散数学习题解答(第五章)格与布尔代数5】题五(第五章格与布尔代数)1.设〈l,?〉是半序集,?是l上的整除关系。
问当l取下列集合时,〈l,?〉是否是格。
a) l={1,2,3,4,6,12}b) l={1,2,3,4,6,8,12}c) l={1,2,3,4,5,6,8,9,10}[解] a) 〈l,?〉是格,因为l中任两个元素都有上、下确界。
631b) 〈l,?〉不是格。
因为l中存在着两个元素没有上确界。
例如:8?12=lub{8,12}不存在。
12 63 1c) 〈l,?〉不是格。
因为l中存在着两个元素没有上确界。
倒例如:4?6=lub{4,6}不存在。
712.设a,b是两个集合,f是从a到b的映射。
证明:〈s,?〉是〈2b,?〉的子格。
其中s={y|y=f (x),x∈2a}[证] 对于任何b1∈s,存在着a1∈2a,使b1=f(a1),由于f(a1)={y|y∈b∧(?x)(x∈a1∧f (x)=y)}b 所以b1∈2b,故此s?2b;又b0=f (a)∈s (因为a∈2a),所以s非空;对于任何b1,b2∈s,存在着a1,a2∈2a,使得b1=f (a1),b2=f (a2),从而l∪b{b1,b2}=b1∪b2=f (a1)f (a2)=f (a1∪a2) (习题三的8的1))由于a1∪a2?a,即a1∪a2∈2a,因此f (a1∪a2)∈s,即上确界l∪b{b1,b2}存在。
对于任何b1,b2∈s,定义a1=f –1(b1)={x|x∈a∧f (x)∈b1},a2=f-1(b2)={x|x∈a∧f (x)∈b2},则a1,a2∈2a,且显然b1=f (a1),b2=f (a2),于是glb{b1,b2}=b1∩b2=f (a1)∩f (a2)f (a1∩a2) (习题三的8的2))又若y∈b1∩b2,则y∈b,且y∈b2。
由于y∈b1=f(a1)={y|y∈b∧(?x)(x∈a1∧f (x)=y)},于是存在着x∈a1,使f(x)=y,但是 f (x)=y∈b2。
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。
离散数学总分:100 考试时间:100分钟一、单项选择题1、“所有人都要呼吸.”令F(x)表示x是人,G(x)表示x要呼吸。
命题符号化为(正确答案:A,答题答案:)A、任意x(F(x)→G(x))B、任意x(F(x)«G(x))C、存在x(F(x)→G(x))D、存在x(F(x)ΛG(x))2、"所有村干部都参加了这次活动."令F(x)表示x是村干部,G(x)表示x参加了这次活动.则原命题可符号化为(正确答案:B,答题答案:)A、任意x(F(x)→G(x))B、任意x(F(x)∧G(x))C、存在x(F(x)→G(x))D、存在x(F(x)∧G(x))3、"有些学生考了不及格."令F(x)表示x是学生,G(x)表示x考了不及格.则原命题可符号化为(正确答案:A,答题答案:)A、存在x(F(x)∧G(x))B、任意x(F(x)∧G(x))C、任意x(F(x)→G(x))D、存在x(F(x)→G(x))4、"并不是所有的人都吃早饭."令F(x)表示x是人,G(x)表示x吃早饭.则原命题可符号化为(正确答案:B,答题答案:)A、﹁(任意x)(F(x)∧G(x))B、﹁(任意x)(F(x)→G(x))C、任意x(F(x)→G(x))D、存在x(F(x)→G(x))5、"没有人会长生不老."令F(x)表示x是人,G(x)表示x会长生不老.则原命题可符号化为(正确答案:C,答题答案:)A、﹁(任意x)(F(x)∧G(x))B、任意x(F(x)→G(x))C、﹁(任意x)(F(x)→G(x))D、存在x(F(x)→G(x))6、“因为并非所有的鸟都会飞,所以存在有的鸟不会飞”设A(x)表示x是鸟,B(x)表示x会飞.可符号化为(正确答案:C,答题答案:) A、﹁(任意x)(A(x)→B(x))) B、存在x(A(x)∧﹁B(x)) C、(﹁(任意x)(A(x)→B(x)))→(存在x(A(x)∧﹁B(x))) D、任意x(A(x)∧﹁B(x))7、“尽管有些人聪明,但聪明人未必都能成绩好”设A(x)表示x是人,B(x)代表x聪明,C(x)代表x成绩好.符号化为(正确答案:A,答题答案:)A、(存在x(A(x)∧B(x)))∧(﹁(任意x)((A(x)∧B(x))→C(x)))B、(存在x(A(x)∧B(x)))V(﹁(任意x)((A(x)∧B(x))→C(x)))C、(任意x(A(x)∧B(x)))∧(﹁(任意x)((A(x)∧B(x))→C(x)))D、(任意x(A(x)∧B(x)))8、任意xA(x)→存在xB(x)的前束范式是(正确答案:C,答题答案:)A、任意x(A(x)→B(x))B、A(x)→B(x)C、存在x(A(x)→B(x))D、A(x)→存在xB(x)9、任意xA(x)∧﹁存在xB(x)的前束范式是(正确答案:B,答题答案:)A、存在x任意y(A(x)→B(y))B、任意x任意y(A(x)→B(y))C、存在x存在y(A(x)→B(y))D、存在x(A(x)→B(y))10、任意xP(x)=>P(c) 是(正确答案:A,答题答案:)A、全称指定规则(US)B、全称推广规则(UG)C、存在指定规则(ES)D、存在推广规则(EG)二、多项选择题1、有限个体域中量词消去等值式有()(正确答案:AB,答题答案:)A、任意xA(x)⇔A(a)∧A(a2)∧…∧A(an)B、存在xA(x)⇔A(a1)∨A(a2)∨…∨A(an) C、﹁任意xA(x)⇔存在x﹁A(x) D、﹁存在xA(x)⇔任意x﹁A(x)2、量词否定等值式有()(正确答案:CD,答题答案:)A、任意xA(x)⇔A(a)∧A(a3)∧…∧A(an)B、存在xA(x)⇔A(a1)∨A(a3)∨…∨A(an) C、﹁任意xA(x)⇔存在x﹁A(x) D、﹁存在xA(x)⇔任意x﹁A(x)3、量词分配等值式有()(正确答案:AB,答题答案:)A、任意x(A(x)∧B(x))⇔(任意xA(x)∧任意xB(x))B、存在x(A(x)∨B(x))⇔(存在xA(x)∨存在xB(x)) C、﹁任意xA(x)⇔存在x﹁A(x)D、﹁存在xA(x)⇔任意x﹁A(x)4、多个量词等值式有() (正确答案:AC,答题答案:)A、任意x任意yA(x,y)⇔任意y任意xA(x,y)B、存在x(A(x)∨B(x))⇔(存在xA(x)∨存在xB(x)) C、﹁任意xA(x)⇔存在x﹁A(x)D、存在x存在yA(x,y)⇔存在y存在xA(x,y)5、哪些公式是有效式?