第一编教材知识梳理篇第4章图形的初步认识与三角形四边形第5节多边形与平行四边形精练试题
- 格式:doc
- 大小:199.50 KB
- 文档页数:5
四年级数学书第四单元知识总结一、平行四边形和梯形平行四边形和梯形是四年级数学中非常重要的几何概念。
平行四边形是指两组相对边平行,对角相等,且对角线互相平分的四边形。
而梯形则是指只有一组对边平行的四边形。
在理解这两种图形时,学生应掌握它们的基本性质,如平行四边形的对角线性质、梯形的中位线性质等。
同时,也需要学会如何判断一个四边形是平行四边形还是梯形,以及如何从给定的条件中找出平行四边形或梯形的相关元素。
二、三角形三角形是四年级数学中的另一个重要几何概念。
学生需要掌握三角形的基本性质,如两边之和大于第三边、内角和为180度等。
此外,学生还应了解三角形的分类,如等腰三角形、等边三角形和直角三角形等。
在解决与三角形相关的问题时,学生应学会如何利用三角形的性质和定理来解答问题。
例如,如何判断一个三角形的类型,如何计算三角形的面积等。
三、四边形之间的关系在四年级数学中,学生需要了解四边形之间的关系。
四边形可以分为平行四边形和梯形两类,而平行四边形又可以分为矩形和正方形两类。
这些关系可以通过图形的属性和定义来理解。
在学习四边形之间的关系时,学生应学会如何从给定的条件中判断一个四边形的类型,以及如何利用四边形的性质来解答问题。
例如,如何判断一个四边形是平行四边形还是梯形,如何计算四边形的周长和面积等。
四、图形的变换图形的变换是四年级数学中的一个重要内容。
学生需要了解图形的平移、旋转和对称等基本变换形式。
在解决与图形变换相关的问题时,学生应学会如何利用图形的变换性质来解答问题。
例如,如何判断一个图形经过平移、旋转或对称变换后得到的新图形,如何通过图形的变换来计算图形的面积等。
五、图形与位置图形与位置是四年级数学中的另一个重要内容。
学生需要了解如何在平面直角坐标系中表示点的位置,以及如何通过点的位置来确定其坐标。
此外,学生还应了解如何利用点的位置关系来解答问题。
例如,如何判断两个点之间的位置关系,如何计算两点之间的距离等。
平行四边形一、多边形1.定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.n 边形:边数为n 的多边形叫n 边形(n 为正整数,且n ≥3).顶点:多边形每一个内角的顶点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角.外角:多边形的一边的邻边的延长线与相邻的另一边所组成的角叫做多边形的外角.对角线:连结多边形不相邻的两个顶点的线段,叫做多边形的对角线.3.多边形内角和定理(1)四边形内角和等于360°; (2)n 边形内角和为(n-2)×180°(n ≥3);(3)任何多边形的外角和为360°.4.正多边形:各个角都相等,各条边都相等的多边形叫作正多边形,比如:等边三角形,正方形等.(1)正n边形的每个内角都相等,都等于; (2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于n360︒. 二、平行四边形 1.定义:两组对边分别平行的四边形叫作平行四边形,平行四边形ABCD 记作“ABCD ”,读作“平行四边形ABCD ”. (2)180n n-°知识梳理2.平行四边形的性质(1)边:平行四边形的对边平行且相等;(2)角:平行四边形的对角相等,邻角互补;(3)线:平行四边形的对角线互相平分.3.平行线性质定理及推论(1)定理:夹在两条平行线间的平行线段相等;(2)推论:夹在两条平行线间的垂线段相等.(3)平行线之间的距离:指两条平行线中,一条直线上任意一点到另一条直线的距离.如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.4.中心对称(1)中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.【注】对称中心平分连结两个对称点的线段.(2)中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.5.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形;(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形.三、中位线1.定义:连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.【注】(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的. (3)三角形的中位线不同于三角形的中线.四、反证法1.定义:在证明一个命题时,人们有时先假设命题不成立,从这样的假设出发,经过推理得出和已知条件矛盾,或者与定义、基本事实、定理等矛盾,从而得出假设命题不成立是错误的,即所求证的命题正确.这种证明方法叫做反证法.2.反证法的一般步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.1214。
初二数学知识点:第四章初二数学知识点:第四章聪明出于勤奋,天才在于积累。
我们要振作精神,下苦功学习。
小编准备了初二数学知识点:第四章,希望能帮助到大家。
一、四边形的相关概念1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360。
四边形的外角和定理:四边形的外角和等于360。
推论:多边形的内角和定理:n边形的内角和等于 180多边形的外角和定理:任意多边形的外角和等于360。
6、设多边形的边数为n,则多边形的对角线共有条。
从n 边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。
二、平行四边形1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的对边平行且相等。
2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长宽=ab四、菱形1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行(2)菱形的相邻的角互补,对角相等(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长高=两条对角线乘积的一半五、正方形 (3~10分)1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
第四章知识点总结
第四章图形的认识初步
知识框架
本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角. 本章书涉及的数学思想:
1.分类讨论思想。
