指数函数练习题及答案
- 格式:docx
- 大小:3.42 KB
- 文档页数:2
课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。
指数函数1.指数函数的定义:函数)1(≠>=aaay x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质:在同一坐标系中分别作出函数y=x2,y=x⎪⎭⎫⎝⎛21,y=x10,y=x⎪⎭⎫⎝⎛101的图象.我们观察y=x2,y=x⎪⎭⎫⎝⎛21,y=x10,y=x⎪⎭⎫⎝⎛101图象特征,就可以得到)1(≠>=aaay x且的图象和性质。
a>1 0<a<1图象00性质(1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x=0时,y=1(4)在 R上是增函数(4)在R上是减函数指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨.1.比较大小例1已知函数2()f x x bx c=-+满足(1)(1)f x f x+=-,且(0)3f=,则()xf b与()x f c 的大小关系是_____.分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内.解:∵(1)(1)f x f x +=-,∴函数()f x 的对称轴是1x =.故2b =,又(0)3f =,∴3c =.∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥;若0x <,则321x x <<,∴(3)(2)x x f f >.综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥.评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围.解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,∞∞上是增函数,∴31x x >-,解得14x >.∴x 的取值范围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.3.求定义域及值域问题例3 求函数y =的定义域和值域.解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-,∞.令26x t -=,则y =,又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤.∴011t -<≤,即01y <≤.∴函数的值域是[)01,. 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.4.最值问题例4 函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______.分析:令x t a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围.解:令x t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-.∴当1a >时,∵[]11x ∈-,,∴1x a a a ≤≤,即1t a a≤≤.∴当t a =时,2max (1)214y a =+-=.解得3a =或5a =-(舍去);当01a <<时,∵[]11x ∈-,, ∴1x a a a ≤≤,即1a t a≤≤,∴ 1t a =时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭, 解得13a =或15a =-(舍去),∴a 的值是3或13.评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.5.解指数方程例5 解方程223380x x +--=.解:原方程可化为29(3)80390x x ⨯-⨯-=,令3(0)x t t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x =,∴2x =,经检验原方程的解是2x =.评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根.6.图象变换及应用问题例6 为了得到函数935x y =⨯+的图象,可以把函数3x y =的图象( ).A .向左平移9个单位长度,再向上平移5个单位长度B .向右平移9个单位长度,再向下平移5个单位长度C .向左平移2个单位长度,再向上平移5个单位长度2,曲线分别是指数函数 , 和 的图象,则与1的大小关系是 ( ).( 分析:首先可以根据指数函数单调性,确定,在 轴右侧令 ,对应的函数值由小到大依次为 ,故应选 .小结:这种类型题目是比较典型的数形结合的题目,第(1)题是由数到形的转化,第(2)题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识.求最值3,求下列函数的定义域与值域.(1)y =231-x ; (2)y =4x +2x+1+1.解:(1)∵x-3≠0,∴y =231-x 的定义域为{x |x ∈R 且x ≠3}.又∵31-x ≠0,∴231-x ≠1,∴y =231-x 的值域为{y |y>0且y ≠1}.(2)y =4x +2x+1+1的定义域为R.∵2x >0,∴y =4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2>1.∴y =4x +2x+1+1的值域为{y |y>1}.4,已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x 的最大值和最小值解:设t=3x ,因为-1≤x ≤2,所以931≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。
指数函数习题及答案一.选择题1.若函数f (x )=()xa 1-在R 上是减函数,那么实数a 的取值范围是( )A .a >1 且1≠aB .1<a <2C .a >1且2≠aD .a >02.已知0>a ,41=--a a ,则22-+a a 的值是( )A .14B .16C .18D .203.一套邮票现价值a 元,每过一年都将增值00b ,则10年后其价值为( ) A .()00110b a + B .()00101b a +C .()[]10001b a + D .()1001ba +4.设f (x )=x)21(,x ∈R ,那么f (x )是( ) A .偶函数且在(0,+∞)上是减函数B .偶函数且在(0,+∞)上是增函数C .奇函数且在(0,+∞)上是减函数D .奇函数且在(0,+∞)上是增函数 5.函数y =-2-x的图象一定过哪些象限( )A .一、二象限B .二、三象限C .三、四象限D .一、四象限 6.函数y =a x 在[0,1]上的最大值与最小值和为3,则函数y =123-⋅x a 在[0,1]上的最大值是( )A .3B .1C .6D .23 7.下列函数中值域为(0,+∞)的是( ) A .y =x15B .y =x )31( C .y =12+-xD .y =12-x8.若-1<x <0,则不等式中成立的是( )A .5-x <5x <0.5x B .0.5x <5-x <5x C .5x <5-x <0.5xD .5x <0.5x <5-x9.当a ≠0时,函数y a x b=+和y b ax=的图象只可能是( )10.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确的是( )A .)()()(y f x f y x f ⋅=+B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈= D .)()]([·)]([)(+∈=N n y f x f xy f nnn二.填空题11.已知函数f (x )=21)31(x -,其定义域是________________.12.函数f (x )=a x -1+3的图象一定过定点P ,则P 点的坐标是____________.13.函数121+⎪⎭⎫⎝⎛=x y ,[]1,2-∈x 的值域是_____________.14.函数y =x-3的图象与函数________________的图象关于y 轴对称. 三.解答题(共6小题,共80分) 15.(本小题12分)(1)计算:3122726141-⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛- (2)化简:2433221---÷⎪⎪⎭⎫ ⎝⎛⋅a b b a16.(12分)(1) 解不等式145-+<x x a a(a>0且a ≠1)(2)函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,求满足1)(>x f 的x 的取值范围17.(14分) 求函数2233x x y -++=的单调区间和最值(单调区间请加以证明).18.(1)已知m x f x +-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程k x=-|13|无解?有一解?有两解?19.(14分)已知函数4()42xx f x =+ (1)试求()(1)f a f a +-的值.(2)求1232007()()()()2008200820082008f f f f +++⋅⋅⋅+的值. 20.(14分)已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性; (2)求f (x )的值域;(3)证明f (x )在(-∞,+∞)上是增函数.<指数函数>参考答案1—10 BCDAC CBDAD9.[-1,1] 10.(1,4) 11.27 12.[41,2] 13.x y 3= 14.1415.1>a 时,x>2;10<<a 时,x<2. 16.1-a17.解:单调增区间:(,1]-∞;单调减区间:[1,)+∞;值域:(,81]-∞。
[基础巩固]1.下列判断正确的是( )A .2.52.5>2.53B .0.82<0.83C .π2<π 2D .0.90.3>0.90.5解析 因为函数y =0.9x 在R 上为减函数,所以0.90.3>0.90.5.答案 D2.设函数f (x )=a -|x |(a >0,且a ≠1),若f (2)=4,则( )A .f (-2)>f (-1)B .f (-1)>f (-2)C .f (1)>f (2)D .f (-2)>f (2) 解析 f (2)=a -2=4,a =12,f (x )=⎝⎛⎭⎫12-|x |=2|x |,则f (-2)>f (-1). 答案 A3.(多选)以下关于数的大小的结论正确的是( )3.(多选)以下关于数的大小的结论正确的是( )A .1.72.5<1.73B .0.8-0.1<0.8-0.2C .1.70.3<0.93.1D .⎝⎛⎭⎫13 13 >⎝⎛⎭⎫14 14解析 y =1.7x 单调递增,2.5<3,∴1.72.5<1.73,A 正确;y =0.8x 单调递减,-0.1>-0.2,∴0.8-0.1<0.8-0.2,B 正确;又1.70.3>1.70=1,0.93.1<0.90=1,∴1.70.3>0.93.1,C 错误;⎣⎡⎦⎤⎝⎛⎭⎫1313 12 =⎝⎛⎭⎫13 4 =181 , ⎣⎡⎦⎤⎝⎛⎭⎫1414 12 =⎝⎛⎭⎫14 3=164 , ∵181 <164,∴⎝⎛⎭⎫13 13 <⎝⎛⎭⎫14 14 ,D 错误. 答案 AB4.已知(a 2+a +2)x >(a 2+a +2)1-x ,则x 的取值范围是________.解析 ∵a 2+a +2=⎝⎛⎭⎫a +122+74>1, ∴y =(a 2+a +2)x 为R 上的增函数.∴x >1-x .即x >12. 答案 ⎝⎛⎭⎫12,+∞ 5.已知2x ≤⎝⎛⎭⎫14x -3,则函数y =⎝⎛⎭⎫12x 的值域为 ________________ .解析 由2x ≤⎝⎛⎭⎫14x -3,得2x ≤2-2x +6, ∴x ≤-2x +6,∴x ≤2.∴⎝⎛⎭⎫12x ≥⎝⎛⎭⎫122=14,即y =⎝⎛⎭⎫12x 的值域为⎣⎡⎭⎫14,+∞. 答案 ⎣⎡⎭⎫14,+∞6.已知函数.(1)若a =-1,求函数f (x )的单调增区间.(2)如果函数f (x )有最大值3,求实数a 的值.