2010年中考数学一轮复习精品案例 第7期 二元一次方程组(含答案)
- 格式:doc
- 大小:289.00 KB
- 文档页数:8
第一部分:基础复习八年级数学(上)第七章:二元一次方程组一、中考要求:1.经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展灵活运用有关知识解决实际问题的能力,培养良好的数学应用意识.2.了解二元一次方程(组)的有关概念,会解简单的二元一次方程组(数字系数人能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性.3.了解二元一次方程组的图象解法,初步体会方程与函数的关系.4.了解解二元一次方程组的“消元”思想.从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想.二、中考卷研究(一)中考对知识点的考查:、年部分省市课标中考涉及的知识点如下表:序号所考知识点比率1 方程组的整数解2%2 解方程组2%3 列方程组解实际问题 2.5~6%4 二元一次方程与一次函数3~7%本章多考查二元一次方程组的解法及应用等.另外本章还多考查方程思想和转化思想以及我们收集和处理信息的能力、获取新知识的能力、分析问题和解决问题的能力以及创新实践能力.三、中考命题趋势及复习对策本章中方程组是刻画现实世界的一个有效的数学模型,考查方程组的题目约占总分的10%左右,题型有填空、选择、解答.中考对数学思想方法的考查一方程组的实际应用将进一步提高,一大批具有较强的时代气息,格调清新、设计自然、紧密联系日常生活实际的应用题将会不断涌现.针对中考命题趋势,在复习时应掌握方程组的解法,还应在方程组的实际应用上多下功夫,加大力度,多观察日常生活中的实际问题.★★★(I)考点突破★★★考点1:方程组及其解法一、考点讲解:1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.5.整体思想解方程组.(1)整体代入.如解方程组3(1) 55(1)3(5)x yy x-=+⎧⎨-=+⎩①②,方程①的左边可化为3(x+5)-18=y+5③,把②中的 3(x+5)看作一个整体代入③中,可简化计算过程,求得y.然后求出方程组的解.(2)整体加减,如1+3y19313x+y113x⎧=⎪⎪⎨⎪=⎪⎩①②因为方程①和②的未知数x、y的系数正好对调,所以可采用两个方程整体相加减求解.利用①+②,得x+y=9③,利用②-①得x-y=3④,可使③、④组成简单的方程组求得x,y.二、经典考题剖析:【考题1-1】(、汉中)若2x+y+4+(x-2)=0则3x+2y=_______解:-6 点拨:由x+y+4=0, x-2=0,解得x=2, y=-6,故3x+2y=3×2+2×(-6)=-6【考题1-2】(、北碚,5分)解方程组:x-y=4 2x+y=5⎧⎨⎩点拨:此题用加减消元法较容易,也可用代人消元法解.三、针对性训练:( 20分钟) (答案:242 )1、对方程组4x+7y=-194x-5y=17⎧⎨⎩①②,用加减法消去x,得到的方程为()A、2y=-2 B.2y=-36 C. 12y=-2 D.12y=-362.二元一次方程组x+y=102x-y=-1⎧⎨⎩的解是()A.11x=x=2x=73 C. D.19y=8y=3y=3x=3B.y=7⎧⎪⎧⎧⎪⎪⎪⎨⎨⎨⎪⎪⎩⎩⎪⎪⎩⎧⎨⎩3.若x=-2y=1⎧⎨⎩是方程组ax+by=1bx+ay=7⎧⎨⎩的解,则(a+b)(a-b)的值为()A.-353B.353C.-16D.164.解方程组:⑴2x+5y=53x+2y=5 3x-5y=102x+5y=7⎧⎧⎨⎨⎩⎩⑵5.已知方程组ax+5y=154x-by=-2⎧⎨⎩①②由于甲看错了方程①中的a得到的方程组的解为x=-3y=-1⎧⎨⎩乙看错了方程②中的b,得到方程组的解为x=5y=4⎧⎨⎩若按正确的a、b为计算,求原方程组的解x与y的差.6.若a+b4b 与3a+b 是同类二次根式,求a、b的值.7.已知关于x,y的方程组2x-y=32kx+(k+1)y=10⎧⎨⎩的解互为相反数,则k的值是多少?8.甲、乙两人解同一个二元一次方程组,甲正确地得出解x=3,y=-2,乙因把这个方程组中的第二个方程X的系数抄错了,得到一个错误的解为x=-2,y=2.他们解先后,原方程组的三个系数又被污染而看不清楚,变成下面的形式:请你把原方程组的三个被污染的系数填上.考点2:方程组的实际应用一、考点讲解:方程组解决实际问题:应用方程组解决实际问题的关键在于正确找出问题中的两个等量关系,列出方程并组成方程组,同时注意检验解的合理性.二、经典考题剖析:【考题2-1】(、宁安)某商品按进价的100%加价后出售.经过一段时间,商家为了减少库存,决定5折销售,这时每件商品()A.赚50%B.赔50%C.赔25%D.不赔不赚解:D 点拨:利润=销售价-进价.【考题2-2】(、南山区正题3分)如图1-7-1,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x、y,那么下面可以求出这两个角的度数的方程组是()A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=-⎩C.90152x yx y+=⎧⎨=-⎩D.290215xx y=⎧⎨=-⎩解::B 点拨:此题关键是找出等量关系AB⊥BC,隐含x+y=90°.【考题2-3】(、宁安)如图,如果横行上的两个数字之和相等,竖列上的两个数字之和相等,那么a 、b 、c 、d 依次可为 。