在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。
2.方程思想。
在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。
3.图形变换思想。
在研究角的概念时,要充分体会对射线旋转的认识。
在处理图形时应注意
转化思想的应用,如立体图形与平面图形的互相转化。
4.化归思想。
在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。
第 部分 四边形第一单元第1课时 多边形与平行四边形二、知识梳理(一) 多边形1.多边形的概念:(1)多边形:在平面内,由若干条不在同一直线上 的线段首尾顺次相连接组成的封闭图形叫做多边形。
(2)正多边形:在平面内,各内角 都相等, 各边 也都相等的多边形叫正多边形。
各角相等的多边形不一定是正多边形,如矩形;各边相等的多边形不一定是正多边形,如菱形。
正多边形都是轴对称图形,边数为偶数的正多边形是中心对称图形。
2.多边形的内角和与外角和:(1)内角和:n 边形的内角和等于(n ─2)∙180 ;正n 边形的一个内角等于nn180)2( .(2)外角和:多边形的外角和等于360°.(注:多边形的外角和是定值,与边数无关). 3.多边形的对角线:(1)概念:在多边形中,连接 互不相邻 的两个顶点的线段叫做多边形的对角线. (2) n 边形有2)3( n n 条对角线 4.平面图形的镶嵌:(1)概念:用形状 、大小 完全相同的一种或几种 平面图形 进行拼接,彼此之间不留空隙、不重叠地铺成一片,就是平面图形的 镶嵌 . (2)镶嵌的条件:在同一顶点的几个角的和等于360°. (二) 平行四边形1.平行四边形的概念: 两组对边分别平行 的四边形是平行四边形。
2.平行四边形的性质:(1)边:平行四边形的两组对边分别 平行且相等 . (2)角:平行四边形的对角 相等 ,邻角 互补 。
图1图2图4 (3)对角线:平行四边形的对角线 互相平分 。
(4)平行四边形对称性:平行四边形是中心对称图形,其对称中心是 对角线交点 ;经过对称中心的任意一条直线将平行四边形面积平分. 3.平行四边形的判定方法:(1)边:①两组对边分别 平行 的四边形是平行四边形(平行四边形的概念);②一组对边 平行且相等 的四边形是开行四边形; ③两组对边分别 相等 的四边形是平行四边形.(2)角:两组对角分别 相等 的四边形是平行四边形. (3)对角线:对角线 互相平分 的四边形是平行四边形. 4.平行四边形面积:平行四边形面积=底×高.三、课堂训练考查目标:多边形的内角和与外角和 1.已知一个多边形的内角和是外角和的23,则这个多边形的边数是 5 . [举一反三]一个多边形的内角和是720°,则这个多有的边数为 6 . [举一反三]矩形的外角和等于 360° 考查目标:正多边形的概念2.一个正多边形的每一个外角都是40°,这个多边形的边数是 9 .[举一反三]一个正多边形的一个内角是144°,它是一个 10 边形. 考查目标:平面图形的镶嵌3.下列多边形中,不能单独铺满地面的是( C ) (A )正三角形 (B )正方形 (C )正五边形 (D )正六边形[举一反三]现有四种地砖,它们的形状分别为正三角形、正方形、正六边形、正八边形,且它们的边长都相等,同时选择其中两种地砖密铺地面.选择的方式有( B ) (A )2种 (B )3种 (C )4种 (D )5种 考查目标:平行四边形的性质4.如图1.在□ABCD 中,过点C 的直线CE ⊥AB .垂足为E ,若∠EAD =53°,则∠BCE 的度数为( B )(A )53° (B )37° (C )47° (D )123°[举一反三] 如图2.在□ABCD 中,对角线AC 、BD 相交于点O ,且AB ≠AD ,则下列式子不正确的是( A )(A )AC ⊥BD (B )AB =CD (C )BO =OD (D )∠BAD =∠BCD5.如图3.在□ABCD 中,AC 平分∠DAB ,AB =3.则□ABCD 的周长( C ) (A )6 (B )9 (C )12 (D )15图5图5 第3题第6题第7题[举一反三]如图4在□ABCD 中,已知AB =6cm ,AD =8cm , DE 平分∠ADC 交BC 边于点E ,则BE 等于( A )(A )2cm (B )4cm (C )6cm (D )8cm 考查目标:平行四边形的判定6.不能判定一个四边形是平行四边形的条件是( B )(A )两组对边分别平行 (B )一组对边平行另一组对边相等 (C )一组对边平等且相等 (D )两组对边分别相等 [举一反三]在四边形ABCD 中,已知AB =CD ,再添加一个条件:_AD =BC (答案不唯一)______,使四边形ABCD 成为平行四边形 考查目标:平行四边形的面积 7.平行四边形花坛的底是6m ,高是4m ,则它的面积是 24cm 2[举一反三].如图5,A 、B 、C 为一个平行四边形的三个顶点, 且A 、B 、C 三点的坐标分别为(3,3)、(6,4)、(4、6).(1)请直接写出这个平行四边形的第四个顶点的坐标;(2)求此平行四边形的面积. 解:(1)第四个顶点的坐标为(7,7)或(5,1)或(1,5)(2)把⊿ABC 补成正方形,面积为9,减去三个小直角三角形 的面积可得S ⊿ABC =4,∴平行四边形的面积为8 【达标训练】1.(2013.长沙市)下列多边形中,内角和与外角和相等的是( A ) .(A )四边形 (B )五边形 (C )六边形 (D )八边形 2.(2013.梅州市)已知一个多边形的内角和小于它的外角和.则这个多边形的边数是( A ) (A )3 (B )4 (C )5 (D )63.(2013.襄阳市)如图□ABCD 的对角线相交于点O ,且AB =5, ⊿OCD 的周长为23,则□ABCD 的两条对角线的和是( C ) (A )18 (B )28 (C )36 (D )464.(2013.杭州市)在□ABCD 中,下列结论一定正确的是( B ) .(A )AC ⊥BD (B )∠A +∠B =180° (C )AB =CD (D )∠A ≠∠C5.(2011.泰州)四边形ABCD 中,对角线AC 、BD 相交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC .其中一定能判定这个四边形是平行四边形的条件有( C ) (A )1组 (B )2组 (C )3组 (D )4组6.(2013.江西省)如图. □ABCD 与□DCEF 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 25° .7.(2013.安徽省)如图.P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点.⊿PEF 、⊿PDC 、⊿P AB 的面积分别为S 、S 1、S 2.若S =2.则S 1+S 2= 8 .8.(2013.