解析 (1)当a =-1时,令g (x )=-x 2-4x +3=-(x +2)2+7,由于g (x )在(-2,+∞)上递减,y =⎝⎛⎭⎫13x 在R 上是减函数,所以f (x )在(-2,+∞)上是增函数,即f (x )的单调增区间是(-2,+∞).(2)令h (x )=ax 2-4x +3,f (x )=⎝⎛⎭⎫13h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1;因此必有⎩⎪⎨⎪⎧a >0,12a -164a=-1,解得a =1,即当f (x )有最大值3时,a 的值为1. [能力提升]7.已知函数f (x )=3x -⎝⎛⎭⎫13x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数解析 因为f (x )=3x -⎝⎛⎭⎫13x ,且定义域为R ,所以f (-x )=3-x -⎝⎛⎭⎫13-x =⎝⎛⎭⎫13x -3x =-⎣⎡⎦⎤3x -⎝⎛⎭⎫13x =-f (x ),即函数f (x )是奇函数. 又y =3x 在R 上是增函数,y =⎝⎛⎭⎫13x 在R 上是减函数,所以f (x )=3x -⎝⎛⎭⎫13x 在R 上是增函数.答案 A8.若函数的值域是⎝⎛⎦⎤0,19,则f (x )的单调递增区间是________. 解析 令g (x )=ax 2+2x +3,由于f (x )的值域是⎝⎛⎦⎤0,19, 所以g (x )的值域是[2,+∞).因此有⎩⎪⎨⎪⎧a >0,12a -44a =2,解得a =1, 这时g (x )=x 2+2x +3,由于g (x )的单调递减区间是(-∞,-1],所以f (x )的单调递增区间是(-∞,-1].答案 (-∞,-1]9.已知函数,则f (x )的单调递增区间为________,值域为________.解析 令x 2-2x ≥0,解得x ≥2或x ≤0,∴f (x )的定义域为(-∞,0]∪[2,+∞),令t =x 2-2x -1,则其在(-∞,0]上递减,在[2,+∞)上递增,又y =⎝⎛⎭⎫12t 为减函数,故f (x )的增区间为(-∞,0].∵t =x 2-2x -1≥-1,∴⎝⎛⎭⎫12t ∈(0,2].故f (x )的值域为(0,2].答案 (-∞,0] (0,2]10.已知函数f (x )=a -12x +1(x ∈R ). (1)用定义证明:不论a 为何实数,f (x )在(-∞,+∞)上总为增函数.(2)若f (x )为奇函数,求a 的值.(3)在(2)的条件下,求f (x )在区间[1,5]上的最小值.解析 (1)因为f (x )的定义域为R ,任取x 1<x 2,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以不论a 为何实数,f (x )在(-∞,+∞)上总为增函数. (2)因为f (x )在R 上为奇函数,所以f (0)=0,即a -120+1=0,解得a =12. 经检验,a =12时,f (x )=12-12x +1是奇函数. (3)由(2)知,f (x )=12-12x +1, 由(1)知,f (x )在(-∞,+∞)上为增函数, 所以f (x )在区间[1,5]上的最小值为f (1).因为f (1)=12-13=16, 所以f (x )在区间[1,5]上的最小值为16. [探索创新]11.已知函数f (x )=a x (a >0且a ≠1)在[-1,1]上的最大值与最小值之差为32. (1)求实数a 的值;(2)若g (x )=f (x )-f (-x ),当a >1时,解不等式g (x 2+2x )+g (x -4)>0.解析 (1)当a >1时,f (x )max =a ,f (x )min =1a, 则a -1a =32,解得a =2, 当0<a <1时,f (x )max =1a,f (x )min =a , 则1a -a =32,解得a =12. 综上得:a =2或a =12. (2)当a >1时,由(1)知a =2,g (x )=2x -2-x 为奇函数且在R 上是增函数,所以g (x 2+2x )+g (x -4)>0⇒g (x 2+2x )>-g (x -4)=g (4-x )⇒x 2+2x >4-x ⇒x >1或x <-4.所以,原不等式的解集为{x |x >1或x <-4}.。
指数函数练习1. 函数(1)x y 4=; (2) 4x y =; (3) x y 4-=; (4) x y )4(-=; (5) x y π=; (6) 24x y =;(7) x x y =; (8) 1()1(>-=a a y x , 且a 1≠)中,是指数函数的是2. 函数33(0,1)x y a a a-=+>≠恒过的定点是 3. 若1()21xf x a =+-是奇函数,则a = 【答案】【解析】12(),()()2112xx x f x a a f x f x --=+=+-=--- 21121()21122112122x x x x x xa a a a ⇒+=-+⇒=-==----故 4. 若指数函数y a x =+()1在()-∞+∞,上是减函数,那么( )A 、 01<<aB 、 -<<10aC 、 a =-1D 、 a <-15. 函数213-=x y 的定义域为6. 若函数()1222-=--aax xx f 的定义域为R ,则实数a 的取值范围 . []0,1-7. 设0x >,且1x x a b <<(0a >,0b >),则a 与b 的大小关系是( B )A 1b a <<B 1a b <<C 1b a <<D 1a b <<8. 如图,指出函数①y=a x ;②y=b x ;③y=c x ;④y=d x的图象,则a,b,c,d 的大小关系是BA a 〈b 〈1〈c 〈dB b<a 〈1〈d<cC 1〈a<b 〈c 〈dD a 〈b<1〈d<c9. 下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( C )y y y yO x O x O x O xAB C D111110. 函数x xx x e e y e e--+=-的图像大致为( A )。
例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____.分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-,∴函数()f x 的对称轴是1x =.故2b =,又(0)3f =,∴3c =.∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥;若0x <,则321x x <<,∴(3)(2)x x f f >.综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. [f(a-x)=f(b+x)的对称轴为啥是x=(a+b)/2? 可设对称轴为x=c,不妨令a-x<c<b+x. 易知a-x 到c 的距离等于b+x 到c 的距离. 于是 c-(a-x)=(b+x)-c, 解得c=(a+b)/2. 即对称轴为x=(a+b)/2.]例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________.分析:利用指数函数的单调性求解,注意底数的取值范围.解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,∞∞上是增函数,∴31x x >-,解得14x >.∴x 的取值范围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.3.若10x =3,10y =4,则10x-y =例4 求函数y =解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-,∞.令26x t -=,则y =,又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤.∴011t -<≤,即01y <≤.∴函数的值域是[)01,.评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.5.求下列函数的定义域与值域.(1)y =231-x ; (2)y =4x +2x+1+1.解:(1)∵x-3≠0,∴y =231-x 的定义域为{x |x ∈R 且x ≠3}.又∵31-x ≠0,∴231-x ≠1, ∴y =231-x 的值域为{y |y>0且y ≠1}.(2)y =4x +2x+1+1的定义域为R.∵2x >0,∴y =4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2>1.∴y =4x +2x+1+1的值域为{y |y>1}.6.若函数是奇函数,求 的值. .解:为奇函数, ,即,则 , 7.求函数y =23231+-⎪⎭⎫ ⎝⎛x x 的单调区间. 分析 这是复合函数求单调区间的问题可设y =u ⎪⎭⎫ ⎝⎛31,u =x 2-3x+2,其中y =u⎪⎭⎫ ⎝⎛31为减函数 ∴u =x 2-3x+2的减区间就是原函数的增区间(即减减→增)u =x 2-3x+2的增区间就是原函数的减区间(即减、增→减)解:设y =u⎪⎭⎫ ⎝⎛31,u =x 2-3x+2,y 关于u 递减, 当x ∈(-∞,23)时,u 为减函数, ∴y 关于x 为增函数;当x ∈[23,+∞)时,u 为增函数,y 关于x 为减函数. 8.已知函数f (x )=a -122+x (a ∈R ), (1) 求证:对任何a ∈R ,f (x )为增函数.(2) 若f (x )为奇函数时,求a 的值。
2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且A .f (b x )≤f (c x) B .f (b x )≥f (c x) lg(a x -2x-5 ≥5 [9,(9,1,,1[1,[1,,1)上的最大值比最小值大,则234x x ---+11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.的取值范围.指数函数答案指数函数答案1.1.解析:由解析:由a ⊗b =îïíïìa a ≤bba >b得f (x )=1⊗2x=îïíïì2xx,1x答案:答案:A A 2. 2. 解析:∵解析:∵f (1(1++x )=f (1(1--x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)(0)==3,∴c =3.3.∴∴f (x )在(-∞,-∞,1)1)1)上递减,在上递减,在上递减,在(1(1(1,+∞)上递增.,+∞)上递增.,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0<0,则,则3x<2x<1<1,∴,∴f (3x)>f (2x). ∴f (3x )≥f (2x ). 答案:答案:A A3.3.解析:由于函数解析:由于函数y =|2x-1|1|在在(-∞,-∞,0)0)0)内单调递减,在内单调递减,在内单调递减,在(0(0(0,+∞)内单调递增,而函数在,+∞)内单调递增,而函数在区间区间((k -1,k +1)1)内不单调,所以有内不单调,所以有k -1<0<k +1,解得-,解得-1<1<k <1. 答案:答案:C C4. 4. 解析:由题意得:解析:由题意得:A =(1,2)(1,2),,a x -2x >1且a >2>2,由,由A ⊆B 知a x -2x>1在(1,2)(1,2)上恒成立,即上恒成立,即a x -2x -1>0在(1,2)(1,2)上恒成立,令上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0ln2>0,所以函数,所以函数u (x )在(1,2)(1,2)上单调递增,则上单调递增,则u (x )>u (1)(1)==a -3,即a ≥3.≥3. 答案:答案:B B5. 5. 解析:数列解析:数列解析:数列{{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,为增函数,注意a 8-6>(3>(3--a )×7-)×7-33,所以îïíïìa >13-a >0a8-6-a -3,解得2<a <3.答案:答案:C C6. 6. 解析:解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,的图象,当a >1时,必有a -1≥12,即1<a ≤2,≤2,当0<a <1时,必有a ≥12,即12≤a <1<1,,综上,12≤a <1或1<a ≤2.≤2.答案:答案:C C7. 7. 解析:当解析:当a >1时,y =a x 在[1,2][1,2]上单调递增,故上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax 在[1,2][1,2]上单调递减,故上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线曲线||y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果的图象如图所示,由图象可得:如果||y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]1,1].. 答案:答案:[[-1,1]9. 9. 解析:如图满足条件的区间解析:如图满足条件的区间解析:如图满足条件的区间[[a ,b ],当a =-=-11,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-=-11,b =1时区间长度最大,最大值为2,故其差为1. 答案:答案:1 110. 10. 解:要使函数有意义,则只需-解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.≤1. ∴函数的定义域为∴函数的定义域为{{x |-4≤x ≤1}.≤1}. 令t =-x 2-3x +4,则t =-x 2-3x +4=-=-((x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-=-44或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x ---+的值域为的值域为[[28,1]1]..+)+(≤-时,≤234()2x x ---+在,-32]-32,-32,,-32][1a,,1a ]=1a,即(1a+=13或-15(或13.。