(正确答案:AB,答题答案:)A、任意x(﹁P(x)→﹁P(x))B、任意xP(x)→存在xP(x)C、存在xP(x)→任意xP(x) D、﹁(P(x)→任意y(G(x,y)→P(x)))6、哪些公式是可满足式?(正确答案:A,答题答案:)A、任意x存在yP(x,y)→存在x任意yP(x,y)B、任意x任意yP(x,y)<->任意y任意xP(x,y)C、﹁任意x(P(x)→任意yQ(y))∧任意yQ(y)D、﹁任意x(Q(x))<->存在x(﹁Q(x))7、哪些公式是矛盾式?(正确答案:AC,答题答案:)A、﹁(P(x)→任意y(G(x,y)→P(x)))B、任意x任意yP(x,y)<->任意y任意xP(x,y)C、﹁任意x(P(x)→任意yQ(y))∧任意yQ(y)D、﹁任意x(Q(x))<->存在x(﹁Q(x))8、推理演算中的两个规则是() (正确答案:AB,答题答案:)A、换名规则B、代替规则C、交换规则D、结合规则9、将任意一个谓词公式通过()步骤转化成其对应的前束范式:(正确答案:ABCD,答题答案:)A、消去联结词<->B、利用换名规则或代替规则,使得每个变元在公式中的出现只是一种状态C、使否定联结词深入到各原子公式之前D、利用量词辖域扩张等值式或量词分配等值式将量词逐个移至公式前面10、谓词公式的构成包括()(正确答案:ABCD,答题答案:)A、原子谓词公式是谓词公式B、若A是谓词公式,则﹁A也是谓词公式C、若A和B都是谓词公式,则(A∧B)、(A∨B)、(A→B)、(A<->B)都是谓词公式D、若A是谓词公式,x是任何个体变元,则(任意x)A和(存在x)A都是谓词公式.三、判断题1、“7是素数且是奇数。
试卷五试题与答案一、填空1、n阶完全图结点v的度数d(v) = 。
2、设n阶图G中有m条边,每个结点的度数不是k的是k+1,若G中有N k个k度顶点,N k+1个k+1度顶点,则N k = 。
3、如图给出格L,则e的补元是。
4、一组学生,用二二扳腕子比赛法来测定臂力的大小,则幺元是。
二、选择1、设S={0,1,2,3},≤为小于等于关系,则{S,≤}是()。
A、群;B、环;C、域;D、格。
2、设[{a , b , c},*]为代数系统,*运算如下:则零元为()。
A、a;B、b;C、c;D、没有。
3、如右图相对于完全图K5的补图为()。
4、一棵无向树T 有7片树叶,3个3度顶点,其余顶点均为4度。
则T 有( )4度结点。
A 、1;B 、2;C 、3;D 、4。
5、设[A ,+,·]是代数系统,其中+,·为普通加法和乘法,则A=( )时,[A ,+,·]是整环。
A 、},2|{Z n n x x ∈=;B 、},12|{Z n n x x ∈+=;C 、},0|{Z x x x ∈≥且;D 、},,5|{4R b a b a x x ∈+=。
三、证明1、设G 是(n,m )简单二部图,则42nm ≤。
(10分)2、设G 为具有n 个结点的简单图,且)2)(1(21-->n n m ,则G 是连通图。
(10分)3、记“开”为1,“关”为0,反映电路规律的代数系统[{0,1},+,·]的加法运算和乘法运算。
如下:(144、 ],,[⊕⊗L 是一代数格,“≤”为自然偏序,则[L ,≤]是偏序格。
(16分)四、如下图所示的赋权图表示某七个城市721,,,v v v 及预先算出它们之间的一些直接通信成路造价(单位:万元),试给出一个设计方案,使得各城市之间既能够通信又使总造价最小。
答 案一、填空1、n-1;2、n(k+1)-2m ;3、0 ;4臂力小者 二、选择二、 证明1、 证:设G=(V ,E )n n n n Y n X Y X V =+==⋃=2121,,, 对完全二部图有4)2()(2211211121nn n n n n n n n n n m +--=+-=-=⋅=当21nn =时,完全二部图),(m n 的边数m 有最大值42n故对任意简单二部图),(m n 有42nm ≤。
中央电大离散数学(本科)考试试题一、单项选择题(每小题3分,本题共15分)1.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( a ).A .A ⊂B ,且A ∈B B .B ⊂A ,且A ∈BC .A ⊂B ,且A ∉BD .A ⊄B ,且A ∈B2.设有向图(a )、(b )、(c )与(d )如图一所示,则下列结论成立的是 ( d ).图一A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的3.设图G 的邻接矩阵为 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010*******000011100100110则G 的边数为( b ).A .6B .5C .4D .34.无向简单图G 是棵树,当且仅当( a ).A .G 连通且边数比结点数少1B .G 连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.5.