烟台市)如图.□ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BC =12,则⊿DOE 的周长为 15 .C 9.(2013.北京市)如图.在□ABCD中,F是AD的中点,延长BC到点E,使CE=12BC,连接DE、CF.(1)求证:四边形CEDF是平行四边形.(2)若AB=4,AD=6,∠B=60°.求DE的长答案:(1)证明:在□ABCD中AD∥BC,AD=BC.∵F是AD的中点,∴DF=12AD.又∵CE=12BC,∴DF=CE且DF∥CE,∴四边形CEDF为平行四边形.(2)解:过点D作DH⊥BE于H,在□ABCD,AB∥CD.∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=4.∴在Rt⊿CDH中,CH=12CD=2,DH=32.在□CEDF中,CE=DF=12AD=3,∴EH=CE-CH=3-2=1.在Rt⊿DHE中,DE=22HEDH =221)32( =13.10.(2011.常德)如图.已知四边形ABCD是平行四边形(1)求证:⊿MEF∽⊿MBA(2)若AF、BE分别是∠DAB和∠CBA的平分线,求证DF=EC.【答案】(1)证明:在□ABCD中,∵CD∥AB,∴∠MEF=∠MBA,∠MFE=∠MAB,∴⊿MEF∽⊿MBA.(2)证明:在□ABCD中,CD∥AB,∠DF A=∠F AB,又∵AF是∠DAB的平分线,∴∠DAF=∠F AB∴∠DAF=∠DF A,∴AD=DF,同理可得EC=BC,∵在□ABCD中,AD=BC,∴DF=EC.。
第四单元《图形的初步认识与三角形》中考知识点梳理第14讲平面图形与相交线、平行线一、知识清单梳理第15讲一般三角形及其性质知识点一:三角形的分类及性质关键点拨与对应举例1.三角形的分类(1)按角的关系分类(2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形失分点警示:在运用分类讨论思想计算等腰三角形周长时,必须考虑三角形三边关系.例:等腰三角形两边长分别是3和6,则该三角形的周长为15.2.三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边.3.角的关系(1)内角和定理:①三角形的内角和等180°;②推论:直角三角形的两锐角互余.(2)外角的性质:①三角形的一个外角等于与它不相邻的两个内角和.②三角形的任意一个外角大于任何和它不相邻的内角.利用三角形的内、外角的性质求角度时,若所给条件含比例,倍分关系等,列方程求解会更简便.有时也会结合平行、折叠、等腰(边)三角形的性质求解.4.三角形中的重要线段四线性质(1)角平分线、高结合求角度时,注意运用三角形的内角和为180°这一隐含条件.(2)当同一个三角形中出现两条高,求长度时,注意运用面积这个中间量来列方才能够求解. 角平分线(1)角平线上的点到角两边的距离相等(2)三角形的三条角平分线的相交于一点(内心)中线(1)将三角形的面积等分(2)直角三角形斜边上的中线等于斜边的一半高锐角三角形的三条高相交于三角形内部;直角三角形的三条高相交于直角顶点;钝角三角形的三条高相交于三角形的外部中位线平行于第三边,且等于第三边的一半5.三角形中内、外角与角平分线的规律总结如图①,AD平分∠BAC,AE⊥BC,则∠α=12∠BAC-∠CAE=12(180°-∠B-∠C)-(90°-∠C)=12(∠C-∠B);如图②,BO、CO分别是∠ABC、∠ACB的平分线,则有∠O=12∠A+90°;如图③,BO、CO分别为∠ABC、∠ACD、∠OCD的平分线,则∠O=12∠A,∠O’=12∠O;如图④,BO、CO分别为∠CBD、∠BCE的平分线,则∠O=90°-12∠A.对于解答选择、填空题,可以直接通过结论解题,会起到事半功倍的效果.知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等. (3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等 SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形三、 知识清单梳理知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB =AC ∠B =∠C ;②三线合一:顶角的平分线、底边上的中线和底边上的高 互相重合;③对称性:等腰三角形是轴对称图形,直线AD 是对称轴. (2)判定(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD ⊥BC,D 为BC 的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC 的一个内角为①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形. 30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.21P COBAPCO BADABC abcDABC abc第17讲 相似三角形知识点一:比例线段关键点拨与对应举例1. 比例线段在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱. 2.比例的基本性质(1)基本性质:a cb d =⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a c b d =⇔a b b ±=c dd ±;(b 、d ≠0)(3)等比性质:a c b d ==…=mn =k (b +d +…+n ≠0)⇔......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b +=85. 3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC=. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果ACAB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定 (1) 两角对应相等的两个三角形相似(AAA). 如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC AB DF DE=,则△ABC ∽△DEF. (3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. F E D CB A l 5l 4l 3l 2l 1ODCBAED CBAFEDC B AFEDC BAFE DC BA6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC,AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲解直角三角形五、知识清单梳理知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sin A==cosB=ac,cos A=sinB=bc,tan A=ab.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.6.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.。