指数函数习题及答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】指数函数习题一、选择题1.定义运算ab=,则函数f(x)=12x的图象大致为( )2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( ) A.(-1,+∞)B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若AB,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a 的取值范围是( )A.(0,]∪[2,+∞)B.[,1)∪(1,4]C.[,1)∪(1,2]D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=211.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由ab=得f(x)=12x=答案:A2.解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增. 若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x ). 若x <0,则3x <2x <1,∴f (3x )>f (2x ). ∴f (3x )≥f (2x ). 答案:A3.解析:由于函数y =|2x -1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4.解析:由题意得:A =(1,2),a x -2x >1且a >2,由AB 知a x -2x >1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5.解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数, 注意a 8-6>(3-a )×7-3,所以,解得2<a <3. 答案:C6.解析:f (x )<x 2-a x <x 2-<a x ,考查函数y =a x 与y =x 2-的图象, 当a >1时,必有a -1≥,即1<a ≤2, 当0<a <1时,必有a ≥,即≤a <1, 综上,≤a <1或1<a ≤2. 答案:C7.解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =,得a =.当0<a <1时,y =a x 在[1,2]上单调递减,故a -a 2=,得a =.故a =或. 答案:或8.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9.解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110.解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +)2+,∴当-4≤x ≤1时,t max =,此时x =-,t min =0,此时x =-4或x =1. ∴0≤t ≤.∴0≤≤.∴函数y =2341()2x x --+[,1].由t =-x 2-3x +4=-(x +)2+(-4≤x ≤1)可知,当-4≤x ≤-时,t 是增函数, 当-≤x ≤1时,t 是减函数. 根据复合函数的单调性知:y =1()2[-4,-]上是减函数,在[-,1]上是增函数.∴函数的单调增区间是[-,1],单调减区间是[-4,-].11.解:令a x =t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,],故当t =,即x =-1时, y max =(+1)2-2=14. ∴a =或-(舍去). 综上可得a =3或.12.解:法一:(1)由已知得3a +2=183a =2a =log 32. (2)此时g (x )=λ·2x -4x , 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x ,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x ]≤0成立. 设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.。
2 62 指数和指数函数一、选择题 1.(3 6 a 9)4( 6 3 a 9)4 等于( )(A )a 16(B )a 8(C )a 4(D )a 22. 若 a>1,b<0,且 a b+a -b=2,则 a b -a -b 的值等于( )(A ) (B ) ± 2(C )-2(D )23. 函数 f (x )=(a 2-1)x在 R 上是减函数,则 a 的取值范围是()(A ) a > 1 (B ) a < 2 (C )a< (D )1< a < 14. 下列函数式中,满足 f(x+1)= f(x)的是() 21 1 (A)(x+1)(B)x+(C)2x(D)2-x245.下列 f(x)=(1+a x )2⋅ a-x 是( )(A )奇函数 (B )偶函数(C )非奇非偶函数(D )既奇且偶函数1 1 11 1 16.已知 a>b,ab ≠ 0 下列不等式(1)a 2>b 2,(2)2a>2b,(3) < ,(4)a 3 >b 3 ,(5)( )a <( )ba b 3 3中恒成立的有( ) (A )1 个(B )2 个 (C )3 个 (D )4 个2 x - 17. 函数 y=是( )2 x+ 1 (A )奇函数(B )偶函数(C )既奇又偶函数(D )非奇非偶函数18. 函数 y=的值域是( )2 x- 1(A )(- ∞,1)(B )(- ∞, 0) ⋃ (0,+ ∞ )(C )(-1,+ ∞ ) (D )(- ∞ ,-1) ⋃ (0,+ ∞ )9. 下列函数中,值域为 R +的是( )1(A )y=5 2-xe x - e - x1(B )y=( )1-x(C )y= 3(D )y= 10. 函数 y= 的反函数是()2(A )奇函数且在 R +上是减函数(B )偶函数且在 R +上是减函数(C )奇函数且在 R +上是增函数 (D )偶函数且在 R +上是增函数11.下列关系中正确的是( )1 2 1 2 1 11 1 12 1 2(A )( ) 3 <( ) 3 <( ) 3(B )( ) 3 <( ) 3 <( ) 32 5 21 2 1 1 1 22 2 51 2 1 2 1 1(C )( ) 3 <( ) 3 <( )3 (D )( ) 3 <( ) 3 <( ) 3 5 2 25 2 22 ( 1 ) x - 1 21 -2 xx 12. 若函数 y=3+2x-1的反函数的图像经过 P 点,则 P 点坐标是()(A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1)13. 函数 f(x)=3x +5,则 f -1(x)的定义域是( ) (A )(0,+ ∞ ) (B )(5,+ ∞ ) (C )(6,+ ∞ ) (D )(- ∞ ,+ ∞ )14. 若方程 a x-x-a=0 有两个根,则 a 的取值范围是( ) (A )(1,+ ∞ ) (B )(0,1) (C )(0,+ ∞ ) (D )15. 已知函数 f(x)=a x+k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数 f(x)的表达式是( )(A)f(x)=2x +5 (B)f(x)=5x +3 (C)f(x)=3x+4(D)f(x)=4x+316. 已知三个实数 a,b=a a,c=a aa,其中 0.9<a<1,则这三个数之间的大小关系是()(A )a<c<b (B )a<b<c (C )b<a<c (D )c<a<b17.已知 0<a<1,b<-1,则函数 y=a x+b 的图像必定不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 二、填空题31.若 a2 <a 2 ,则 a 的取值范围是 。
2024....二、多选题.函数,若对任意实数、,,则下列结论错误的是()(32log f x x x =++a b 0a b +>A .方程有且只有6个不同的解B .方程()()0f g x =解C .方程有且只有5个不同的解D .方程()()0f f x =解的零点个数为 .()4log =-y f x x16.已知函数,若方程有4个不同的实根,,,22log (1),13()1357,322x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩()34f x =1x 2x 3x 且,则.4x 1234x x x x <<<()341211x x x x ⎛⎫++=⎪⎝⎭答案:1.C【分析】根据函数的单调性,借助中间值比较大小.【详解】因为函数在单调递增,且,所以,即,2log y x =()0,∞+π2>22log π>log 21=1a >因为函数在单调递减,且,所以,即,0.5log y x =()0,∞+π1>0.50.5log π<log 1=00b <因为函数在单调递增,且,所以,即,πxy =(),-∞+∞20-<200<ππ1-<=01c <<所以,a c b >>故选:C 2.A【分析】由提供的数据知,描述西红柿种植成本与上市时间的变化关系函数不可能是单Q t 调函数,故选取二次函数进行描述,将表格所提供的三组数据代入,即得函2Q at bt c =++Q 数解析式,进而求解.【详解】因为随着时间的增加,种植成本先减少后增加,所以函数不单调,所以选取,且开口向上,2Q at bt c =++将表格中的三组数据分别代入,2Q at bt c =++得解得116360060,8410000100,11632400180,a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩0.01,2.4,224,a b c =⎧⎪=-⎨⎪=⎩即,对称轴,开口向上,20.01 2.4224Q t t =-+ 2.412020.01t -=-=⨯在对称轴处即120天时函数取最小值.∴t =西红柿种植成本最低时的上市天数是120天.∴故选:A.3.C【分析】由指数函数的性质分别对和的情况讨论单调性并求值域,从而列方程组01a <<1a >即可得到答案.