下列公式 ( c )为重言式.A .⌝P ∧⌝Q ↔P ∨QB .(Q →(P ∨Q)) ↔(⌝Q ∧(P ∨Q))C .(P →(⌝Q →P))↔(⌝P →(P →Q))D .(⌝P ∨(P ∧Q)) ↔Q1.若集合A ={a ,b },B ={ a ,b ,{ a ,b }},则( a ).A .A ⊂B ,且A ∈B B .A ∈B ,但A ⊄BC .A ⊂B ,但A ∉BD .A ⊄B ,且A ∉B2.集合A ={1, 2, 3, 4, 5, 6, 7, 8}上的关系R ={<x ,y >|x +y =10且x , y ∈A },则R 的性质为( b ).A .自反的B .对称的C .传递且对称的D .反自反且传递的3.如果R 1和R 2是A 上的自反关系,则R 1∪R 2,R 1∩R 2,R 1-R 2中自反关系有( b )个.A .0B .2C .1D .34.如图一所示,以下说法正确的是 ( d ) .A .{(a, e )}是割边B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d , e )}是边割集图一5.设A (x ):x 是人,B (x ):x 是学生,则命题“不是所有人都是学生”可符号化为( c ).A .(∀x)(A(x)∧B(x))B .┐(∃x)(A(x)∧B(x))C .┐(∀x)(A(x) →B(x))D .┐(∃x)(A(x)∧┐B(x))1.设A ={a , b },B ={1, 2},R 1,R 2,R 3是A 到B 的二元关系,且R 1={<a ,2>, <b ,2>},R 2={<a ,1>, <a ,2>, <b ,1>},R 3={<a ,1>, <b ,2>},则( b )不是从A 到B 的函数.A .R 1和R 2B .R 2C .R 3D .R 1和R 32.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6},则集合B 的最大元、最小元、上界、下界依次为 ( b ).A .8、2、8、2B .无、2、无、2C .6、2、6、2D .8、1、6、13.若集合A 的元素个数为10,则其幂集的元素个数为( a ).A .1024B .10C .100D .14.设完全图K n 有n 个结点(n ≥2),m 条边,当( c )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数5.已知图G 的邻接矩阵为,则G 有( d ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边1.若集合A ={ a ,{a},{1,2}},则下列表述正确的是( c ).A .{a ,{a}}∈AB .{2}⊆AC .{a}⊆AD .∅∈A2.设图G =<V, E>,v ∈V ,则下列结论成立的是 ( c ) . A .deg(v)=2∣E ∣ B . deg(v)=∣E ∣C .E v V v 2)deg(=∑∈D .E v V v =∑∈)deg(3.命题公式(P ∨Q )→R 的析取范式是 ( d )A .⌝(P ∨Q )∨RB .(P ∧Q )∨RC .(P ∨Q )∨RD .(⌝P ∧⌝Q )∨R4.如图一所示,以下说法正确的是 ( a ).A .e 是割点B .{a, e}是点割集C .{b, e}是点割集D .{d}是点割集5.下列等价公式成立的为( b ).A .⌝P ∧⌝Q ⇔P ∨QB .P →(⌝Q →P) ⇔⌝P →(P →Q)C .Q →(P ∨Q) ⇔⌝Q ∧(P ∨Q)D .⌝P ∨(P ∧Q) ⇔Q1.若G 是一个汉密尔顿图,则G 一定是( d ).A .平面图B .对偶图C .欧拉图D .连通图2.集合A={1, 2, 3, 4}上的关系R={<x ,y>|x=y 且x, y ∈A},则R 的性质为( c ).A .不是自反的B .不是对称的C .传递的D .反自反3.设集合A={1,2,3,4,5},偏序关系≤是A 上的整除关系,则偏序集<A ,≤>上的元素5是集合A 的( b ).A .最大元B .极大元C .最小元D .极小元4.图G 如图一所示,以下说法正确的是 ( c ) .A .{(a, d)}是割边B .{(a, d)}是边割集C .{(a, d) ,(b, d)}是边割集D .{(b, d)}是边割集图一5.设A (x ):x 是人,B (x ):x 是工人,则命题“有人是工人”可符号化为( a ). A .(∃x)(A(x)∧B(x)) B .(∀x)(A(x)∧B(x))C .┐(∀x)(A(x) →B(x))D .┐(∃x)(A(x)∧┐B(x))1.若集合A ={ a ,{a}},则下列表述正确的是( a ).A .{a}⊆AB .{{{a}}}⊆AC .{a ,{a}}∈AD .∅∈A2.命题公式(P ∨Q )的合取范式是 ( c )A .(P ∧Q )B .(P ∧Q )∨(P ∨Q )C .(P ∨Q )D .⌝(⌝P ∧⌝Q )3.无向树T 有8个结点,则T 的边数为( b ).A .6B .7C .8D .94.图G 如图一所示,以下说法正确的是 ( b ).A .a 是割点B .{b, c}是点割集C .{b, d}是点割集D .{c}是点割集图一5.下列公式成立的为( d ).A .⌝P ∧⌝Q ⇔ P ∨QB .P →⌝Q ⇔ ⌝P →QC .Q →P ⇒ PD .⌝P ∧(P ∨Q)⇒Q1.“小于5的非负整数集合”采用描述法表示为___a___.A .{x ∣x ∈N, x<5 }B .{x ∣x ∈R, x<5 }C .{x ∣x ∈Z, x<5 }D .{x ∣x ∈Q, x<5 }2.