四年级下册数学书第四单元知识点总结四年级下册数学书第四单元知识点总结数学是一门抽象却有趣的学科,不仅能够培养孩子严谨的逻辑思维能力,还能够提高孩子数学素养,让孩子拥有探索未知的勇气。
而在四年级下册数学书的第四单元中,我们学习了许多有趣的数学知识,让我们来一一总结。
一、认识三角形在本单元中,我们首先认识了三角形,三角形是由三条线段组成的图形。
三角形是所有平面图形中最简单的一种,不仅在日常生活中常见,同时也是各种数学知识和几何学中十分重要的一个概念。
二、三角形的分类除了认识三角形,我们还需要知道三角形的分类。
按照边的长度和角的大小,三角形可以分为等腰三角形、等边三角形、直角三角形、锐角三角形和钝角三角形等五类。
不同类型的三角形具有不同的特点和性质,这些内容对于后续学习几何学有很大的作用。
三、认识平行四边形学习了三角形的相关知识后,我们还学习了平行四边形。
平行四边形是由两组对边平行的四边形组成,其中每条对边平行的线段长度均相等。
四、认识梯形在本单元中,我们还学习了梯形。
梯形是一个由两组不平行的平行线段围成的四边形,分为等腰梯形和等腰梯形两种类型。
梯形在我们的生活中也比较常见,例如很多车站的楼梯间,其平面图形就是梯形。
五、计算图形的面积和周长在本单元结束时,我们还需要会计算各个图形的面积和周长。
学习计算图形的面积和周长,需要我们掌握各种图形的计算公式,例如:三角形面积公式、平行四边形面积公式、梯形面积公式等,以及各种图形的周长公式。
总之,本单元的内容十分丰富并且有趣,通过学习,我们不仅能够掌握各种图形的性质和分类,同时也可以提高我们的计算能力和数学素养。
在今后的学习中,我们需要不断地巩固和深入这些知识点,为更高层次的数学学习打下坚实的基础。
第六节矩形、菱形、正方形,贵阳五年中考命题规律)年份题型题号考察点考察内容分值总分2021解答18正方形的性质以正方形为背景考察全等三角形的判定,直角三角形的判定10解答22菱形的性质在直角坐标系中,以菱形为背景考察反比例函数、一次函数的有关知识10202021 解答18菱形菱形的性质及判定10102021解答18菱形菱形的性质及判定10102021解答20菱形利用菱形的性质:(1)1010定.命题预测预计2021年中考,特殊的平行四边形内容仍为重点考察内容,且以解答题形式出现,平时训练要加大对性质及判定的训练力度.,贵阳五年中考真题及模拟)菱形的性质及判定(4次)1.(2021贵阳22题10分)如图,在平面直角坐标系中,菱形OBCD的边OB 在x轴上,反比例函数y=x k(x>0)的图象经过菱形对角线的交点A,且及边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.解:(1)∵反比例函数y=x k的图象经过点A,A点的坐标为(4,2),∴2=4k,∴k =8.∴反比例函数的表达式为y=x8;(2)过点A作AM⊥x轴于点M,过点C作CN ⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,那么BC=x,BN=8-x,在Rt△CNB中,x2-(8-x)2=42,解得x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=k1x+b,直线BC过点B(5,0),C(8,4),∴8k1+b=4,5k1+b=0,解得:,20∴直线BC的表达式为yx2=-1,∵点F在第一象限,∴点F =34x-320,根据题意得方程组,8解此方程组得:,4y2=-8,的坐标为F(6,34).2.(2021 贵阳18题10分)如图,在Rt△ABC中,∠ACB=90°,D为AB 的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)假设∠B=60°,BC=6,求菱形ADCE的高.(计算结果保存根号)解:(1)∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,又∵∠ACB=90°,D是AB的中点,∴CD=BD=AD,∴平行四边形ADCE是菱形;(2)如图,过点D作DF⊥CE,垂足为点F,那么DF即为菱形ADCE的高,∵∠B=60°,CD=BD,∴△BCD是等边三角形.∵CE∥AB,∴∠BCE=120°,∴∠DCE=60°,又∵CD=BC=6,∴在Rt△CDF中,DF=3.3.(2021贵阳18题10分)如图,在Rt△ABC中,∠ACB=90°,D,E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF.(1)求证:四边形ADCF是菱形;(2)假设BC=8,AC=6,求四边形ABCF的周长.解:(1)∵将△ADE绕点E旋转180°得到△CFE.∴AE=CE,DE=FE,∴四边形ADCF为平行四边形.∵点D,E是AB及AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°即BC⊥AC,∴DF⊥AC,∴平行四边形ADCF为菱形;(2)∵在Rt△ABC中,BC=8,AC=6,∴AB=10.∵点D是AB 边上的中点,∴AD=5.∵四边形ADCF为菱形,∴AF=FC=AD=5,∴C四边形=8+10+5+5=28.ABCF4.(2021贵阳20题10分):如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.解:(1)连接AC,∵四边形ABCD为菱形,∴BD垂直平分AC,∴AE=EC;(2)点F是线段BC的中点,理由如下:易得△ABC是等边三角形,∴∠BAC=60°,∵AE=EC,∠CEF=60°,∴∠EAC=21∠BAC=30°,∴AF是△ABC 的角平分线,∵AF交BC于点F,∴AF是△ABC边BC上的中线,∴点F是线段BC的中点.正方形的性质(2次)5.(2021贵阳模拟卷②15题)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形局部的面积从左向右依次记为S1,S2,S3,……,S n,那么S n的值为__24n-5__.(用含n的代数式表示,n为正整数) 6.(2021贵阳21题10分)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC与CD上.