中考数学一轮复习第八章 二元一次方程组(讲义及答案)附解析一、选择题1.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付( )小月:您好,我要买5支签字笔和3本笔记本 售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A .10元B .11元C .12元D .13元 2.三元一次方程5x y z ++=的正整数解有( )A .2组B .4组C .6组D .8组3.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.( )A .若他买55本笔记本,则会缺少120元B .若他买55支笔,则会缺少120元C .若他买55本笔记本,则会多出120元D .若他买55支笔,则会多出120元4.已知关于x ,y 的方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则a ,b 的值分别为( )A .2-,3B .2,3C .2-,3-D .2,3-5.《九章算术》是我国东汉初年编订的一部数学经典著作。
在它的“方程”一章里,一次方程组是由算筹布置而成的。
《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,x y 的系数与相应的常数项。
把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x y x y +=⎧⎨+=⎩,在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中x 的值为3,则被墨水所覆盖的图形为A .B .C .D .6.小兰:“小红,你上周买的笔和笔记本的价格是多少啊?”小红:“哦,…,我忘了!只记得先后买了两次,第一次买了 5 支笔和 10 本笔记本共花了 42 元钱,第二次买了 10 文笔和 5 本笔记本共花了 30 元钱.”请根据小红与小兰的对话,求得小红所买的笔和笔 记本的价格分别是( ) A .0.8 元/支,2.6 元/本B .0.8 元/支,3.6 元/本C .1.2 元/支,2.6 元/本D .1.2 元/支,3.6 元/本7.解方程组时,第一次消去未知数的最佳方法是( )A .加减法消去x ,将①-③×3与②-③×2B .加减法消去y ,将①+③与①×3+②C .加减法消去z ,将①+②与③+②D .代入法消去x ,y ,z 中的任何一个 8.若关于x 、y 的方程组2{44x y ax y a+=-=的解是方程3x 2y 10+=的一个解,则a 的值为( ) A .2B .-2C .1D .-19.下列方程中是二元一次方程的是( )A .(2)(3)0x y +-=B .-1x y =C .132x y=+D .5xy =10.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x 只鸡,y 只兔,则列出的方程组为( )A .30284x y x y +=⎧⎨+=⎩B .302484x y x y +=⎧⎨+=⎩C .304284x y x y +=⎧⎨+=⎩D .30284x y x y +=⎧⎨+=⎩二、填空题11.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种. 12. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______. 13.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.14.为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由A 、B 、C 三种饼干搭配而成,每袋礼包的成本均为A 、B 、C 三种饼干成本之和.每袋甲类礼包有5包A 种饼干、2包B 种饼干、8包C 种饼干;每袋丙类礼包有7包A 种饼干、1包B 种饼干、4包C 种饼干.已知甲每袋成本是该袋中A 种饼干成本的3倍,利润率为30%,每袋乙的成本是其售价的56,利润是每袋甲利润的49;每袋丙礼包利润率为25%.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为4:6:5,则当天该网店销售总利润率为__________.15.某科技公司推出一款新的电子产品,该产品有三种型号.通过市场调研后,按三种型号受消费者喜爱的程度分别对A 型、B 型、C 型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个季度的经营后,发现C 型产品的销量占总销量的37,且三种型号的总利润率为35%.第二个季度,公司决定对A 型产品进行升级,升级后A 产品的成本提高了25%,销量提高了20%;B 、C 产品的销量和成本均不变,且三种产品在二季度成本基础上分别加价20%,30%,45%出售,则第二个季度的总利润率为______. 16.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y +的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)17.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 18.有一水池,池底有泉水不断涌出.用10台抽水机20时可以把水抽干;用15台同样的抽水机,10时可以把水抽干.那么,用25台这样的抽水机__________小时可以把水抽干.19.