设R1,R2是集合A={a,b,c,d}上的两个关系,其中R1={(a,a),(b,b),(b,c), (d,d)},R2={(a,a),(b,b),(b,c),(c,b),(d,d)},则R2是R1的__b____闭包.A .自反B .对称C .传递D .以上答案都不对3.设函数f :R →R ,f(a)=2a+1;g :R →R ,g(a)=a2,则___c___有反函数.A .f gB .g fC .fD .g4.已知图G 的邻接矩阵为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0111110101110001000111010,则图G 有___d___.A .5点,8边B .6点,7边C .6点,8边D .5点7边5.无向完全图K4是___a___.A .汉密尔顿图B .欧拉图C .非平面图D .树6.在5个结点的完全二叉树中,若有4条边,则有___b___片树叶.A .2B .3C .4D .57.无向树T 有7片树叶,3个3度结点,其余的都是4度结点,则T 有__c___个4度结点.A .3B .2C .1D .08.与命题公式P →(Q →R )等值的公式是___a___.A .(P ∧Q)→RB .(P ∨Q)→RC .(P →Q)→RD .P →(Q ∨R) 9.谓词公式)())()((x Q y yR x P x →∃∨∀中量词∀x 的辖域是___b___. A .))()((y yR x P x ∃∨∀ B .)()(y yR x P ∃∨ C .P(x) D .)(x Q 10.谓词公式))()(()(x xQ x Q x x xP ⌝∃→⌝∀→∀的类型是___c___. A .蕴涵式 B .永假式C .永真式D .非永真的可满足式1.设A={1,2,3,4},B={1,3},C={-1,0,1,2},则___a___.A .AB ⊆ B .C B ⊆C .A B ∈D .C B ∈2.若集合A 的元素个数为10,则其幂集的元素个数为___b___.A .1000B .1024C .1D .10 3.设集合A={1,2},B={a,b},C={α},则=⨯⨯C B A )(__c____. A .{<1,a,α>,<1,b,α>,<2,a,α>,<2,b,α>}B .{<1,<a,α>>,<1,<b,α>>,<2,<a,α>>,<2,<b,α>>}C .{<<1,a>,α>,<<1,b>,α>,<<2,a>,α>,<<2,b>,α>}D .{{1,2},{a,b},{α}}4.设A={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B={2, 4, 6},则集合B 的最大元、最小元、上界、下界依次为___d___.A .8、1、6、1B . 8、2、8、2C .6、2、6、2D .无、2、无、25.有5个结点的无向完全图K5的边数为___a___.A .10B .20C .5D .256.设完全图K n 有n 个结点(n ≥2),m 条边,当___b___时,K n 中存在欧拉回路.A .n 为偶数B .n 为奇数C .m 为偶数D .m 为奇数7.一棵无向树T 有5片树叶,3个2度分支点,其余的分支点都是3度顶点,则T 有__c___个顶点.A .3B .8C .11D .138.命题公式(P ∨Q )→R 的析取范式是___b___.A .(⌝P ∧⌝Q )∨RB . ⌝(P ∨Q )∨RC .(P ∧Q )∨RD .(P ∨Q )∨R9.下列等价公式成立的是___b___.A .⌝P ∧⌝Q ⇔P ∨QB . P →(⌝Q →P) ⇔⌝P →(P →Q)C .⌝P ∨(P ∧Q) ⇔QD .Q →(P ∨Q) ⇔⌝Q ∧(P ∨Q) 10.谓词公式))()(()(x xQ x Q x x xP ⌝∃→⌝∀→∀的类型是__c____. A .蕴涵式 B .永假式C .永真式D .非永真的可满足式二、填空题(每小题3分,本题共15分) 6.命题公式)(P Q P ∨→的真值是 T (或1) .7.若图G=<V , E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W ≤|S| .8.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 0 ,则该序列集合构成前缀码.9.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 5 .10.(∀x )(P (x )→Q (x )∨R (x ,y ))中的自由变元为R (x ,y )中的y6.若集合A 的元素个数为10,则其幂集的元素个数为 1024 .7.设A ={a ,b ,c },B ={1,2},作f :A →B ,则不同的函数个数为 8 .8.若A ={1,2},R ={<x , y >|x ∈A , y ∈A , x +y =10},则R 的自反闭包为{<1,1>,<2,2>}.9.结点数v 与边数e 满足 e=v -1 关系的无向连通图就是树.6.设集合A ={a ,b },那么集合A 的幂集是{∅,{a ,b },{a },{b }}.7.如果R 1和R 2是A 上的自反关系,则R 1∪R 2,R 1∩R 2,R 1-R 2中自反关系有 2 个.8.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4 条边后使之变成树.9.设连通平面图G 的结点数为5,边数为6,则面数为 3 .10.设个体域D ={a , b },则谓词公式(∀x )A (x )∧(∃x )B (x )消去量词后的等值式为(A (a )∧A (b ))∧(B (a )∨B (b )) .6.