【详解】函数(且)的值域为,2x y a =-0a >1,11a x ≠-≤≤5,13⎡⎤-⎢⎥⎣⎦又由指数函数的单调性可知,当时,函数在上单调递减,值域是01a <<2xy a =-[]1,1-12,2a a -⎡⎤--⎣⎦所以有,即,解得;110152321a a a -<<⎧⎪⎪-=-⎨⎪-=⎪⎩101133a a a -<<⎧⎪⎪=⎨⎪=⎪⎩13a =当时,函数在上单调递增,值域是1a >2x y a =-[]1,1-12,2a a -⎡⎤--⎣⎦所以有,即 ,解得.11152321a a a ->⎧⎪⎪-=-⎨⎪-=⎪⎩11133a a a ->⎧⎪⎪=⎨⎪=⎪⎩3a =综上所述,或.13a =3a =故选:C.4.B【分析】结合已知条件,利用抽象函数的定义域以及对数、分式的定义域求法求解即可.【详解】因为函数的定义域是,()f x [1,2022]所以对于有:,(1)()lg f x g x x +=1120220lg 0x x x ≤+≤⎧⎪>⎨⎪≠⎩解得:且,02021x <≤1x ≠故函数的定义域是,()()1ln f x g x x+=(01)(1],,2021⋃故选:B .5.A【分析】根据题意,求得,得到,结合零点的存在性定理,3()0,(2)02f f >>3(1)()02f f ⋅<即可求解.【详解】由函数,且,可得,()348f x x x =+-()()10,30f f <>3()70,(2)2602f f =>=>所以,根据零点的存在性定理,3(1)()02f f ⋅<可得方程的近似解落在区间为.3480x x +-=31,2⎛⎫⎪⎝⎭故选:A.6.C【分析】根据给定条件,可得函数在R 上单调递增,再利用分段函数及对数函数单调性()f x 列出不等式求解即得.【详解】函数的定义域为R ,(2)1,1()log ,1a a x x f x x x --≤⎧=⎨>⎩由对任意,都有,得函数在R 上单调递增,12x x ≠1212()()f x f x x x ->-()f x 于是,解得,20130a a a ->⎧⎪>⎨⎪-≤⎩23a <≤所以实数的取值范围为.a (]2,3故选:C 7.B【分析】利用对数的换底公式和运算法则即可得解.【详解】,,,230x y k ==>Q 23log ,log x k y k ==∴11log 2,log 3k k x y ∴==,,则.12log 2log 3log 61k k k x y ∴=+=+=∴26k =6k =故选:B.8.A【分析】由函数的定义域排除C ,由函数的奇偶性排除D ,由特殊的函数值排除B ,结合奇偶性和单调性判断A.【详解】由得,则函数的定义域为,排除选项C ;30x ->33x -<<()ln 3y x =-()3,3-又,所以为偶函数,则图象关于y 轴对称,排除选项D ;()()ln 3ln 3x x --=-()ln 3y x =-当时,,排除选项B ,52x =1ln 02y =<因为为偶函数,且当时,函数单调递减,()ln 3y x =-30x >>()()ln 3ln 3y x x =-=-选项A 中图象符合.故选:A 9.ACD【分析】分析函数的奇偶性与单调性,由已知可得出,结合函数的奇偶性()f x a b >-()f x与单调性可得出合适的选项.【详解】令,对任意的,,即,()()22log 1g x x x =++x ∈R 21x x x+>≥-210x x ++>所以,函数的定义域为,()g x R 则.()()()()2222221log 1log 1log1g x x x x x g x x x⎛⎫-=+--=+-==- ⎪⎝⎭++所以,函数是定义域为的奇函数,()g x R 因为函数、为上的增函数,1u x =221u x =+[)0,∞+所以,内层函数在上为增函数,21u x x =++[)0,∞+外层函数在上为增函数,2log y u =()0,∞+所以,函数在上为增函数,()()22log 1g x x x =++[)0,∞+由于函数是定义域为的奇函数,则该函数在上为增函数,()g x R (],0-∞所以,函数在上单调递增,()()22log 1g x x x =++R 因为的定义域为,则,()f x R ()()()()()33f x x g x x g x f x -=-+-=--=-所以,函数为奇函数,()f x 又因为函数为上的增函数,所以,函数在上单调递增.3y x =R ()f x R 因为,所以,则,即,A 错B 对,0a b +>a b >-()()()f a f b f b >-=-()()0f a f b +>又、的大小不确定,故CD 错.a b 故选:ACD.方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,且主要有以下几种命题角度;(1)函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性相结合,此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解;(3)周期性、奇偶性与单调性相结合,解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.10.ABC【分析】根据题意,由函数的定义,只需满足集合中的每一个元素在集合中都有唯一一P Q 个元素与之对应即可,再结合选项逐一分析,即可得到结果.【详解】选项A ,,集合中的每一个元素在集合中都有唯一一个元素与之1:2f x y x→=P Q 对应,故A 正确;选项B ,,集合中的每一个元素在集合中都有唯一一个元素与之对应,故13:f x y x →=P Q B 正确;选项C ,,集合中的每一个元素在集合中都有唯一一个元素与之对应,1:2xf x y ⎛⎫→= ⎪⎝⎭P Q 故C 正确;选项D ,,集合中的1,在集合中没有元素与之对应,故D 错误;:ln f x y x →=P Q 故选:ABC 11.ABD【分析】根据奇偶性的定义即可判断A,根据基本函数的单调性即可判断BC ,根据反函数的性质即可判断D.【详解】对于A ,定义域为,关于原点对称,又由于()f x R ()()e e e e ,,22x x x xf x f x --++=-=,所以为偶函数,A 正确,()()=f x f x -()f x 对于B ,,由于函数在单调递增,所以在()e 121e 1e 1x x x f x -==-++e 1xy =+x ∈R 1e 1x y =+单调递减,因此在单调递增,B 正确,x ∈R ()21e 1xf x =-+x ∈R 对于C ,由于函数为定义域上的偶函数,当时,在区间上单调递lg y x=0x >lg y x =()0,∞+增,故C 错误,对于D ,由于函数与互为反函数,所以两者图象关于,D 正13xy ⎛⎫= ⎪⎝⎭133log log y x x ==-y x =确,故选:ABD 12.ACD【分析】令,结合图象可得有3个不同的解,,,不妨设,()t x g =()0f t =1t 2t 3t 123t t t <<则可知,,,令,结合图象可得有2个不同的解121t -<<-2t =312t <<()m f x =()0g m =,,不妨设,则可知,,再数形结合求出复合函数的解的1m 2m 12m m <121m -<<-201m <<个数.【详解】A 选项,令,结合图象可得有3个不同的解,,,()t x g =()0f t =1t 2t 3t 不妨设,则可知,,,123t t t <<121t -<<-20t =312t <<由图可知有2个不同的解,有2个不同的解,有2个不同的解,()1g x t =()2g x t =()3g x t =即有6个不同的解,A 正确;()()0f g x =B 选项,令,结合图象可得有2个不同的解,,()m f x =()0g m =1m 2m 不妨设,则可知,,12m m <121m -<<-201m <<由图可知有1个解,有3个不同的解,()1f x m =()2f x m =即有4个不同的解,B 错误;()()0g f x =C 选项,令,结合图象可得有3个不同的解,,()m f x =()0f m =1m 2m 3m 且,,,121m -<<-20m =312m <<由图可知有1个解,有3个不同的解,有1个解,()1f x m =()2f x m =()3f x m =即有5个不同的解,C 正确;()()0f f x =D 选项,令,结合图象可得有两个不同的解,()t x g =()0g t =1t2t 不妨设,则可知,,12t t <121t -<<-201t <<由图可知有2个不同的解,有2个不同的解,()1g x t =()2g x t =即有4个不同的解,D 正确.()()0g g x =故选:ACD .13.193【分析】利用位数的定义,结合对数运算法则即可得解.k故答案为.14。
指数函数的性质与图像练习题(1)1. 下列函数中,既是偶函数又在(−∞, 0)上是单调递减的是( )A.y =−cos xB.y =lg |x|C.y =1−x 2D.y =e −x2. 函数f(x)=cos x x 的图象大致为( )A. B.C.D.3. 指数函数y =a x 的图象经过点(3, 27),则a 的值是( )A.3B.9C.D.4. 已知a =(35)−13,b =(35)−14,c =(23)−14,则a 、b 、c 的大小关系是( )A.c <a <bB.a <b <cC.b <a <cD.c <b <a5. 若P =√2,Q =√6−√2,则P ,Q 中较大的数是________.6. 函数y =lg (4+3x −x 2)的单调增区间为________.7. 函数y =a x+1−2的图象恒过一定点,这个定点是________.8. 已知指数函数f(x)=(3m 2−7m +3)m x 是减函数,求实数m 的值.lg(x+1)的定义域为A,集合B={x||x|≤2}.9. 已知函数f(x)=√2−x(1)求A;(2)求A∩B.10. 已知函数f(x)=x2+(1−a)x−a(a∈R).(1)解关于x的不等式f(x)<0;(2)若∀a∈[−1, 1],f(x)≥0恒成立,求实数x的取值范围.参考答案与试题解析指数函数的性质与图像练习题(1)一、选择题(本题共计 4 小题,每题 5 分,共计20分)1.【答案】B【考点】函数单调性的性质与判断函数奇偶性的性质与判断【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.【解答】根据题意,依次分析选项:对于A,y=−cos x,为偶函数,但在区间(−∞, 0)上不是单调函数,不符合题意;对于B,y=lg|x|,既是偶函数又在(−∞, 0)上是单调递减,符合题意;对于C,y=1−x2,为偶函数,但在区间(−∞, 0)上是增函数,不符合题意;对于D,y=e−x,不是偶函数,不符合题意;2.【答案】D【考点】函数的图象与图象的变换【解析】先判断函数的奇偶性,再判断函数值的变化趋势.【解答】f(−x)=cos(−x)−x =−cos xx=−f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=π3时,f(π3)=12π3=6π3.【答案】A【考点】指数函数的单调性与特殊点【解析】此题暂无解析【解答】此题暂无解答4.【答案】D【考点】指数函数的图象与性质【解析】根据指数函数的性质判断即可.【解答】y =(35)x 是减函数,故a =(35)−13>b =(35)−14,而b =(35)−14>c =(23)−14,故c <b <a ,二、 填空题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )5.【答案】P【考点】利用不等式比较两数大小【解析】作差利用幂函数的单调性即可得出.【解答】P −Q =2√2−√6=√8−√6>0,∴ P >Q .6.【答案】(−, 32] 【考点】复合函数的单调性【解析】函数y =lg (4+3x −x 2)的增区间即为函数y =4+3x −x 2的增区间且4+3x −x 2>0,由此即可求得.【解答】解:由4+3x −x 2>0,解得−1<x <4,所以函数的定义域为(−1, 4).函数y =lg (4+3x −x 2)的增区间即为函数y =4+3x −x 2的增区间且4+3x −x 2>0, 因此所求增区间为(−1, 32]. 故答案为:(−1, 32]. 7.【答案】(−1, −1)【考点】指数函数的单调性与特殊点【解析】令解析式中的指数x +1=0求出x 的值,再代入解析式求出y 的值,即得到定点的坐标.【解答】解:令x +1=0解得,x =−1,代入y =a x+1−2得,y =−1,∴ 函数图象过定点(−1, −1),故答案为:(−1, −1).三、 解答题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )8.【答案】解:由题意得,得3m −7m +3=1,解得m =13或m =2, 又f(x)是减函数,则0<m <1,所以m =13.【考点】指数函数的单调性与特殊点【解析】由指数函数的概念得3m −7m +3=1,求出m 的值,再由指数函数的单调性和f(x)是减函数,对m 的值进行取舍.