若关于x 、y 的二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组3()()162()()15x y m x y x y n x y ++-=⎧⎨++-=⎩的解是__.20.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.三、解答题21.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2} (1)若点A 表示-3,a =3,直接写出点A 的3关联数. (2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值. ②若G (A ,a )={-2,7},求a 的值和点A 表示的数.(3)已知G(A,3)={x,y},G(B,2)={m,n},若点A、点B从原点同时同向出发,且点A的速度是点B速度的3倍.当|y-m|=6时,直接写出点A表示的数.22.阅读材料并回答下列问题:当m,n都是实数,且满足2m=8+n,就称点P(m﹣1,2 2n+)为“爱心点”.(1)判断点A(5,3),B(4,8)哪个点为“爱心点”,并说明理由;(2)若点A(a,﹣4)是“爱心点”,请求出a的值;(3)已知p,q为有理数,且关于x,y的方程组333x y p qx y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点B(x,y)是“爱心点”,求p,q的值.23.如图①,在平面直角坐标系中,点A在x轴上,直线OC上所有的点坐标(,)x y,都是二元一次方程40x y-=的解,直线AC上所有的点坐标(,)x y,都是二元一次方程26x y+=的解,过C作x轴的平行线,交y轴与点B.(1)求点A、B、C的坐标;(2)如图②,点M、N分别为线段BC,OA上的两个动点,点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,设运动时间为t秒,且0<t<4,试比较四边形MNAC的面积与四边形MNOB的面积的大小.24.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件)质量(吨/件)A型商品0.80.5B型商品21(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?25.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由; (3)求C ∠的度数。
高中函数对称性总结安徽省太湖县朴初中学/苏深强新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。
尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。
以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。
所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。
一、对称性的概念及常见函数的对称性1、对称性的概念①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。
②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
2、常见函数的对称性(所有函数自变量可取有意义的所有值)①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。
②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。
③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。
④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。
⑤指数函数:既不是轴对称,也不是中心对称。
⑥对数函数:既不是轴对称,也不是中心对称。
⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。
⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。
⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。
丄x + y = 8第七期:二元一次方程组二元一次方程组的考查在现在的中考中比较普遍,通常与数轴相结合, 应用题出得比较多,考查形式比较多样,有选择、填空或者解答的形式,分值一般在3分左右。