设集合A ={0, 1, 2, 3},B ={2, 3, 4, 5},R 是A 到B 的二元关系, },,{B A y x B y A x y x R ⋂∈∈∈><=且且则R 的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3, 3>.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式v -e +r =2 .8.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 3 条边,可以确定图G 的一棵生成树.9.无向图G 存在欧拉回路,当且仅当G 连通且所有结点的度数全为偶数10.设个体域D ={1,2},则谓词公式)(x xA ∃消去量词后的等值式为A (1)∨A (2)6.命题公式)(P Q P ∨→的真值是 T (或1) .7.若图G=<V , E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W ≤|S| .8.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 0 ,则该序列集合构成前缀码.9.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 5 .10.(∀x )(P (x )→Q (x )∨R (x ,y ))中的自由变元为R (x ,y )中的y6.若集合A 的元素个数为10,则其幂集的元素个数为 1024 .7.设A ={a ,b ,c },B ={1,2},作f :A →B ,则不同的函数个数为 8 .8.若A ={1,2},R ={<x , y >|x ∈A , y ∈A , x +y =10},则R 的自反闭包为{<1,1>,<2,2>}.9.结点数v 与边数e 满足 e=v -1 关系的无向连通图就是树.10.设个体域D ={a , b , c },则谓词公式(∀x )A (x )消去量词后的等值式为A (a ) ∧A (b )∧A (c )6.若集合A={1,3,5,7},B ={2,4,6,8},则A ∩B =空集(或∅) .7.设集合A ={1,2,3}上的函数分别为:f ={<1,2>,<2,1>,<3,3>,},g ={<1,3>,<2,2>,<3,2>,},则复合函数g ︒f ={<1, 2>, <2, 3>, <3, 2>,}8.设G 是一个图,结点集合为V ,边集合为E ,则G 的结点度数之和为2|E |(或“边数的两倍”)9.无向连通图G 的结点数为v ,边数为e ,则G 当v 与e 满足 e=v -1 关系时是树.10.设个体域D ={1, 2, 3}, P (x )为“x 小于2”,则谓词公式(∀x )P (x ) 的真值为假(或F ,或0) .6.设集合A ={2, 3, 4},B ={1, 2, 3, 4},R 是A 到B 的二元关系,},{y x B y A x y x R ≤∈∈><=且且则R 的有序对集合为{<2, 2>,<2, 3>,<2, 4>,<3, 3>},<3, 4>,<4, 4>}7.如果R 是非空集合A 上的等价关系,a ∈A ,b ∈A ,则可推知R 中至少包含<a , a >,< b , b >等元素.8.设G =<V , E >是有4个结点,8条边的无向连通图,则从G 中删去 5 条边,可以确定图G 的一棵生成树.9.设G 是具有n 个结点m 条边k 个面的连通平面图,则m 等于n +k -210.设个体域D ={1, 2},A (x )为“x 大于1”,则谓词公式()()x A x ∃的真值为真(或T ,或1)11.设集合A ={1,2,3},用列举法写出A 上的恒等关系I A ,全关系E A :I A = __ I A ={<1,1>,<2,2>,<3,3>};E A ={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<2,3>,<3,1>,<3,2>,<3,3>}12.设集合A ={a ,b },那么集合A 的幂集是{∅,{a },{b },{a ,b }}13.设集合A ={1,2,3},B ={a ,b },从A 到B 的两个二元关系R ={<1,a >,<2,b >,<3,a >},S={<1,a >,<2,a >,<3,a >},则R -S =_ R -S ={<2,b >}.14.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式v -e +r =2.15.无向连通图G 是欧拉图的充分必要条件是结点度数均为偶数.16.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 3 条边,可以确定图G 的一棵生成树.17.设G 是完全二叉树,G 有15个结点,其中有8个是树叶,则G 有____14___条边,G 的总度数是___28_____,G 的分支点数是____7____.18.设P ,Q 的真值为1,R ,S 的真值为0,则命题公式Q S R Q P ∧∨∧∨)(的真值为___0_____.19.命题公式)(R Q P →∧的合取范式为)(R Q P ∨⌝∧析取范式为)()(R P Q P ∧∨⌝∨.20.设个体域为整数集,公式)0(=+∃∀y x y x 真值为___1_____.11.设集合A ={1,2,3,4},B ={3,4,5,6},则:=B A ___{3,4}_____,=B A _____{1,2,3,4,5,6}_____.12.设集合A 有n 个元素,那么A 的幂集合P (A )的元素个数为 .13.