【解答】解:由题意得,得3m −7m +3=1,解得m =13或m =2,又f(x)是减函数,则0<m <1,所以m =13. 9.【答案】解:(1)据题意,得{x +1>0,2−x >0,∴ −1<x <2,∴ A =(−1,2).(2)据(1)求解知 A =(−1,2).又∵ B ={x||x|≤2}={x|−2≤x ≤2},∴ A ∩B =(−1,2).【考点】函数的定义域及其求法交集及其运算【解析】此题暂无解析【解答】解:(1)据题意,得{x +1>0,2−x >0,∴ −1<x <2,∴ A =(−1,2).(2)据(1)求解知 A =(−1,2).又∵ B ={x||x|≤2}={x|−2≤x ≤2},∴ A ∩B =(−1,2).10.【答案】不等式x 2+(1−a)x −a <0等价于(x −a)(x +1)<0,当a <−1时,不等式的解集为(a, −1);当a =−1时,不等式的解集为⌀;当a >−1时,不等式的解集为(−1, a).x 2+(1−a)x −a =−a(x +1)+x 2+x ,设g(a)=−a(x +1)+x 2+x ,a ∈[−1, 1],要使g(a)≥0在a ∈[−1, 1]上恒成立,只需{g(−1)≥0g(1)≥0, 即{x 2+2x +1≥0,x 2−1≥0,解得x ≥1或x ≤−1,所以x 的取值范围为{x|x ≤−1或x ≥1}.【考点】函数恒成立问题【解析】(1)不等式x 2+(1−a)x −a <0等价于(x −a)(x +1)<0,通过a 与−1的大小比较,求解即可.(2)x 2+(1−a)x −a =−a(x +1)+x 2+x ,设g(a)=−a(x +1)+x 2+x ,a ∈[−1, 1],要使g(a)≥0在a ∈[−1, 1]上恒成立,只需{g(−1)≥0g(1)≥0,求解即可. 【解答】不等式x 2+(1−a)x −a <0等价于(x −a)(x +1)<0,当a <−1时,不等式的解集为(a, −1);当a =−1时,不等式的解集为⌀;当a >−1时,不等式的解集为(−1, a).x 2+(1−a)x −a =−a(x +1)+x 2+x ,设g(a)=−a(x +1)+x 2+x ,a ∈[−1, 1],要使g(a)≥0在a ∈[−1, 1]上恒成立,只需{g(−1)≥0g(1)≥0, 即{x 2+2x +1≥0,x 2−1≥0,解得x ≥1或x ≤−1,所以x 的取值范围为{x|x ≤−1或x ≥1}.。
指数函数及其性质习题(含答案)一、单选题的图象可能是( ) 1.在同一坐标系内,函数y=x a(a≠0)和y=ax+1aA.B.C.D.−1,若f(a)=1,则f(−a)=()2.已知函数f(x)=(e x+e−x)ln1−x1+xA.1B.−1C.3D.−33.已知函数f(x)=(x−a)(x−b)(其中a>b)的图象如图所示,则函数g(x)=a x +b的图象大致是( )A.B..C.D.4.已知a=log40.7,b=log23,c=0.20.6,则a,b,c的大小关系是( )A.c<b<a B.a<c<b C.b<a<c D.a<b<c5.函数y=a x+1−3(a>0,且a≠1)的图象一定经过的点是( )A.(0,−2)B.(−1,−3)C.(0,−3)D.(−1,−2)6.在同一坐标系中,函数y=2−x与y=−log2x的图象都正确的是()A.B.C.D .7.设a =20.5,b =0.52,c =log 20.5,则a,b,c 的大小关系为A . c >a >bB . c >b >aC . a >b >cD . b >a >c8.若01a b <<<,则b a , a b , log b a ,)A .B .C .D .9.若a ,b ,c 满足2a =3,b =log 25,3c =2,则( )A . c <a <bB . b <c <aC . a <b <cD . c <b <a二、填空题10.已知: 12a a -+=,则22a a -+=__________.11.函数()2x f x =在[]1,3-上的最小值是__________. 12.函数y=a x+2-1(a>0且a≠1)的图象恒过定点________.13.求值:2log 323−log 3427−31+log 32=__________.14.函数f(x)=(12)−x2+2x+1的单调减区间为________. 15,.16.计算:. 17.若函数()()23x f x a =-在R 上是减函数,则实数a 的取值范围是________18.已知函数()x f x a b =+ ()0,1a a >≠的定义域和值域都是[]1,0-,则b a =__________.三、解答题19.(1)计算:(−3)−(1−0.5−2)÷(338)13;(2)已知a =log 32,3b =5用a,b 表示log 3√30.20.(1)(2)已知15a a-+=,求22a a -+和.21.计算: (1))213013210.027163217---⎛⎫--+-+⋅ ⎪⎝⎭. (222.化简求值 (1) (827)23+(0.008)−23×225(2) 12523+(12)−2−(127)−13+10012+lg3+14lg9−lg √3lg81−lg2723.已知定义在R 上的函数f(x)=b−2x2x +a 是奇函数.⑴求a , b 的值,并判断函数f(x)在定义域中的单调性(不用证明);⑵若对任意的t ∈R ,不等式f(t 2−2t)+f(2t 2−k)<0恒成立,求实数k 的取值范围.24.若函数f(x)=a x −1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值.25.(本小题满分10分)已知函数f(x)=log 4(4x +1)+kx(k ∈R)是偶函数.(1)求实数k 的值;(2)设g(x)=log 4(a ⋅2x +a),若f(x)= g(x)有且只有一个实数解,求实数a 的取值范围.26.计算:(1) (−338)−23+0.002−12−10(√5−2)−1+(√2−√3)0; (2)lg 5(lg 8+lg 1 000)+3lg 22+lg 16+lg 0.06. 27.已知f(x)=4x−1−2x +5,x ∈[−2,2].(1)求f(x)的值域.(2)若f(x)>3m 2+am +2对任意a ∈[−1,1]和x ∈[−2,2]都成立,求m 的取值范围.28.计算下列各式的值;(1)(2)参考答案1.B【解析】【分析】分两种情况讨论,利用函数的单调性,筛选排除即可得结果【详解】若a>0,y=x a在(0,+∞)递增,排除A,B选项,y=ax+1a递增,排除D;纵轴上截距为正数,排除C,即a>0时,不合题意;若a<0,y=x a在(0,+∞)递减,可排除C,D选项,由y=ax+1a递减可排除A,故选B.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及x→0+,x→0−,x→+∞,x→−∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.2.D【解析】分析:先化简f(a)=1得到(e a+e−a)ln1+a1−a=−2,再求f(−a)的值.详解:由题得(e a+e−a)ln1−a1+a −1=1,∴(e a+e−a)ln1−a1+a=2,∴−(e a+e−a)ln1+a1−a=2,∴(e a+e−a)ln1+a1−a=−2.所以f(−a)=(e−a+e a)ln1+a1−a−1=−2−1=−3.故答案为:D点睛:(1)本题主要考查函数求值和指数对数运算,意在考查学生对这些基础知识的掌握能力和运算能力.(2)解答本题的关键是整体代入求值.3.D【解析】【分析】根据二次函数的图象得到−1<b<0,a>1,继而得到g(x)=a x+b的图象经过一二三象限,问题得以解决.【详解】因为a,b 是二次函数的零点,由二次函数f (x )=(x −a )(x −b )(其中a >b )的图象可知−1<b <0,a >1, 所以g (x )=a x +b 的图象经过一二三象限,只有选项D 符合题意,故选D.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象4.B【解析】【分析】利用指数与对数的单调性与中间量0,1可求得三个数大小。
指数函数1.指数函数的定义: y a x(a 0且a 1) 的图象和性质。
a>1 0<a<1图 象111性 质(1) 定义域: R(2)值域:(0,+∞)(3)过点( 0,1),即 x=0 时,y=1 (4)在 R 上是增函(4)在 R 上是减函指数函数是高中数学中的一个基本初等函数, 有关指数函数的图象与性质的 题目类型较多, 同时也是学习后续数学内容的基础和高考考查的重点, 本文对此 部分题目类型作了初步总结,与大家共同探讨.1.比较大小例 1 已知函数 f (x) x 2 bx c 满足 f (1 x) f (1 x),且 f(0) 3 ,则 f(b x)与函数 y a x(a 0且a 1)叫做指数函数,其中 x 是自变量,函数定义域是 R我 们 观 察 y= 2x , y= 2 , y=10x, y= 10 图 象 特 征 , 就 可 以 得 到f(c ) 的大小关系是.分析:先求b,c的值再比较大小,要注意b x,c x的取值是否在同一单调区间内.解:∵ f (1 x) f (1 x) ,∴函数 f (x) 的对称轴是x 1 .故b 2,又f(0) 3,∴ c 3.∴函数f(x)在∞,1 上递减,在1,∞ 上递增.若x≥0,则3x≥2x≥1,∴ f(3x)≥f(2x);若x 0,则3x 2x 1,∴ f(3x) f(2x).综上可得f(3x)≥ f(2x),即f(c x)≥ f(b x).评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式例 2 已知(a2 2a 5)3x (a2 2a 5)1 x,则x 的取值范围是_____ .分析:利用指数函数的单调性求解,注意底数的取值范围.解:∵ a2 2a 5 (a 1)2 4≥ 4 1 ,∴函数y (a2 2a 5)x在( ∞,∞) 上是增函数,∴3x 1 x,解得x 1.∴x的取值范围是1,∞ .44 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与 1 的大小,对于含有参数的要注意对参数进行讨论.3.求定义域及值域问题例 3 求函数y 1 6x 2的定义域和值域.解:由题意可得 1 6x 2≥0,即6x 2≤1,∴x 2≤0,故x≤2.∴函数 f (x)的定义域是∞,2 .令t 6x 2,则y 1 t ,又∵ x≤2 ,∴ x 2≤ 0.∴ 0 6x 2≤1,即0 t≤1.∴ 0 ≤ 1 t 1 ,即0 ≤ y 1 .∴函数的值域是0,1 .评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 4.最值问题例 4 函数 y a 2x 2a x 1(a 0且a 1)在区间 [ 1,1] 上有最大值 14,则a 的值 是 .分析:令 t a x 可将问题转化成二次函数的最值问题,需注意换元后 t 的取值 范围.解:令 t a x,则 t 0,函数 y a 2x 2a x 1可化为 y (t 1)22 ,其对称轴为 t 1 .∴当a1 时,∵x 1,1 ,∴1≤ a x ≤ a ,即 1≤t ≤ a . aa∴当t a 时, y max2(a 1)2214 . 解得a 3 或a 5 (舍去) 当 0 a 1 时,∵ x 1,1 ,∴a ≤ a x≤ 1,即 a ≤ t ≤ 1, aa1 12∴ t 时, y max 1 2 14 ,aa解得a 1或a 1 (舍去),∴ a 的值是 3或1.3 5 3 评注:利用指数函数的单调性求最值时注意一些方法的运用, 比如:换元法, 整体代入等. 5.解指数方程 例 5 解方程 3x 2 32 x80 .解:原方程可化为 9 (3x )2 80 3x 9 0 ,令 t 3x(t 0),上述方程可化为9t 2 80t 9 0,解得 t 9或t 1 (舍去),∴ 3x 9,∴ x 2 ,经检验原方程的 9解是 x 2 . 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题例 6 为了得到函数 y 9 3x 5的图象,可以把函数 y 3x 的图象( ).A .向左平移 9 个单位长度,再向上平移 5 个单位长度B .向右平移 9个单位长度,再向下平移 5 个单位长度C .向左平移 2 个单位长度,再向上平移 5 个单位长度D .向右平移 2 个单位长度,再向下平移 5 个单位长度 分析:注意先将函数 y 9 3x5转化为t 3x 25 ,再利用图象的平移规律进 行判断.