知识点1 :二元一次方程及其解例1下列方程中,是二元一次方程的是()1 y —2 A . 3x — 2y=4z B . 6xy+9=0C . — +4y=6D . 4x=x4思路点拨:掌握判断二元一次方程的三个必需条件: ①含有两个未知数; ②含有未知数的项的次数是1 ;③等式两边都是整式.所以选D例2:二元一次方程 5a — 11b=21()A .有且只有一解B .有无数解C .无解D .有且只有两解思路点拨: 不加限制条件时,一个二元一次方程有无数个解.所以选 B练习 1. 如果方程x m+1y n-1是二元一次方程,那么m= ___ , n= ______2. _________________________________________ 二元一次方程 2x-y=1,则当x=3蛙,y= _______________________________________________ ;当y=3时,x= ______答案:1 . 0 2 ;2. 5 2最新考题2.(2009年西宁市)如图中标有相同字母的物体的质量相同, 若A 的质量为20克,当天平处于平衡状态时, B 的质量为 _____________ 克.答案:1. B 2. 10知识点2:二元一次方程组及其解例1:下列方程组中,是二元一次方程组的是()1. (2009年日照) 若关于 x , y 的二兀2x 3y =6的解,贝U k 的值为33 A .B .44次方程组丿x + y = 5k, 的解也是二元一次方程x — y = 9k44C.- -D.33思路点拨:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1 ;③每个方程都是整式方程•所以选A例2:已知丨x—1 | + (2y+1 )2=0,且2x—ky=4,贝V k= .思路点拨:由已知得x —仁0, 2y+仁0,「X =11I 1二X=1, y=—,把 1 代入方程2x —ky=4 中,2+ k=4,二k=1 .2厂2 21 X 二1练习:1.写出一个以彳为解的二元一次方程组_________ .』=2f2x - y - -32.若满足方程组4 的y的值是1,则该方程组的解是__________4x +5y =1答案:1•答案不唯一如X - 3 2. X- 1ly = —1 ly=1最新考题1. (2009绵阳)小明在解关于x、y的二元一次方程组丿x + ®y-3,时得到了正确结果3x _ 述y = 1x—㊀,后来发现“>” “”处被墨水污损了,请你帮他找出过、㊉处的值分别是()A. : = 1,二=1 B . : = 2,二=1C. : = 1,二=2 D . : = 2,二=2x = 2 丄ax by = 72. (2009年桂林市、百色市)已知是二兀一次方程组的解,则a-b(y=1 .ax_by=1的值为().A. 1B. —1C. 2D. 3答案:1.B 2.B知识点3 :二元一次方程组的应用4例1 :某校初三(2)班40名同学为希望工程”捐款,共捐款100元.捐款情况如表:4人数表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有X 名同学,捐款3元的有y 名同学,根据题意,可得方程组()思路点拨:这是一道表格信息题, 通过已知条件可发现两个等量关系: 总人数为40人, 总捐款金额100元•利用表格信息可列方程组 丿x + y = 27 ,故应选A2x + 3y = 66例2:如图,点O 在直线AB 上,OC 为射线,.1比.2的3倍少10,设.1 , . 2的度数分别为x ,y ,那么下列求出这两个角的度数的方程是()x + y =180 A.」x = y -10仪 + y =180C.丿.X = y +10思路点拨:x + y =180B.丿x = 3y _ 10 f 3y =180D.丿x =3y -10知条件看似给了一个,其实还有一个隐含条件,即 • 1与.2互为邻补角•利用它们可列方程组/ + y"8o ,故应选B . jX =3y —10练习:2.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物 都是一样重的•驴子抱怨负担太重,骡子说: 你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多! ”那么驴子原来所驮货物的袋数是()成,其中一个小长方形的面积为()A. 400 cm 2B. 500 cm 2 2C.600 cmD.4000 cm1•如图,宽为50 cm 的矩形图案由「x + y = 27 A.丿2x +3y =66'x + y = 27B. 丿 2x +3y =100x + 27C.丿3x +2y =66x + 27D.丿3x +2y =100本题侧重考查10个全等的小长方形拼A. 5B. 6C. 7D. 8答案:1. A 2. A 最新考题1. (2009年齐齐哈尔市)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅 行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A . 4种B . 3种C . 2种D . 1种2. (2009年济宁市)请你阅读下面的诗句:栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何? ”诗句中谈到的鸦为只、树为 ________ 棵.答案:1. C ; 2. 20, 5过关检测、选择题1.下列各组数是二元一次方程"的解是()1 — X = 1卞=1= 0H■..V = ■B.c. < D.V = 2'= 1■ V = 02.如图,平行四边形ABCD 的周长是48,对甬线AC 与BD 相交于点0, △皿D 的周长比AAOB的周长多乩若设AD=次,AB 予 则可用列方程组的方法求也 怔的长,这个方程组可以是( )丄x y =48 C . x _ y = 63.中央电视台2套 开心辞典”栏目中,有一期的题目如图 所示,两个天平都平衡,则三个球体的重量等于( ) 个正方体的重量. A . 2 B . 3C . 4D . 54.如果3a 7x b y+7和-7a 2-4y b 2x 是同类项,则x 、y 的值是(2(x y) =48 A .x _ y = 62(x y) = 48 B .j _x = 6C .