设集合A ={a ,b ,c ,d },B ={x ,y ,z },R ={<a ,x >,<a ,z >,<b ,y >,<c ,z >,<d ,y >} 则关系矩阵M R =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛010*********. 14.设集合A ={a ,b ,c ,d ,e },A 上的二元关系R ={<a ,b >,<c ,d >,<b ,b >},S ={<d ,b >, <b ,e >,<c ,a >},则R ·S ={<a ,e >,<c ,b >,<b ,e >} 15.无向图G 存在欧拉回路,当且仅当G 连通且__所有结点的度数全为偶数 16.设连通平面图G 的结点数为5,边数为6,则面数为 3 .17.设正则二叉树有n 个分支点,且内部通路长度总和为I ,外部通路长度总和为E ,则有E =___ I +2n18.设P ,Q 的真值为0,R ,S 的真值为1,则命题公式)()(S Q R P ∨→∨的真值为_____1___.19.已知命题公式为G =(⌝P ∨Q )→R ,则命题公式G 的析取范式是(P ∧⌝Q )∨R20.谓词命题公式(∀x )(P (x )→Q (x )∨R (x ,y ))中的约束变元为___x___.三、逻辑公式翻译(每小题4分,本题共12分)11.将语句“如果所有人今天都去参加活动,则明天的会议取消.”翻译成命题公式.设P :所有人今天都去参加活动,Q :明天的会议取消, (1分)P → Q . (4分)12.将语句“今天没有人来.” 翻译成命题公式.设 P :今天有人来, (1分)⌝ P . (4分)13.将语句“有人去上课.” 翻译成谓词公式.设P(x):x 是人,Q(x):x 去上课, (1分)(∃x)(P(x) ∧Q(x)). (4分)11.将语句“如果你去了,那么他就不去.”翻译成命题公式.设P :你去,Q :他去, (1分)P →⌝Q . (4分)12.将语句“小王去旅游,小李也去旅游.”翻译成命题公式.设P :小王去旅游,Q :小李去旅游, (1分)P ∧Q . (4分)13.将语句“所有人都去工作.”翻译成谓词公式.设P(x):x 是人,Q(x):x 去工作, (1分)(∀x)(P(x)→Q(x)). (4分)11.将语句“他不去学校.”翻译成命题公式.设P :他去学校, (1分)⌝ P . (4分)12.将语句“他去旅游,仅当他有时间.”翻译成命题公式.设 P :他去旅游,Q :他有时间, (1分)P →Q . (4分)13.将语句“所有的人都学习努力.”翻译成命题公式.设P(x):x 是人,Q(x):x 学习努力, (1分)(∀x )(P(x)→Q(x)). (3分)11.将语句“尽管他接受了这个任务,但他没有完成好.”翻译成命题公式.设P :他接受了这个任务,Q :他完成好了这个任务, (2分)P ∧⌝ Q . (6分)12.将语句“今天没有下雨.”翻译成命题公式.设P :今天下雨, (2分)⌝ P . (6分)11.将语句“他是学生.”翻译成命题公式.设P :他是学生, (2分)则命题公式为: P . (6分)12.将语句“如果明天不下雨,我们就去郊游.”翻译成命题公式.设P :明天下雨,Q :我们就去郊游, (2分)则命题公式为:⌝ P → Q . (6分)11.将语句“今天考试,明天放假.”翻译成命题公式.设P :今天考试,Q :明天放假. (2分)则命题公式为:P ∧Q . (6分)12.将语句“我去旅游,仅当我有时间.”翻译成命题公式.设P :我去旅游,Q :我有时间, (2分)则命题公式为:P →Q . (6分)⑴ 将语句“如果明天不下雨,我们就去春游.”翻译成命题公式.⑵ 将语句“有人去上课.” 翻译成谓词公式.⑴设命题P 表示“明天下雨”,命题Q 表示“我们就去春游”.则原语句可以表示成命题公式 ⌝P →Q. (5分)⑵设P(x):x 是人,Q(x):x 去上课则原语句可以表示成谓词公式 (∃x)(P(x) ∧Q(x)).四、判断说明题(每小题7分,本题共14分)14.┐P ∧(P →┐Q )∨P 为永真式.正确. (3分)┐P ∧(P →┐Q )∨P 是由┐P ∧(P →┐Q )与P 组成的析取式,如果P 的值为真,则┐P ∧(P →┐Q )∨P 为真, (5分)如果P 的值为假,则┐P 与P →┐Q 为真,即┐P ∧(P →┐Q )为真,也即┐P ∧(P →┐Q )∨P 为真,所以┐P ∧(P →┐Q )∨P 是永真式. (7分)15.若偏序集<A ,R>的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.正确. (3分)对于集合A 的任意元素x ,均有<x, a>∈R (或xRa ),所以a 是集合A 中的最大元.(5分)14.如果R1和R2是A 上的自反关系,则R1∪R2是自反的.正确. (3分)R1和R2是自反的,∀x ∈A ,<x, x> ∈ R1,<x, x> ∈R2,则<x, x> ∈ R1⋃R2,所以R1∪R2是自反的. (7分)15.如图二所示的图G 存在一条欧拉回路.正确. (3分) 因为图G 为连通的,且其中每个顶点的度数为偶数. (7分)14.设N 、R 分别为自然数集与实数集,f :N →R ,f (x)=x+6,则f 是单射.正确. (3分)设x1,x2为自然数且x1≠x2,则有f(x1)= x1+6≠ x2+6= f(x2),故f 为单射. (7分)15.设G 是一个有6个结点14条边的连通图,则G 为平面图.错误. (3分)不满足“设G 是一个有v 个结点e 条边的连通简单平面图,若v ≥3,则e ≤3v-6.”13.下面的推理是否正确,试予以说明.(1) (∀x )F (x )→G (x ) 前提引入(2) F (y )→G (y ) US (1).