解:∵ y 9 3x5 3x 25 ,∴把函数 y 3x的图象向左平移 2 个单位长度, 再向上平移 5 个单位长度,可得到函数 y 9 3x5的图象,故选( C ). 评注:用函数图象解决问题是中学数学的重要方法, 利用其直观性实现数形 结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、 伸缩、对称等. 习题1、比较下列各组数的大小:1)若 ,比较与2) 3) 4若 ,比较 与 ; 若 ,比较 与 ; 若 ,且 , 若 ,且 ,故解:(1)由,此时函数比较 a 与 b ; ,比较 a 与 b . 为减函数. 由 ,.又 ,故 (3)由 ,因 ,故 .又而.2)由 ,故.从而 ,故.从(4)应有 .因若 ,则.又.又因 ,故 .从而 , (5)应有 .因若,则.又,故 这与已知,故这样 矛,这样有.又因 ,且 ,故 .从而 ,这与已知矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2,曲线分别是指数函数, 和的图象, 则与1 的大小关系是( ).(分析:首先可以根据指数函数单调性, 确定, 在轴右侧令, 由小到大依次为, 故应选.小结: 这种类型题目是比较典型的数形结合的题目由数到形的转化,第(2) 题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识. 求最值3,求下列函数的定义域与值域1(1)y =2 x 3; (2)y =4x+2x+1+1.5、设 ,求函数 的最大值和最小值.分析:注意到 ,设,利用闭区间上二次函数的值域的求法,可求得函数的最值. 解:设 ,由 知, ,函数成为 , ,对称轴,因端点 较 距对称.6.(9 分)已知函数 y a 2x 2a x1(a 1) 在区间[-1,1]上的最大值是 14,求 a 的值.1.解: y a 2x 2a x 1(a 1), 换元为 y t 22t 1( t a ) ,对称轴为 t 1. a 当a 1,t a ,即 x=1 时取最大值,略 解得 a=3 (a= -5舍去 )7.已知函数 ( 且(1)求 的最小值; (2)若 求 的取值范围..解:( 1) 时, 有最小值为( 2) ,解得当 时, ; 当 时, .28(10分)(1)已知 f (x ) x 2m 是奇函数,求常数 m 的值;3x12)画出函数 y |3x1|的图象,并利用图象回答: k 为何值时,方程 |3Xk 无解?有一解?有两解?,则原来的函数成为,故函数最小值为轴 远,故函数的最大值为)解: (1)常数 m=1(2)当k<0时,直线y=k 与函数 y |3x1|的图象无交点 ,即方程无解;当k=0或k 1时, 直线y=k 与函数 y |3 1| 的图象有唯一的交点,所以方程 有一解;当 0<k<1 时, 直线 y=k 与函数 y |3x 1|的图象有两个不同交点, 所以方程有 两解。
百度文库 - 让每个人平等地提升自我1.给出下列结论:② na n =|a|(n>1, n ∈ N * ,n 为偶数 );④若 2x =16,3y=271,则 x +y =7.其中正确的是 ( )A .①②B .②③C .③④D .②④答案 B 解析xy1∵2 =16,∴x =4,∵3 =27,∴y =- 3. ∴x + y =4+(-3)= 1,故④错..函数 =x的值域是 () 2y 16-4 A .[0,+∞ ) B .[0,4] C .[0,4)D .(0,4)答案 C .函数 f(x) =3 -x-1 的定义域、值域是 ()3 A .定义域是 R ,值域是 RB .定义域是 R ,值域是 (0,+∞ )C .定义域是 R ,值域是 (- 1,+∞ )D .以上都不对答案C1 x解析f(x)=(3) -1,∵(13)x >0,∴f(x)>-1.1 -,则 ( )4.设 y 1=, y 2=, y 3=(2) A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3 D .y 1>y 3>y 2答案 D解析y 1 =, y 2 =, y 3=,∵y = 2x 在定义域内为增函数,∴ y 1>y 3>y 2.5.函数 f(x)=a x -b 的图像如图,其中 a ,b 为常数,则下列结论正确的是 ()A .a>1, b<0B .a>1,b>0C .0<a<1,b>0D .0<a<1,b<0答案D6.(2014 成·都二诊 )若函数 f(x)=(a + x 1 )cosx 是奇函数,则常数 a 的值等e -1于 ()A .-1B .1C .- 12 答案D7.(2014 ·东师大附中山 ) 集合 = , = a} ,集合x+1,A {( x y)|yB ={( x ,y)|y = b b>0, b ≠ 1} ,若集合 A ∩ B 只有一个子集,则实数 a 的取值范围是 ()A .(-∞, 1)B .(-∞, 1]C .(1,+∞ )D .R答案 B .函数 x -2x 在 x ∈[0,+∞ )上的最小值是 ()8 f(x)=3·41 A .-12 B .0C .2D .10答案 C解析 设 t =2x,∵ ∈ ,+ ∞ ,∴≥1.x [0 ) t ∵y = 3t 2-t(t ≥1)的最小值为 2,∴函数f(x)的最小值为 2.x -1,x>0,9.已知函数 f(x)= -若关于 x 的方程 f(x)+2x - k = 0 有且只2 |x|+ 1, x ≤ 0.有两个不同的实根,则实数 k 的取值范围为 ()A .(-1,2]B .(-∞, 1]∪(2,+∞ )C .(0,1]D .[1,+∞ )答案 A解析 在同一坐标系中作出 y =f(x)和 y =- 2x +k 的图像,数形结合即可..函数y = |x|的定义域为 [a ,b] ,值域为 [1,16] ,当 a 变化时,函数 b =g(a) 10 2的图像可以是 ( )答案 B解析函数 y= 2|x|的图像如图.当 a=- 4 时, 0≤b≤4;当 b=4 时,- 4≤a≤0.11.若函数 y= (a2-1)x在(-∞,+∞ )上为减函数,则实数 a 的取值范围是________.答案(-2,- 1)∪(1,2)解析函数 y=(a2-1)x在(-∞,+∞)上为减函数,则0<a2- 1<1,解得1<a< 2或-2<a<-1.12.函数 y =a x 在[0,1] 上的最大值与最小值的和为 3,则 a =________.答案2解析∵y = a x 在[0,1] 上为单调函数,∴a 0+a 1=3,∴a =2.|2x-4|1 13.(2014 ·沧州七校联考 )若函数 f(x)= a(a>0,a ≠1)满足 f(1)= ,则 f(x)9的单调递减区间是 ________.答案 [2,+∞ )解析 f(1)=a 2= 1, = 1,9 a 312x 4 , x ≥2,3-f(x)=1 4 2x, x<2.3 -∴单调递减区间为 [2,+ ∞).14.若 0<a<1,0<b<1,且,则 x 的取值范围是 ________.答案 (3,4)解析 log b (x - ,∴ - ,∴3)>0 0<x 3<1 3<x<4.15.若函数 y =2-x +1+m 的图像不经过第一象限, 则 m 的取值范围是 ______. 答案 m ≤- 216.是否存在实数 a ,使函数 y =a 2x +2a x-1(a>0 且 a ≠1)在 [-1,1]上的最大 值是 14?1答案 a =3 或 a =3解析 令 t =a x ,则 y =t 2+2t -1.(1)当 a>1 时,∵x ∈[-1,1],x11∴a ∈[a ,a] ,即 t ∈[a ,a].∴y = t 2+ 2t -1=(t +1)2-2 在[ 11 )., a] 上是增函数 (对称轴 t =- 1<aa∴当t =a 时, y max =(a +1)2-2=14.∴a = 3 或 a =- 5.∵a>1,∴a =3.1(2)当 0<a<1 时, t ∈[a ,a ].∵y = (t + 1)2-12 在 [a ,a ]上是增函数, max12 ∴y =(a +1) -2=14.1 11∴a = 3或 a =- 5.∵0<a<1,∴a =3.1综上, a =3 或 a =3.17. (2011 ·海上 )已知函数 f(x)= a ·2x +b ·3x ,其中 a , b 满足 a ·b ≠ 0.(1)若 a ·b>0,判断函数 f(x)的单调性;(2)若 a ·b<0,求 f(x +1)>f(x)时的 x 的取值范围.答案(1)a>0, b>0 时, f(x)增函数; a<0,b<0 时, f(x)减函数(2)a<0, b>0 时, x>;a>0,b<0 时, x<解析(1)当 a>0,b>0 时,任意 x 1, x 2∈R , x 1<x 2,∴f(x 1)-f(x 2)<0,∴函数f(x)在 R 上是增函数.当 a<0,b<0 时,同理,函数 f(x)在 R 上是减函数.(2)f(x +1)- f(x)= a ·2x +2b ·3x >0.当 a<0,b>0 时, 3 x>- a,则 x>;22b3 xa当 a>0,b<0 时, 2 <-2b ,则 x<.2x18.已知函数 f(x)=- 2x +1.(1)用定义证明函数f(x)在(-∞,+∞ )上为减函数;(2)若 x∈[1,2] ,求函数 f(x)的值域;(3)若 g(x)=a+f(x),且当 x∈[1,2] 时 g(x)≥0 恒成立,求实数 a 的取值范围.2答案 (1)略(2)[ -4 2 8 5,-3](3)a≥5(2)∵f(x)在(-∞,+∞) 上为减函数,4 2∴f(x)的值域为 [ -5,-3] .a 4 a 2(3)当 x∈[1,2] 时, g(x)∈[2-5,2-3] .∵g(x)≥0 在 x∈[1,2] 上恒成立,a 4 8.∴ -≥ 0,∴a≥2 5 5。
指数函数练习题一.选择题:1.某种细菌在培育过程中,每 20 分钟分裂一次(一个分裂为两个) 。
经过 3 个小时,这类细菌由 1个可生殖成()A.511个B.512 个C.1023个D.1024 个2.在一致平面直角坐标系中,函数f ( x)ax 与 g (x)a x 的图像可能是()yy y y1111xoxoxoo xDABC3.设 a,b, c, d 都是不等于 1的正数, ya x , yb x , yc x , yd x 在同一坐标系中的图像yy c x如下图,则a,b, c, d 的大小次序是()y b xyaxy dxA.a b c dB.a b d cC.b ad cD.b a c dx4.若1 x 0 ,那么以下各不等式建立的是()oA.2 x 2 x 0.2xB.2x 0.2 x 2xC .0.2x 2 x 2 xD .2 x 2 x0.2 x5 函数 f (x)(a 2 1) x 在 R 上是减函数,则 a 的取值范围是()A. a 1B. a 2C .a2D.1a26.函数 y1的值域是()2 x1A.( ,1)B.(,0) (0, )C.( 1, )D .( , 1) (0, )7.当 a1 时,函数 ya x 1是()a x1A. 奇函数B.偶函数C.既奇又偶函数D. 非奇非偶函数8.函数 ya x 21.(a 0 且 a1) 的图像必经过点()A.(0,1)B.(1,1)C.( 2,0)D.(2,2)9.若 x 0 是方程 2x1 的解,则 x 0 ( )xA.(0.1,0.2)B.(0.3,0.4)C.(0.5,0.7)D.(0.9,1)10.某厂 1998 年的产值为a万元,估计产值每年以n %递加,则该厂到2010年的产值(单位:万元)是()A.a(1 n % )13B.a(1n % )12 C .a(1 n% )11 D.10(1n %)129二.填空题:1.已知f (x)是指数函数,且35f ( ),则 f (3)2252.设0 a1,使不等式a x2 2 x 1a x23x 5建立的 x 的会合是3.若方程(1) x(1) x a0 有正数解,则实数 a 的取值范围是424.函数y(3x1) 082x的定义域为5.函数y2 x2x 的单一递加区间为三、解答题:x11.设0x 2 ,求函数y42 3 ? 2 x 5 的最大值和最小值。