— 4A . X =—3厂2Bx =2,『=-3C .X =—2, y =3D .1 = 3,『一 2ax + y =0x=1则方呈的解■■■a ,b 为()x +by =1J = -1a = 0"a=1a=1a = 0A-B .丿C .D .丿b =1A ==0b = 1、b=0y=kx-9有公共解,则 5.k 的取值为()6 .若二元一次方程 3x-y=7 , 2x+3y=1 ,7.一副三角板按如图摆放,且/则可得到的方程组为( x = y -50A .丿x + y =180x = y-50 C .丿 x + y = 901的度数比/ 2的度数大50 )‘X = y + 50B .丿y =180"x = y + 50D .丿x + y = 90&李勇购买80分与100分的邮票共16枚,花了14元6角,购买80分与100分的邮票的枚数分别是()A . 6, 10 B. 7, 9 C. 8, 8D . 9, 7、填空题9 .如果,=3是方程3x-ay=8的一个解,那么a= _______________7 = -110 .由方程3x-2y-6=0可得到用x表示y的式子是______________ .X = 111.请你写出一个二元一次方程组,使它的解为」,这个方程组是y=2■C x =112 .若方程mx • ny = 6的两个解为ly=113 .根据图提供的信息,可知一个杯子的价格是14•若(2x-3y+5)2+ x + y — 2 =0,则I = —,丁的解是{;]口^,其中y的值被墨渍盖X x py =215 .在一本书上写着方程组X 3x 2y = 5x 2 19.[2(3x+2y)=2x+83x - y + z = 422.彳 2x+3y- z = 12x + y + z = 6四、解答题16.为了合理使用电力進源,缓解用电紧张状况,我国电力部门出台了便用“峰咎电"的4 政策及收费标谁(如下表).已知王老师家4月份使用“峰谷电渺號干瓦时,樹电费」43.40元间王老师家4月份"峰电”和"谷电规各 用了多少千瓦时?设王老师家4月份"峰电"用了 K 千瓦时,"谷电'■用了 F 千瓦时,根据题意可列方■程 组 *用电时间Q 收费标准-峰电 08:00—22:00^ 0, 56元/千瓦时 谷电 22:00—06:000- 28元/千瓦时,=2 3 6 m n 三—+=.421.3 4 2x_3±=2 怡2三解据组20.23.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。
第8课时二元一次方程组【知识管理】1.二元一次方程的有关概念定义:含有未知数,并且含有未知数的项的次数都是的整式方程.二元一次方程的解:使二元一次方程两边的值的两个未知数的值,叫做二元一次方程的解. 2.二元一次方程组的有关概念定义:把两个二元一次方程合在一起就组成一个二元一次方程组.二元一次方程组的解:一般地,二元一次方程组的两个方程的,叫做二元一次方程组的解.3.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.易错点:(1)在用代入消元法求解时,不能正确地用其中一个未知数去表示另一个未知数.(2)在求一个未知数时,还原代入.加减消元法:两个二元一次方程中同一未知数的系数互为相反数或相等时,将两个方程的两边分别或相减,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.方法:在解二元一次方程组时,也常用整体代入、换元等方法来解决.4.运用二元一次方程组解决实际问题步骤:(1)设两个未知数x,y;(2)根据已知条件列出与未知数的个数相等的两个独立方程组成的方程组;(3)解方程组;(4)检验求得的未知数的值是否符合实际意义.【典例分析】类型之一二元一次方程(组)的有关概念例1.已知2,1xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m n-的算术平方根为()A.4 B.2 C.2D.±2 【点悟】二元一次方程组的解适合方程组中的每一个方程,只要把解代入原方程组,可利用解方程组的方法求出待定字母.类型之二二元一次方程组的解法例2.解方程组:22,3210.x yx y+=⎧⎨-=⎩【点悟】当两个方程中的某个未知数的系数相等(或互为相反数),或者系数均不为1时,一般采取加减消元法求解,其步骤是运用等式性质,把某一个未知数的系数化成相同的数(或相反数),通过相减(或相加)消去一个未知数,达到消元求解的目的.类型之三利用二元一次方程组解决实际问题例3.2010年春季我国西南大旱,导致大量农田减产,如图8-1是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克?【点悟】(1)在a的基础上增加(减小)b%,则表示为a(1+b%)[或a(1-b%)];(2)解决此类问题,关键是要读懂对话意思,从中找出已知的或隐含的等量关系列出方程组并求①②第8课时二元一次方程组【知识管理】1.二元一次方程的有关概念定义:含有2个未知数,并且含有未知数的项的次数都是1次的整式方程.二元一次方程的解:使二元一次方程两边的值的两个未知数的值,叫做二元一次方程的解. 2.二元一次方程组的有关概念定义:把两个二元一次方程合在一起就组成一个二元一次方程组.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.3.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用另一个未知数表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.