错误. (3分)(2)应为F (y )→G (x ),换名时,约束变元与自由变元不能混淆. (7分)14.若偏序集<A ,R>的哈斯图如图二所示,则集合A 的最大元为a ,最小元不存在.错误. (3分)集合A 的最大元不存在,a 是极大元. (7分)13.下面的推理是否正确,试予以说明.(1) (∀x )F (x )→G (x ) 前提引入(2) F (y )→G (y ) US (1).错误. (3分)(2)应为F (y )→G (x ),换名时,约束变元与自由变元不能混淆. (7分)14.如图二所示的图G 存在一条欧拉回路.错误. (3分)因为图G 为中包含度数为奇数的结点. (7分)v 1v 图二13.如果图G 是无向图,且其结点度数均为偶数,则图G 是欧拉图.错误. (3分)当图G 不连通时图G 不为欧拉图. (7分)14.若偏序集<A ,R>的哈斯图如图二所示,则集合A 的最大元为a ,最小元是f .图二错误. (3分)集合A 的最大元与最小元不存在,a 是极大元,f 是极小元,.五.计算题(每小题12分,本题共36分)16.设集合A={1,2,3,4},R={<x, y>|x, y ∈A ;|x -y|=1或x -y=0},试(1)写出R 的有序对表示;(2)画出R 的关系图;(3)说明R 满足自反性,不满足传递性.(1)R={<1,1>,<2,2>,<3,3>,<4,4>,<1,2>,<2,1>,<2,3>,<3,2>,<3,4>,<4,3>} (3分)(2)关系图为(6分)(3)因为<1,1>,<2,2>,<3,3>,<4,4>均属于R ,即A 的每个元素构成的有序对均在R 中,故R 在A 上是自反的。
离散数学试题带答案一、选择题1、G是一棵根树,则()。
A、G一定是连通的B、G一定是强连通的C、G只有一个顶点的出度为0D、G只有一个顶点的入度为12、下面哪个语句不是命题()。
A、中国将成功举办2008年奥运会B、一亿年前地球发生了大灾难C、我说的不是真话D、哈密顿图是连通的3、设R是实数集合,在上定义二元运算*:a,b∈R,a*b=a+b-ab,则下面的论断中正确的是()。
A、0是*的零元B、1是*的幺元C、0是*的幺元D、*没有等幂元4、下面说法中正确的是()。
A、所有可数集合都是等势的B、任何集合都有与其等势的真子集C、有些无限集合没有可数子集D、有理数集合是不可数集合5、无向完全图K3的不同构的生成子图有()个。
A. 6B.5C. 4D. 36、下面哪一种图不一定是无向树?A、无回路的连通图B、有n个顶点n-1条边的连通图C、每对顶点间都有通路的图D、连通但删去一条边则不连通的图7、设集合A={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。
A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、在有界格中,若一个元素有补元,则补元( )。
A、必惟一B、不惟一C、不一定惟一D、可能惟一9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A是不封闭的?()A、x*y=max{x,y}B、x*y=min{x,y}C、x*y=GCD(x,y),即x,y的最大公约数D、x*y=LCM(x,y),即x,y的最小公倍数10、集合X 中的关系R ,其矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011101M ,则关于R 的论述中正确的是( )。
A 、R 是对称的 B 、R 是反对称的C 、R 是反自反的D 、R 中有7个元素11. 下列各组数中,哪个可以构成无向图的度数列( )。
A.1,1,1,2,2B.2,2,2,2,3C.1,2,2,4,6D.2,3,3,312. *是定义在Z 上的二元运算,y x xy y x Z y x -+=*∈∀,,,则*的幺元和零元分别是( )。
A.不存在,0B.0,1C.1,不存在D.不存在,不存在13. 设N N N f ,:→为自然数,且 ⎪⎩⎪⎨⎧=为偶数若为奇数若x xx x f 21)(则})0({)0(f f 和分别是( )。
A.0,0 B.0,{0}C.{0},{0}D.{0},014. 下列命题公式中是矛盾式的有( )。
A.p p p ⌝→⌝→)(B.p p q ∧→⌝)(C.)()(p q q p ⌝→→→⌝D.r q p →∨)(15. 下列各Hasse 图中,是格的有( )。
A. B.C. D.16. 下列命题公式中是永假式的有( )。
A.p p p ⌝→⌝→)(B.p p q ∧→⌝)(C.)()(p q q p →⌝→→⌝D.r q p →∨)(17. 设命题公式⌝(P ∧(Q →⌝P)),记作G ,则使G 的真值指派为0的P ,Q 的取值是( )。
A.(0,0)B.(0,1)C.(1,0)D. (1,1)18. 与命题公式P →(Q →R )等值的公式是( )。
A.(P ∨Q)→RB.(P ∧Q)→RC.(P →Q)→RD. P →(Q ∨R)19. 命题公式(P ∧Q)→P 是( )。
A.永真式B.永假式C.可满足式D.合取范式20. 设命题公式)(),(P Q P H Q P G ⌝→→⇔→⌝⇔,则G 与H 的关系是( ) 。
A.H Q →B.G H →C.G H ⇒D.H G ⇒21.谓词公式)())()((x Q y yR x P x →∃∨∀中量词∀x 的辖域是( )。
A ))()((y yR x P x ∃∨∀ B. P(x) C.)()(y yR x P ∃∨ D.)(x Q22.设个体域为整数集,下列公式中其值为1的是( )。