(1)求证:CE=CF;(2)假设等边三角形AEF的边长为2,求正方形ABCD的周长.解:(1)易证△ABE≌△ADF,∴BE=DF,又BC=DC,∴BC-BE=DC-DF,∴CE=CF;(2)连接AC,交EF于G点,易得AC⊥EF,EC=,设BE=x,那么AB=x+,在Rt△ABE中,(x+)2+x2=4,∴x=26,∴AB=26+=26,∴正方形的周长为2+2.7.(2021 贵阳适应性考试)如图,E,F是菱形ABCD对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)假设∠DAB=60°,AD=6,AE=DE,求菱形BEDF的周长.解:(1)∵菱形ABCD,∴AB=AD,对角线AC平分∠BAD,∴∠BAE=∠DAE,又∵AE=AE,∴△ABE≌△ADE,∴BE=ED.连接BD交AC于点O,那么OD=OB,OA=OC,∵AE=CF,∴OA-AE=OC-CF,∴OE=OF,∴四边形BEDF为平行四边形,∴▱BEDF为菱形;(2)在菱形ABCD中,连接BD交于AC于O点,∴DB⊥AC,又∵∠DAB=60°,∴∠DAE=30°,∠ADB=60°,∵AD=6,∴在Rt△ADO中,DO=21AD=3,∵AE=ED,∴∠DAE=∠ADE,∠ADE=∠EDO=30°,在Rt△DEO中,可求得DE=2,∴菱形BEDF 的周长为8.,中考考点清单)矩形的性质及判定1.定义:把有一个角是直角的平行四边形叫做矩形.如图(1).2.性质文字描述字母表示[参考图(1)](1)对边平行且相等AD綊BC,AB綊CD(2)四个内角都是直角__∠DAB__=∠ABC=∠BCD =∠CDA=90°(3)两条对角线相等且互相平分AC=__BD__,OA=OC=OB=OD(4)矩形既是中心对称图形,也是轴对称图形3.判定文字描述字母表示[参考图(1)](1)有一个角是直角的平行四边形是矩形假设四边形ABCD是平行四边形,且∠BAD=90°,那么四边形ABCD是矩形(2)有三个角是直角的四边形是矩形假设∠BAD=∠ABC=∠BCD=90°,那么四边形ABCD是矩形(3)对角线相等的平行四边形是矩形假设AC=__BD__,且四边形ABCD是平行四边形,那么四边形ABCD是矩形菱形的性质及判定(高频考点)4.定义:把有一组邻边相等的平行四边形叫做菱形.如图(2) 5.性质文字描述字母表示[参考图(2)](1)菱形的四条边都相等AB=__BC__=CD=DA(2)对角相等∠DAB=∠DCB,∠ADC=__∠ABC__(3)两条对角线互相垂直,且每条对角线平分一组对角__AC__⊥BD,∠DAC=∠CAB =∠DCA=∠ACB,∠ADB=∠BDC=∠ABD=∠DBC(4)菱形既是中心对称图形,也是轴对称图形6.判定文字描述字母表示[参考图(2)](1)有一组邻边相等的平行四边形是菱形假设四边形ABCD是平行四边形,且AD=AB,那么四边形ABCD是菱形(2)四条边相等的四边形是菱形假设AB=BC=CD=DA,那么四边形ABCD是菱形(3)两条对角线互相垂直的平行四边形是菱形假设AC⊥BD,且四边形ABCD 是平行四边形,那么四边形ABCD是菱形正方形的性质及判定7.定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.如图(3)8.性质文字描述字母表示[参考图(3)](1)四条边都相等即AB=BC=CD=DA(2)四个角都是90°即∠ABC=∠ADC=∠BCD=∠BAD=90°(3)对角线互相垂直平分且相等即AC⊥__BD__,OA=OC=OD=OB(4)对角线平分一组对角∠DAC=∠CAB=∠DCA=∠ACB=∠ADB=∠BDC=∠ABD=∠DBC=45°(5)正方形既是中心对称图形,也是轴对称图形9.判定文字描述字母表示[参考图(3)](1)一组邻边相等且有一个角是直角的平行四边形叫做正方形假设四边形ABCD是平行四边形,且AB=BC,∠ADC=90°,那么四边形ABCD是正方形(2)有一个角是直角的__菱形__是正方形假设∠ABC=90°且四边形ABCD是菱形,那么四边形ABCD是正方形(3)有一组邻边相等的矩形是正方形假设AB=BC,且四边形ABCD 是矩形,那么四边形ABCD是正方形(4)对角线互相垂直平分且相等的四边形是正方形假设四边形ABCD中,AC⊥BD,AC平分BD,BD平分AC,AC=BD,那么四边形ABCD是正方形,中考重难点突破)矩形的有关计算【例1】(2021天津中考)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′,DC相交于点E,那么以下结论一定正确的选项是( ) A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AED.AE=CE【解析】由折叠的性质得:∠CAB′=∠∵AB∥CD,∴∠ACD=∠CAB=∠CAB′,∴AE=CE.【学生解答】D1.(2021海南中考)如图,矩形ABCD的顶点A,C分别在直线a,b上,且a ∥b,∠1=60°,那么∠2的度数为( C )A.30°B.45°C.60°D.75°,(第1题图)) ,(第2题图))2.(2021南充中考)如图,对折矩形纸片ABCD,使AB及DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展开纸片后∠DAG的大小为( C )A.30°B.45°C.60°D.75°3.(2021巴中中考)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,那么∠E=__15__°.菱形的性质及判定【例2】(2021南充中考)如图,菱形ABCD的周长是8 cm,AB的长是________cm.【解析】菱形的四边形相等,故AB=8÷4=2(cm).【学生解答】24.(2021无锡中考)以下性质中,菱形具有而矩形不一定具有的是( C )A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直5.(2021雅安中考)如图,四边形ABCD的四边相等,且面积为120 cm2,对角线AC=24 cm,那么四边形ABCD的周长为( A )A.52 cm B.40 cmC.39 cm D.26 cm6.(2021遵义中考)在▱ABCD中,,使▱ABCD成为菱形,以下给出的条件不正确的选项是( C )A.AB=AD B.AC⊥BDC.AC=BD D.∠BAC=∠DAC7.(2021苏州中考)如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)AC=8,BD=6,求△ADE的周长.解:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB =90°.又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)∵∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.