易错点:(1)在用代入消元法求解时,不能正确地用其中一个未知数去表示另一个未知数.(2)在求一个未知数时,还原代入.加减消元法:两个二元一次方程中同一未知数的系数互为相反数或相等时,将两个方程的两边分别相加或相减,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.方法:在解二元一次方程组时,也常用整体代入、换元等方法来解决.4.运用二元一次方程组解决实际问题步骤:(1)设两个未知数x,y;(2)根据已知条件列出与未知数的个数相等的两个独立方程组成的方程组;(3)解方程组;(4)检验求得的未知数的值是否符合实际意义.【典例分析】类型之一二元一次方程(组)的有关概念例1.已知2,1xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m n-的算术平方根为( B )A.4 B.2 C.2D.±2 【点悟】二元一次方程组的解适合方程组中的每一个方程,只要把解代入原方程组,可利用解方程组的方法求出待定字母.类型之二二元一次方程组的解法例2.解方程组:22,3210.x yx y+=⎧⎨-=⎩解:①2⨯得:424=+yx③②+③得:147=x2=∴x将2=x代入①得:2-=y⎩⎨⎧-==∴22yx方程组的解为【点悟】当两个方程中的某个未知数的系数相等(或互为相反数),或者系数均不为1时,一般采取加减消元法求解,其步骤是运用等式性质,把某一个未知数的系数化成相同的数(或相反数),通过相减(或相加)消去一个未知数,达到消元求解的目的.类型之三利用二元一次方程组解决实际问题例3.2010年春季我国西南大旱,导致大量农田减产,如图8-1是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克?解:设去年第一块田产量为x kg,第二块田产量为y kg,则⎩⎨⎧=-+-=+57%)901(%)801(470yxyx①②。
中考数学一轮复习第八章 二元一次方程组知识点总结及答案一、选择题1.下列各方程中,是二元一次方程的是( )A .253x y x y-=+B .x+y=1C .2115x y =+ D .3x+1=2xy2.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A .280B .140C .70D .1963.已知关于x ,y 的两个方程组 48312ax by x y -=-⎧⎨+=⎩ 和 35180516ax by x y +=⎧⎨+=⎩具有相同的解,则a ,b 的值是( ) A .=202a b -⎧⎨=⎩B .=202a b ⎧⎨=-⎩C .=202a b ⎧⎨=⎩D .=202a b -⎧⎨=-⎩4.已知方程组2x y x y a -=⎧⎨+=⎩,且5x y =,则a 等于( )A .5B .4C .3D .25.已知31x y =⎧⎨=⎩是方程组102ax by x by -=⎧⎨+=⎩的解,则x ay b =⎧⎨=⎩是哪一个方程的解( )A .34x y +=B .34x y -=C .439x y -=D .439x y += 6.若关于x y ,的二元一次方程组232320x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( ) A .34-B .34C .43D .43-7.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( )A .5B .-5C .15D .25 8.已知10a b +=,6a b -=,则22a b -的值是( )A .12B .60C .60-D .12-9.小敏和小捷两人玩“打弹珠”游戏,小敏对小捷说:“把你珠子的一半给我,我就有 30颗珠子”.小捷却说:“只要把你的12给我,我就有 30 颗”,如果设小捷的弹珠数为x 颗,小敏的弹珠数为 y 颗,则列出的方程组正确的是( ) A .230260x y x y +=⎧⎨+=⎩B .230230x y x y +=⎧⎨+=⎩C .260230x y x y +=⎧⎨+=⎩D .260260x y x y +=⎧⎨+=⎩10.以方程组21x y y x +=⎧⎨=-⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.方程组251036238x y z x z ⎧+-=⎪⎨⎪-=⎩__________________三元一次方程组(填“是”或“不是”). 12. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______. 13.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 14.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____.15.如图,长方形ABCD 被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒16.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.17.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题. 18.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________.19.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号) 20.