A.)0(=+∃∀y x y xB.)0(=+∀∃y x x yC.)0(=+∀∀y x y xD.)0(=+∃⌝∃y x y x23.设L(x):x 是演员,J(x):x 是老师,A(x,y):x 佩服y. 那么命题“所有演员都佩服某些老师”符号化为( )。
A.),()(y x A x xL →∀B.)),()(()((y x A y J y x L x ∧∃→∀C.)),()()((y x A y J x L y x ∧∧∃∀D.)),()()((y x A y J x L y x →∧∃∀24.在谓词演算中,P(a)是)(x xP ∀的有效结论,根据是 ( )。
规则B.UG 规则C.ES 规则D.EG 规则25. 在图G =<V,E>中,结点总度数与边数的关系是( )。
A.deg(v i )=2∣E ∣B. deg(v i )=∣E ∣C.∑∈=V v E v 2)deg(D. ∑∈=Vv E v )deg(26. 设G 是有n 个结点的无向完全图,则图G 的边数为( );设D 是有n 个结点的有向完全图,则图D 的边数为( )。
A. n(n -1)B. n(n+1)C. n(n -1)/2D. n(n+1)/227. 仅有一个孤立结点的图称为( )。
A.零图B.平凡图C.补图D.子图28. 设G =<V,E>为无向简单图,∣V ∣=n ,∆(G)为G 的最大度,则有( )。
A. ∆(G)<nB.∆(G)≤nC. ∆(G)>nD. ∆(G)≥n29. 图G 与G '的结点和边分别存在一一对应关系,是G ≌G '(同构)的( )。
A.充分条件B.必要条件C.充分必要条件D.既非充分也非必要条件30. 设},,,{d c b a V =,则与V 能构成强连通图的边集合是( )。
A.},,,,,,,,,{><><><><><=c d b c d b a b d a EB.},,,,,,,,,{><><><><><=c d d b c b a b d a EC.},,,,,,,,,{><><><><><=c d a d c b a b c a ED.},,,,,,,,,{><><><><><=d c d b d a c a b a E31. 相邻矩阵具有对称性的图一定是( )。
A.有向图B.无向图C.混合图D.简单图32. 无向图G 是欧拉图,当且仅当( )。
A.G 的所有结点的度数全为偶数B.G 的所有结点的度数全为奇数C.G 连通且所有结点的度数全为偶数D.G 连通且所有结点的度数全为奇数33. 设m E n V E V G ==>=<,,,为连通平面图且有r 个面,则r =( )。
A. m -n+2B.n -m -2C.n+m-2D.m+n+234. 设G 是由5个结点组成的完全图,则从G 中删去( )条边可以得到树。
A.4B.5C.6D.1035. 由5个结点可构成的根树中,其叉数m 最多为( )。
A.2B.3C.5D. 436. 下图是( ) 。
A.完全图B. 哈密顿图C.欧拉图D.平面图37. 设集合A ={1,2,3,…,10},在集合A 上定义的运算,不是封闭的为( )。
A.∀a,b ∈A, a *b=lcm{a,b}(最小公倍数)B.∀a,b ∈A, a *b=gcd{a,b}(最大公约数)C.∀a,b ∈A, a *b=max{a,b}D.∀a,b ∈A, a *b=min{a,b}38. 在自然数N 上定义的二元运算•,满足结合律的是( )。
A.a •b=a -bB. a •b=a+2bC. a •b=max{a,b}D. a •b=∣a -b ∣39. 下列代数系统(G,*)中,其中*是加法运算. ( )不是群。
A.G 为整数集合B.G 为偶数集合C.G 为有理数集合D.G 为自然数集合40. 设σ1,σ2,σ3是三个置换,其中 σ1=(1 2)(2 3)(1 3),σ2=(2 4)(1 4),σ3=(1 3 2 4)则σ3可以表成( )。
A. 21σB.σ1σ2C.22σD.σ2σ141. 下列图表示的偏序集中,是格的为( )。
A.B.C.D.42. 设)1,0,,,,(+•B 是布尔代数,b a B b a ≤∈∀,,,则下式不成立的是( )。
A.0=b a B.1=+b a C.a b a =+ D.1=+b a43. 布尔代数式)(c b c ab ab +++=( )。
A.b a + B.c b + C.c b + D.c b +44. 设集合A ={1,2},B={a,b,c},C={c,d}, 则A ×(B ⋂C)=( )。
A.{<c,1>,<2,c>}B.{<1,c>,<2,c>}C.{<c,1>,<c,2>}D.{<1,c>,<c,2>}45. 设A ={0,a},B={1,a,3},则A ⋃B 的恒等关系是( )。
A. {<0,0><1,1>,<3,3>,<a,a>}B.{<0,0>,<1,1>,<3,3>}C.{<1,1>,<a,a>,<3,3>}D. {<0,1>,<1,a>,<a,3>,<3,0>}46. 设A={a ,b ,c},R={<a ,a >,<b ,b >},则R 具有性质( )。
A.自反的B.反自反的C.反对称的D.等价的47. 设集合σ},,,{},,,,{3214321b b b B a a a a A ==是从A 到B 的函数, ,,{21><=b a σ},,,,,341322><><><b a b a b a ,则σ是( )。
A.双射B.满射但不是单射C.单射但不是满射D.非单射也非满射48.下列式子中正确的是( )。
A.∅=0B.∅∈∅C.∅∈{a,b}D.∅∈{∅}49.有向图的邻接矩阵中,行元素之和是对应结点的( ),列元素之和是对应结点的( ) 。
A.度数B. 出度C.最大度数D.入度50. 给定无向图如下所示,下面给出的顶点集子集中,不是点割集的是( )。
A.{b,d}B.{d}C.{e}D.{f,h}51. 谓词公式∃xA(x)∧⌝∃xA(x)的类型是( )。