正方形的性质及判定【例3】(2021广东中考)如图,正方形ABCD的面积为1,那么以相邻两边中点的连线EF为边的正方形EFGH的周长为( )A. B.2C.+1 D.2+1【解析】由题意可知,正方形ABCD的边长为1,那么CE=CF=21.由勾股定理,得EF==)21=22,故正方形EFGH的周长为2.【学生解答】B8.(2021益阳中考)以下判断错误的选项是( D )A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形9.(2021陕西中考)如图,在正方形ABCD中,连接BD,点O是BD的中点,假设M,N是AD上的两点,连接MO,NO,并分别延长交边BC于M′,N′两点,那么图中全等三角形共有( C )A.2对B.3对C.4对D.5对,(第9题图)) ,(第10题图))10.(2021西宁中考)如图,正方形ABCD的边长为3,E,F分别是AB,BC 边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.假设AE=1,那么FM的长为__25__.。
三角形、四边形知识点总结一、三角形知识点总结。
1. 三角形的定义与分类。
- 定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
- 分类:- 按角分类:- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形,直角三角形中直角所对的边叫斜边,另外两条边叫直角边。
- 钝角三角形:有一个角是钝角的三角形。
- 按边分类:- 不等边三角形:三条边都不相等的三角形。
- 等腰三角形:有两条边相等的三角形,相等的两条边叫腰,另一条边叫底边;两腰的夹角叫顶角,腰和底边的夹角叫底角。
等腰三角形中,等边三角形是特殊的等腰三角形,它的三条边都相等,三个角也都相等,每个角都是60°。
2. 三角形的性质。
- 三角形内角和定理:三角形的内角和为180°。
- 三角形外角性质:- 三角形的一个外角等于与它不相邻的两个内角之和。
- 三角形的一个外角大于任何一个与它不相邻的内角。
- 三角形三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
- 等腰三角形性质:- 等腰三角形的两腰相等,两底角相等(等边对等角)。
- 等腰三角形三线合一:等腰三角形底边上的高、中线、顶角平分线互相重合。
- 等边三角形性质:- 等边三角形的三条边相等,三个角都相等,每个角都是60°。
- 等边三角形有三条对称轴。
3. 三角形的判定。
- 等腰三角形判定:- 有两条边相等的三角形是等腰三角形。
- 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
- 直角三角形判定:- 有一个角是直角的三角形是直角三角形。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形(勾股定理的逆定理)。
4. 三角形中的重要线段。
- 中线:连接三角形一个顶点和它对边中点的线段。
三角形的三条中线相交于一点,这点叫做三角形的重心,重心到顶点的距离是它到对边中点距离的2倍。
阶段测评(四) 图形的初步认识与三角形、四边形(时间:45分钟总分:100分)一、选择题(每小题4分,共36分)1.(2016汇川中考五模)八边形的内角和等于( B)A.360°B.1 080°C.1 440°D.2 160°2.(2016遵义升学样卷)如图,四边形ABCD中,AB∥CD,∠B=90°,连接AC,∠DAC=∠BAC,若BC=4,AD=5,则AB的长度是( C)A.6 B.7 C.8 D.93.(2016攀枝花中考)下列关于矩形的说法中正确的是( B)A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直平分4.(2016荆门中考)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( B)A.△AFD≌△DCE B.AF=12A DC.AB=AF D.BE=AD-DF(第4题图)(第5题图)5.(2016兰州中考)如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=23,DE=2,则四边形OCED的面积为( A)A.2 3 B.4 C.4 3 D.86.(2016陕西中考)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有( C)A.2对B.3对C.4对D.5对(第6题图)(第7题图)7.(2016淄博中考)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为( B)A.835B.2 2 C.145D.-5 28.(2016荆州中考)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2 017个白色纸片,则n的值为( B)A.671 B.672 C.673 D.6749.(2015德州中考)如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是( D)A.②③B.②④C.①③④D.②③④二、填空题(每小题4分,共20分)10.(2015江西中考)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB.则图中有__3__对全等三角形.,(第10题图)),(第11题图))11.(2015绍兴中考)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图(1),衣架杆OA=OB=18 cm,若衣架收拢时,∠AOB=60°,如图(2),则此时A,B两点之间的距离是__18__cm.12.(2015武汉中考)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是__10__.13.(2016绍兴中考)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l 与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为__22或4-22__.(第13题图)(第14题图)14.(2016汇川升学模拟)如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AE GM,……已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,……,S n(n为正整数),那么第10个正方形面积S10=__512__.三、解答题(共44分)15.