高中数学:指数函数的概念练习及答案指数函数的概念1.下列函数中,是指数函数的是( )A.y=2·3xB.y=3x+1C.y=3xD.y=x32.下列以x为自变量的函数中,是指数函数的是( )A.y=(-5)xB.y=e x(e≈2.71828)C.y=-5xD.y=πx+23.函数y=(a2-5a+5)ax是指数函数,则有( )A.a=1或a=4B.a=1C.a=4D.a>0,且a≠14.若函数f(x)=(a-3)·a x是指数函数,则f(2)的值为( )A.4B.8C.2D.165.函数y=(m-2)x是指数函数,则m的取值范围是________.待定系数法求指数函数解析式6.指数函数y=a x的图象经过点(2,16),则a的值是( )A.B.C.2D.47.已知指数函数的图象经过点(-1,2),则指数函数的解析式为________.8.已知f(x)是指数函数,且f(1+)·f(1-)=9,则f(2+)·f(2-)的值为________.9.若指数函数f(x)的图象过点(1,),则f(-2)=________.指数函数的求值10.已知指数函数f(x)=a x(a>0,且a≠1)的图象过点(3,8),则a2.5与a2.3的大小为( )A.a2.5=a2.3B.a2.5<a2.3C.a2.5>a2.3D.无法确定11.已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于( )A.5B.7C.9D.1112.已知函数f(x)=则f[f(-4)]等于( )A.-4B.-C.4D.613.给出函数f(x)=,则f(-1)=________.14.若f(2x-1)=3x-2x,则f(4)=________.指数函数的实际应用15.设f(x)=则f(f(-2))等于( )A.-1B.C.D.16.某种细菌经60分钟培养,可繁殖为原来的2倍,且知该细菌的繁殖规律为y=10e kt,其中k为常数,t 表示时间(单位:小时),y表示细菌个数,10个细菌经过7小时培养,细菌能达到的个数为( ) A.640B.1280C.2560D.512017.某环保小组发现某市生活垃圾年增长率为b,2009年该市生活垃圾量为a吨,由此可以预测2019年垃圾量为( )A.a(1+10b)吨B.a(1+9b)吨C.a(1+b)10吨D.a(1+b)9吨18.某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么它就会在下一轮病毒发作时传播一次病毒,并感染其它20台未感染病毒的计算机.现有一台计算机被第一轮病毒感染,问被第4轮病毒感染的计算机有( )台.A.60B.400C.8000D.16000019.一种产品的成本是a元,在今后的n年内,计划成本每年比上一年降低p%,则成本随着年数变化的函数关系式是( )A.a(1-p%)n(n∈N*)B.a(p%)n(n∈N*)C.a(1-p)n%(n∈N*)D.a(1-np%)(n∈N*)20.据报道,全球变暖,使北冰洋冬季冰盖面积在最近50年内减少了5%,如果按此规律,设2000年的冬季冰盖面积为m,从2000年起,经过x年后冬季冰盖面积y与x的函数关系是( )A.y=·mB.y=(1-)·mC.y=0.9550·x·mD.y=(1-0.0550·x)·m21.某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用该药,服药后每毫升血液中的含药量y(μg)与服药后的时间t(h)之间近似满足如图所示的曲线.其中OA是线段,曲线段AB是函数y=k·at(t ≥1,a>0,k,a是常数)的图象.(1)写出服药后每毫升血液中含药量y关于时间t的函数关系式;(2)据测定:每毫升血液中含药量不少于2(μg)时治疗有效,假若某病人第一次服药为早上6:00,为保持疗效,第二次服药最迟是当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后在过3h,该病人每毫升血液中含药量为多少μg?(精确到0.1μg)答案1.下列函数中,是指数函数的是( )A.y=2·3xB.y=3x+1C.y=3xD.y=x3【答案】C【解析】形如y=ax(a>0,a≠1)的函数为指数函数,y=2·3x的3x系数不为1,y=3x+1的指数不是x,y=x2是幂函数,只有y=3x符合指数函数定义.故选C.2.下列以x为自变量的函数中,是指数函数的是( )A.y=(-5)xB.y=e x(e≈2.71828)C.y=-5xD.y=πx+2【答案】B3.函数y=(a2-5a+5)ax是指数函数,则有( )A.a=1或a=4B.a=1C.a=4D.a>0,且a≠1【答案】C【解析】∵函数y=(a2-5a+5)ax是指数函数,∴解得a=4.故选C.4.若函数f(x)=(a-3)·a x是指数函数,则f(2)的值为( ) A.4B.8C.2D.16【答案】D【解析】∵函数f(x)是指数函数,∴a-3=1,∴a=4.∴f(x)=4x,f(2)=42=16.5.函数y=(m-2)x是指数函数,则m的取值范围是________.【答案】m>2且m≠3【解析】根据指数函数的定义,y=ax中的底数a规定a>0且a≠1. 故此m-2>0且m-2≠1.所以m>2且m≠3.6.指数函数y=a x的图象经过点(2,16),则a的值是( )A.B.C.2D.4【答案】D【解析】指数函数y=ax(a>0且a≠1),将(2,16)代入,得16=a2,解得a=4,所以y=4x,故选D.7.已知指数函数的图象经过点(-1,2),则指数函数的解析式为________.【答案】y=()x【解析】设指数函数的解析为:y=ax(a>0,且a≠1),∵函数的图象经过(-1,2)点,∴2=a-1,∴a=,∴指数函数的解析式为y=()x,故答案为y=()x.8.已知f(x)是指数函数,且f(1+)·f(1-)=9,则f(2+)·f(2-)的值为________.【答案】81【解析】∵f(x)是指数函数,∴设f(x)=ax(a>0且a≠1),∵f(1+)·f(1-)=9,∴·=a2=9,即a=3.∴f(2+)·f(2-)=·=34=81,故答案为81.9.若指数函数f(x)的图象过点(1,),则f(-2)=________.【答案】4【解析】设指数函数为f(x)=ax(a>0且a≠1),将(1,)代入得=a1,解得a=,所以f(x)=()x,则f(-2)=()-2=4.故答案为4.10.已知指数函数f(x)=a x(a>0,且a≠1)的图象过点(3,8),则a2.5与a2.3的大小为( ) A.a2.5=a2.3B.a2.5<a2.3C.a2.5>a2.3D.无法确定【答案】C【解析】∵指数函数f(x)=ax(a>0,且a≠1)的图象过点(3,8),∴a3=8,解得a=2.∴f(x)=2x,且在R上单调递增,∴22.3<22.5.故选C.11.已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于( )A.5B.7C.9D.11【答案】B【解析】由f(a)=3,得2a+2-a=3,两边平方得,22a+2-2a+2=9,即22a+2-2a=7,∴f(2a)=7.选B项.12.已知函数f(x)=则f[f(-4)]等于( )A.-4B.-C.4D.6【答案】C【解析】f[f(-4)]=f[()-4]=f(16)==4.13.给出函数f(x)=,则f(-1)=________.【答案】9【解析】f(-1)=f(1)=f(3)=32=9.14.若f(2x-1)=3x-2x,则f(4)=________.【答案】21【解析】令2x-1=4,得x=3,将其代入f(2x-1)=3x-2x,得f(4)=33-2×3=21.15.设f(x)=则f(f(-2))等于( )A.-1B.C.D.【答案】C【解析】因为f(-2)=2-2=,所以f(f(-2))=f()=1-=1-=,故答案选C.16.某种细菌经60分钟培养,可繁殖为原来的2倍,且知该细菌的繁殖规律为y=10e kt,其中k为常数,t 表示时间(单位:小时),y表示细菌个数,10个细菌经过7小时培养,细菌能达到的个数为( ) A.640B.1280C.2560D.5120【答案】B【解析】设原来的细菌数为a.由题意可得,在函数y=10e kt中,当t=1时,y=2a.∴2a=10e k即e k=.当a=10时,e k=2,y=10e kt=10·2t,若t=7,则可得此时的细菌数为y=10×27=1280,故选B.17.某环保小组发现某市生活垃圾年增长率为b,2009年该市生活垃圾量为a吨,由此可以预测2019年垃圾量为( )A.a(1+10b)吨B.a(1+9b)吨C.a(1+b)10吨D.a(1+b)9吨【答案】C【解析】2009年该市生活垃圾量为a吨,所以2010年产生的垃圾量是a(1+b)吨,2011年产生的垃圾量是a(1+b)(1+b)=a(1+b)2吨,…由此可以预测2019年垃圾量为a(1+b)10吨.故选C.18.某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么它就会在下一轮病毒发作时传播一次病毒,并感染其它20台未感染病毒的计算机.现有一台计算机被第一轮病毒感染,问被第4轮病毒感染的计算机有( )台.A.60B.400C.8000D.160000【答案】C【解析】由题意可得,每一轮感染的计算机数量构成以1为首项,以20为公比的等比数列,故第4轮病毒感染的计算机数量为1×203=8000台,故选C.19.一种产品的成本是a元,在今后的n年内,计划成本每年比上一年降低p%,则成本随着年数变化的函数关系式是( )A.a(1-p%)n(n∈N*)B.a(p%)n(n∈N*)C.a(1-p)n%(n∈N*)D.a(1-np%)(n∈N*)【答案】A【解析】设成本经过x年降低到y元,第一年为y=a(1-p%),第二年为y=a(1-p%)(1-p%)=a(1-p%)2,第三年为y=a(1-p%)(1-p%)(1-p%)=a(1-p%)3,…则随着年数n变化的函数关系式是y=a(1-p%)n(n∈N*).故选A.20.据报道,全球变暖,使北冰洋冬季冰盖面积在最近50年内减少了5%,如果按此规律,设2000年的冬季冰盖面积为m,从2000年起,经过x年后冬季冰盖面积y与x的函数关系是( )A.y=·mB.y=(1-)·mC.y=0.9550·x·mD.y=(1-0.0550·x)·m【答案】A【解析】设北冰洋冬季冰盖面积的年平均变化率为p,则p50=0.95,∴p=,∴设2000年的冬季冰盖面积为m,从2000年起,经过x年后冬季冰盖面积y与x的函数关系是:y=·m. 故选A.21.某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用该药,服药后每毫升血液中的含药量y(μg)与服药后的时间t(h)之间近似满足如图所示的曲线.其中OA是线段,曲线段AB是函数y=k·at(t ≥1,a>0,k,a是常数)的图象.(1)写出服药后每毫升血液中含药量y关于时间t的函数关系式;(2)据测定:每毫升血液中含药量不少于2(μg)时治疗有效,假若某病人第一次服药为早上6:00,为保持疗效,第二次服药最迟是当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后在过3h,该病人每毫升血液中含药量为多少μg?(精确到0.1μg)【答案】(1)当0≤t<1时,y=8t;当t≥1时,把A(1,8)、B(7,1)代入y=kat,得解得故y =(2)设第一次服药后最迟过t小时服第二次药,则解得t=5,即第一次服药后5h服第二次药,也即上午11:00服药.(3)第二次服药3h后,每毫升血液中含第一次服药后的剩余量为:y1=8()8=μg,含第二次服药量为:y2=8()3=4μg,所以此时两次服药剩余的量为+4≈4.7μg,故该病人每毫升血液中的含药量为4.7μg.11/11。
专题4.2 指数函数1、指数函数的概念:一般地,函数x y a = 叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠12、指数函数的图象和性质0<a<1a>1图像定义域R , 值域(0,+∞)(1)过定点(0,1),即x=0时,y=1(2)在R 上是减函数(2)在R 上是增函数性质(3)当x>0时,0<y<1;当x<0时,y>1(3)当x>0时,y>1;当x<0时,0<y<1图象特征函数性质向x 轴正负方向无限延伸函数的定义域为R 函数图象都在x 轴上方函数的值域为R +图象关于原点和y 轴不对称非奇非偶函数共性函数图象都过定点(0,1)过定点(0,1)自左向右看,图象逐渐下降减函数在第一象限内的图象纵坐标都小于1当x>0时,0<y<1;在第二象限内的图象纵坐标都大于1当x<0时,y>10<a<1图象上升趋势是越来越缓函数值开始减小极快,到了某一值后减小速度较慢;自左向右看,图象逐渐上升增函数在第一象限内的图象纵坐标都大于1当x>0时,y>1;在第二象限内的图象纵坐标都小于1当x<0时,0<y<1a>1图象上升趋势是越来越陡函数值开始增长较慢,到了某一值后增长速度极快;注意: 指数增长模型:y=N(1+p)x 指数型函数: y=ka x 3 考点:(1)a b =N, 当b>0时,a,N 在1的同侧;当b<0时,a,N 在1的 异侧。