(6分)(2016内江中考)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.证明:(1)∵AF∥BC ,∴∠AFE =∠DCE, ∵点E 为AD 的中点,∴AE =DE ,在△AEF 和△DEC 中,⎩⎪⎨⎪⎧∠AFE =∠DCE,∠AEF =∠DEC,AE =DE ,∴△AEF ≌△DEC(AAS ),∴AF =CD ,∵AF =BD ,∴BD =CD.即D 是BC 的中点;(2)若AB =AC ,则四边形AFBD 是矩形.理由如下:∵△AEF≌△DEC,∴AF =CD ,∵AF =BD ,∴CD =BD ;∵AF∥BD,AF =BD ,∴四边形AFBD 是平行四边形,∵AB =AC ,BD =CD ,∴∠ADB =90°,∴平行四边形AFBD 是矩形.16.(8分)(2016聊城中考)如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC.求证:四边形ADCF 是菱形.证明:∵AF∥CD,∴∠AFE =∠CDE ,在△AFE 和△CDE 中,⎩⎪⎨⎪⎧∠AFE =∠CDE,∠AEF =∠CED,AE =CE ,∴△AEF ≌△CED ,∴AF =CD ,∵AF ∥CD ,∴四边形ADCF 是平行四边形,∵∠B =90°,AC =2AB ,∴∠ACB =30°,∴∠CAB =60°,∵AD 平分∠CAB,∴∠DAC =∠DAB=30°=∠ACD,∴DA =DC ,∴四边形ADCF 是菱形.17.(8分)(2016遵义二中一模)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB,过点B 作BE⊥AB 交AC 于点E.(1)求证:AC⊥BD;(2)若AB =14,cos ∠CAB =78,求线段OE 的长.解:(1)∵∠CAB=∠ACB,∴AB =CB ,∴▱ABCD 是菱形.∴AC ⊥BD ;(2)在Rt △AOB 中,cos ∠OAB =AO AB =78,AB=14,∴AO =14×78=494,在Rt △ABE 中,cos ∠EAB =AB AE =78,AB =14,∴AE =87AB =16,∴OE =AE -AO =16-494=154. 18.(10分)(2016遵义一中一模)如图,△ABC 中,AB =AC =1,∠BAC =45°,△AE F 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D.(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.解:(1)由旋转可知,∠EAF =∠BAC,AF =AC ,AE =AB.∴∠EAF+∠BAF=∠BAC+∠BAF,即∠BAE=∠CAF.又∵AB=AC ,∴AE =AF.∴△ABE≌△ACF.∴BE=CF ;(2)∵四边形ACDE 是菱形,AB =AC =1,∴AC ∥DE ,DE =AE =AB =1.又∵∠BAC=45°,∴∠AEB =∠ABE=∠BAC=45°.又∵∠AEB+∠BAE+∠ABE=180°,∴∠BAE =90°,∴BE =AB 2+AE 2=12+12=2,∴BD =BE -DE =2-1.19.(12分)(2016遵义十九一模)如图,在四边形ABCD 中,AB ∥CD ,AB ≠CD ,BD =AC. (1)求证:AD =BC ;(2)若E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,求证:线段EF 与线段GH 互相垂直平分.证明:(1)过点B 作BM∥AC 交DC 的延长线于点M ,∵AB ∥CD ,∴四边形ABMC 为平行四边形.∴AC=BM =BD ,∠BDC =∠M=∠ACD.在△ACD 和△BDC 中⎩⎪⎨⎪⎧AC =BD ,∠ACD =∠BDC CD =DC ,,∴△ACD ≌△BDC ,∴AD =BC ;(2)连接EH ,HF ,FG ,GE ,∵E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,∴HE ∥AD ,且HE =12AD ,FG ∥AD ,且FG =12AD ,∴四边形HFGE 为平行四边形,由(1)知,AD =BC ,∴HE =EG ,∴▱HFGE 为菱形,∴EF 与GH 互相垂直平分.。
平行四边形初步知识点总结归纳
概述
平行四边形是一个特殊的四边形,其特点是所有的边两两平行。
本文将对平行四边形的性质、构造、特殊情况以及解题方法进行总
结归纳。
性质
1. 对角线互相平分,并且长度相等。
2. 相邻角互补(和为180度)。
3. 对角线分割平行四边形成的小三角形,面积相等。
4. 对角线对平行四边形进行分割,得到的四个三角形面积之和
等于平行四边形的面积。
构造
1. 已知一边和一个角度:可以利用平行四边形的相邻角互补性质,在该边的一侧构造一个与给定边平行的线段,然后利用已知角
度构造出相应的角度来确定平行四边形的形状。
2. 已知两边:可以利用平行四边形的对角线互相平分性质,在一个边的一侧构造一个与给定边平行的线段,然后利用已知两边的长度构造出相应的线段来确定平行四边形的形状。
特殊情况
1. 矩形:矩形是一种具有特殊性质的平行四边形,其特点是所有的角都是直角(90度)。
2. 正方形:正方形是一种具有特殊性质的平行四边形,其特点是所有的边都相等且所有的角都是直角(90度)。
解题方法
1. 利用平行四边形的性质进行推导和证明。
2. 利用已知条件构造辅助线或辅助平行四边形,然后利用性质或相似三角形来解决问题。
以上是对平行四边形初步知识点的总结归纳,希望对研究和理解平行四边形有所帮助。
第五节多边形与平行四边形
1.(2017苏州中考)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( B)
A.30°B.36°C.54°D.72°
(第1题图)
(第3题图)
2.(湘西中考)下列说法错误的是( D)
A.对角线互相平分的四边形是平行四边形
B.两组对边分别相等的四边形是平行四边形
C.一组对边平行且相等的四边形是平行四边形
D.一组对边相等,另一组对边平行的四边形是平行四边形
3.(2015石家中四十三中模拟)如图,在▱ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是( D)
A.∠E=∠CDF B.EF=DF
C.AD=2BF D.BE=2CF
4.(2017丽水中考)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是( C)
A. 2 B.2 C.2 2 D.4
5.(菏泽中考)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有( B)
①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.
A.①②③B.①②④
C.②③④D.①③④
6.(孝感中考)在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB 的长为( D)
A.3 B.5
C.2或3 D.3或5
7.平行四边形ABCD与等边△AEF如图放置,如果∠B=45°,那么∠BAE的大小是( A)
A.75°B.70°C.65°D.60°
(第7题图)
(第8题图)
8.(北京中考)如图是由射线AB ,BC ,CD ,DE ,EA 组成的平面图形,则∠1+∠2+∠3+∠4+∠5=__360°__.
9.(江西中考)如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__50°__.
(第9题图)
(第10题图)
10.(2017连云港中考)如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F.若∠EAF=60°,则∠B=__60°__.
11.(攀枝花中考)如果一个正多边形的每个外角都是30°,那么这个多边形的内角和为__1__800°__.
12.(邵阳中考)如图所示,点E ,F 是平行四边形ABCD 对角线BD 上的点,BF =DE ,求证:AE =CF. 证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴∠EDA =∠FBC. 在△AED 和△CFB 中, ⎩⎪⎨⎪
⎧AD =BC ,∠ADE =∠CBF,DE =BF ,
∴△AED ≌△CFB(SAS ),∴AE =CF.
13.如图,▱ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上折叠,使点A 正好与CD 上的F 点重合,若△FDE 的周长为16,△FCB 的周长为28,则FC 的长为( C )
A .4
B .5
C .6
D .7
(第13题图)
(第14题图)
14.(南充中考)如图,正五边形的边长为2,连接对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N ,给出下列结论:
①∠AME =108°;②AN 2
=AM·AD;③MN=3-5;④S △EBC =25-1. 其中正确结论的个数是( C )
A .1个
B .2个
C .3个
D .4个
15.(长沙中考)如图,AC 是▱ABCD 的对角线,∠BAC =∠DAC. (1)求证:AB =BC ;
(2)若AB =2,AC =23,求▱ABCD 的面积. 解:(1)∵四边形ABCD 为平行四边形, ∴AD ∥BC.∴∠DAC =∠BCA.
又∵∠BAC=∠DAC,∴∠BAC =∠BCA. ∴AB =BC ;
(2)连接BD 交AC 于点O ,
∵AB =BC ,且四边形ABCD 为平行四边形. ∴四边形ABCD 为菱形,∴AC ⊥BD.
∵BO 2
+⎝ ⎛⎭
⎪⎫12AC 2
=AB 2
,
∴BO 2
+⎝ ⎛⎭
⎪⎫12×232
=22
.
∴BO =1,BD =2BO =2.
∴S ▱ABCD =12BD·AC=1
2×2×23=2 3.
16.(2016邯郸十一中二模)如图①,在△OAB 中,∠OAB =90°,∠AOB =30°,OB =8,以OB 为边,在△OAB 外作等边△OBC,D 是OB 的中点,连接AD 并延长交OC 于点E.
(1)求证:四边形ABCE 是平行四边形;
(2)如图②,将图①中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.
解:(1)∵在Rt △OAB 中,D 为OB 的中点, ∴AD =12OB ,OD =BD =1
2OB ,DO =DA ,
∴∠DAO =∠DOA=30°, ∵∠EOA =∠DOC+∠DOA=90°, ∴∠AEO =60°.
又∵△OBC 为等边三角形, ∴∠BCO =∠AEO=60°,∴BC ∥AE. ∵∠BAO =∠COA=90°,∴CO ∥AB , ∴四边形ABCE 是平行四边形;
(2)在Rt △ABO 中,∵∠AOB =30°,OB =8, ∴AB =4,AO =4 3.
∵△COB 是等边三角形,∴CO =OB =8. 设OG =x ,则由折叠知AG =CG =8-x. 在Rt △AOG 中,由勾股定理得
AO 2
+OG 2
=AG 2
,即(43)2
+x 2
=(8-x)2
, 解得x =1,即OG =1.
17.(2016石家庄四十二中模拟)已知M ,N 分别为△ABC 的边AC ,BC 的中点,AN ,BM 交于点O ,E 为OB 的中点.
(1)如图①,若F 为OA 的中点,求证:MF
(2)如图②,若AB =BC ,AM =6,NE =13,求AB 的长.
图① 图②
解:(1)连接OC.
∵点M 是AC 的中点,∴点F 是A O 的中点. ∴MF 是△AOC 的中位线,∴MF
瘙綊1
2
OC ,
同理可证,NE 瘙綊1
2OC.∴MF 瘙綊NE ;
(2)易证NE =1
2OC ,∴OC =213.
∵BA =BC ,CM =AM =6. ∴BM ⊥AC ,
∴OM =OC 2
-CM 2
=(23)2
-62
=4.
取OA 的中点F ,易证四边形MFEN 为平行四边形. ∴OM =OE =4,
∵E 为OB 的中点,∴BE =4, ∴BM =12,∴AB =6 5.。