(2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。
掌握利用单调性比较幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。
(3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。
2023届高考数学---指数与指数函数综合练习题(含答案解析)1、已知a ,b ∈(0,1)∪(1,+∞),当x >0时,1<b x <a x ,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <bC [∵当x >0时,1<b x ,∴b >1.∵当x >0时,b x <a x ,∴当x >0时,(ab )x >1. ∴ab >1,∴a >b .∴1<b <a ,故选C.]2、设f (x )=e x ,0<a <b ,若p =f (ab ),q =f (a +b2),r =f (a )f (b ),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >qC [∵0<a <b ,∴a +b 2>ab ,又f (x )=e x 在(0,+∞)上为增函数,∴f (a +b2)>f (ab ),即q >p .又r =f (a )f (b )=e a e b =e a +b2=q ,故q =r >p .故选C.]3、已知函数f (x )=a x (a >0,a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值为________.12或32 [当0<a <1时,a -a 2=a 2, ∴a =12或a =0(舍去). 当a >1时,a 2-a =a2, ∴a =32或a =0(舍去). 综上所述,a =12或32.]4、已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. [解] (1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b2+a=0,解得b =1,所以f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a, 解得a =2.(2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因为f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k . 即对一切t ∈R 有3t 2-2t -k >0, 从而Δ=4+12k <0,解得k <-13. 故k 的取值范围为(-∞,-13).5、设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎨⎧f (x ),f (x )≤K ,K ,f (x )>K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1D [根据题意可知,对于任意x ∈(-∞,1],若恒有f K (x )=f (x ),则f (x )≤K 在x ≤1上恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,所以K ≥1,故选D.]6、已知函数f (x )=14x -λ2x -1+3(-1≤x ≤2).(1)若λ=32,求函数f (x )的值域;(2)若函数f (x )的最小值是1,求实数λ的值. [解] (1)f (x )=14x -λ2x -1+3=(12)2x -2λ·(12)x +3(-1≤x ≤2). 设t =(12)x ,得g (t )=t 2-2λt +3(14≤t ≤2). 当λ=32时,g (t )=t 2-3t +3 =(t -32)2+34(14≤t ≤2).所以g (t )max =g (14)=3716,g (t )min =g (32)=34. 所以f (x )max =3716,f (x )min =34, 故函数f (x )的值域为[34,3716]. (2)由(1)得g (t )=t 2-2λt +3 =(t -λ)2+3-λ2(14≤t ≤2),①当λ≤14时,g (t )min =g (14)=-λ2+4916, 令-λ2+4916=1,得λ=338>14,不符合,舍去; ②当14<λ≤2时,g (t )min =g (λ)=-λ2+3,令-λ2+3=1,得λ=2(λ=-2<14,不符合,舍去);③当λ>2时,g(t)min=g(2)=-4λ+7,令-4λ+7=1,得λ=32<2,不符合,舍去.综上所述,实数λ的值为 2.一、选择题1.设a>0,将a2a·3a2表示成分数指数幂的形式,其结果是()A.a 12B.a 5 6C.a 76D.a32C[a2a·3a2=a2a·a23=a2a53=a2a56=a2-56=a76.故选C.]2.已知函数f(x)=4+2a x-1的图像恒过定点P,则点P的坐标是()A.(1,6) B.(1,5)C.(0,5) D.(5,0)A[由于函数y=a x的图像过定点(0,1),当x=1时,f(x)=4+2=6,故函数f(x)=4+2a x-1的图像恒过定点P(1,6).]3.设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<bC.b<a<c D.b<c<aC[y=0.6x在R上是减函数,又0.6<1.5,∴0.60.6>0.61.5.又y=x0.6为R上的增函数,∴1.50.6>0.60.6,∴1.50.6>0.60.6>0.61.5,即c>a>b.]4.函数y =xa x|x |(0<a <1)的图像的大致形状是( )A BC DD [函数的定义域为{x |x ≠0},所以y =xa x |x |=⎩⎨⎧a x,x >0,-a x ,x <0,当x >0时,函数是指数函数y =a x ,其底数0<a <1,所以函数递减;当x <0时,函数y =-a x 的图像与指数函数y =a x (0<a <1)的图像关于x 轴对称,所以函数递增,所以应选D.]5.已知函数f (x )=⎩⎨⎧1-2-x ,x ≥0,2x -1,x <0,则函数f (x )是( )A .偶函数,在[0,+∞)上单调递增B .偶函数,在[0,+∞)上单调递减C .奇函数,且单调递增D .奇函数,且单调递减C [易知f (0)=0,当x >0时,f (x )=1-2-x ,-f (x )=2-x -1,此时-x <0,则f (-x )=2-x -1=-f (x );当x <0时,f (x )=2x -1,-f (x )=1-2x ,此时,-x >0,则f (-x )=1-2-(-x )=1-2x =-f (x ).即函数f (x )是奇函数,且单调递增,故选C.]二、填空题1、若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.[2,+∞) [由f (1)=19得a 2=19,所以a =13或a =-13(舍去),即f (x )=(13)|2x -4|.由于y =|2x -4|在(-∞,2]上单调递减,在[2,+∞)上单调递增, 所以f (x )在(-∞,2]上单调递增,在[2,+∞)上单调递减.] 2、不等式2-x 2+2x>(12)x +4的解集为________.(-1,4) [原不等式等价为2-x 2+2x>2-x -4,又函数y =2x 为增函数,∴-x 2+2x >-x -4, 即x 2-3x -4<0,∴-1<x <4.]3、若直线y 1=2a 与函数y 2=|a x -1|(a >0且a ≠1)的图像有两个公共点,则a 的取值范围是________.(0,12) [(数形结合法)当0<a <1时,作出函数y 2=|a x -1|的图像,由图像可知0<2a <1, ∴0<a <12;同理,当a >1时,解得0<a <12,与a >1矛盾. 综上,a 的取值范围是(0,12).] 三、解答题4、已知函数f (x )=(13)ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值. [解] (1)当a =-1时,f (x )=(13)-x 2-4x +3,令u =-x 2-4x +3=-(x +2)2+7.则u 在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =(13)u 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,则f (x )=(13)h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1.因此必有⎩⎪⎨⎪⎧a >0,12a -164a =-1,解得a =1,即当f (x )有最大值3时,a 的值为1.(3)由f (x )的值域是(0,+∞)知,函数y =ax 2-4x +3的值域为R ,则必有a =0. 5、已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图像经过点A (1,6),B (3,24).(1)求f (x )的表达式;(2)若不等式(1a )x +(1b )x -m ≥0在(-∞,1]上恒成立,求实数m 的取值范围. [解] (1)因为f (x )的图像过A (1,6),B (3,24), 所以⎩⎨⎧b ·a =6,b ·a 3=24. 所以a 2=4,又a >0,所以a =2,b =3. 所以f (x )=3·2x .(2)由(1)知a =2,b =3,则x ∈(-∞,1]时,(12)x +(13)x -m ≥0恒成立,即m ≤(12)x +(13)x 在(-∞,1]上恒成立.又因为y =(12)x 与y =(13)x 均为减函数,所以y =(12)x +(13)x也是减函数,所以当x=1时,y=(12)x+(13)x有最小值56.所以m≤56.即m的取值范围是(-∞,56].本课结束。
指数函数练习题及答案
指数函数是高中数学中的重要内容之一,也是数学建模和应用题中常见的数学
模型。
掌握指数函数的性质和解题方法,对于学生来说是非常重要的。
本文将
介绍几道常见的指数函数练习题,并给出详细的解答过程。
一、求解指数函数的定义域和值域
1. 已知函数 f(x) = 2^x,求函数的定义域和值域。
解答:对于指数函数 f(x) = 2^x,由于指数函数的底数必须大于0且不等于1,
所以定义域为全体实数。
而指数函数的值域为正实数集。
二、求解指数函数的图像和性质
2. 已知函数 f(x) = 3^x,求函数的图像和性质。
解答:对于指数函数 f(x) = 3^x,我们可以通过绘制函数的图像来观察其性质。
首先,我们选取几个不同的 x 值,计算对应的 y 值,然后将这些点连成一条曲线。
根据计算结果,我们可以看出指数函数 f(x) = 3^x 是递增函数,并且随着 x 的增大,函数值也随之增大。
三、求解指数函数的基本性质
3. 求函数 f(x) = 4^x 的对称轴和最小值。
解答:对于指数函数 f(x) = 4^x,我们可以通过求导数来求解其对称轴和最小值。
首先,我们求函数的导数 f'(x) = ln(4) * 4^x。
然后,令导数等于0,解得 x = 0。
所以对称轴为 x = 0。
接下来,我们求解函数在 x = 0 处的函数值,即 f(0) =
4^0 = 1。
所以最小值为 1。
四、求解指数函数的变形题
4. 已知函数 f(x) = 2^(x+1) - 3,求函数的图像和性质。
解答:对于指数函数 f(x) = 2^(x+1) - 3,我们可以通过绘制函数的图像来观察
其性质。
首先,我们选取几个不同的 x 值,计算对应的 y 值,然后将这些点连
成一条曲线。
根据计算结果,我们可以看出指数函数 f(x) = 2^(x+1) - 3 是递增
函数,并且随着x 的增大,函数值也随之增大。
此外,由于函数中有减法操作,所以整个函数的图像会在 y 轴下方平移 3 个单位。
五、求解指数函数的应用题
5. 已知某种细菌的数量满足指数增长模型,初始数量为 100 个,每小时增长10%,问经过 5 小时后细菌的数量是多少?
解答:根据题目中的信息,我们可以列出细菌数量的指数增长模型:f(x) = 100
* (1 + 0.1)^x,其中 x 表示时间。
代入 x = 5,计算得到 f(5) = 100 * (1 + 0.1)^5
≈ 161.05。
所以经过 5 小时后细菌的数量约为 161.05 个。
通过以上练习题的解答,我们可以看出指数函数在数学中的重要性和应用性。
掌握指数函数的性质和解题方法,能够帮助我们更好地理解数学知识,解决实
际问题。
因此,我们应该加强对指数函数的学习和练习,提高自己的数学能力。