两位同学在解方程组时,甲同学正确地解出,乙同学因把c 写错而解得,则a=_____,b=_____,c=_____.三、解答题21.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶A N =8∶9,问通道的宽是多少?22.平面直角坐标系中,点A 坐标为(a ,0),点B 坐标为(b ,2),点C 坐标为(c ,m ),其中a 、b 、c 满足方程组211322a b c a b c +-=⎧⎨--=-⎩.(1)若a =2,则三角形AOB 的面积为 ;(2)若点B 到y 轴的距离是点C 到y 轴距离的2倍,求a 的值;(3)连接AB 、AC 、BC ,若三角形ABC 的面积小于等于9,求m 的取值范围. 23.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV 汽车SC35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;(2)若手动型汽车每台价格为9万元,自动型汽车每台价格为10万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元.24.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A 款瓷砖的数量比B 款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A 款瓷砖的用量比B 款瓷砖的2倍少14块,且恰好铺满地面,则B 款瓷砖的长和宽分别为_ 米(直接写出答案). 25.如图,已知()0,A a ,(),0Bb ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.26.已知12x y =⎧⎨=⎩是二元一次方程2x y a +=的一个解.(1)a=__________;(2)完成下表,并在所给的直角坐标系中描出表示这些解的点(x ,y),如果过其中任意两点作直线,你有什么发现? x0 13y62【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A、分母中含有未知数,是分式方程,故本选项错误;B、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C、D、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误.故选B.2.C解析:C【解析】解:设小长方形的长、宽分别为x、y,依题意得:,解得:,则矩形ABCD的面积为7×2×5=70.故选C.【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.3.C解析:C【分析】联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,代入剩下的方程计算即可求出a与b的值.【详解】联立得:312 516 x yx y+=⎧⎨+=⎩,解得:26 xy=⎧⎨=⎩,将26xy=⎧⎨=⎩代入得:124530a ba b-=-⎧⎨+=⎩,解得:202ab=⎧⎨=⎩,故选:C.【点睛】本题考查了同解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.4.C解析:C【分析】把x=5y代入到方程组中,得到关于y、a的二元一次方程组,解方程组即可.【详解】将5x y =代入方程组2x y x y a -=⎧⎨+=⎩,得525y y y y a-=⎧⎨+=⎩,解得123y a ⎧=⎪⎨⎪=⎩.故选C . 【点睛】此题考查了二元一次方程组,掌握加减消元法是解答此题的关键.5.D解析:D 【分析】 将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩后求出,a b 的值,最后把x ay b =⎧⎨=⎩分别代入四个选项即可. 【详解】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩得:31032a b b -=⎧⎨+=⎩,解得31a b =⎧⎨=-⎩,即31x y =⎧⎨=-⎩,当31x y =⎧⎨=-⎩时,30x y +=,A 选项错误;36x y -=,B 选项错误; 4315x y -=,C 选项错误; 439x y +=,D 选项正确;故选D 【点睛】本题考查对方程的解的理解,方程的解:使方程成立的未知数的值.6.B解析:B 【分析】首先解关于x 的方程组,求得x ,y 的值,然后代入方程2x +3y =6,即可得到一个关于k 的方程,从而求解. 【详解】解232320x y k x y k +=⎧⎨-=⎩得72x k y k =⎧⎨=-⎩,由题意知2×7k +3×(−2k )=6,解得k =34. 故选:B【点睛】此题考查了解二元一次方程组,二元一次方程组的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.7.A解析:A 【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可. 【详解】 解:2728x y x y +=⎧⎨+=⎩①②①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5. 故选A. 【点睛】本题考查了用加减法解二元一次方程组.8.B解析:B 【分析】先利用加减消元法解方程组106a b a b +=⎧⎨-=⎩可得a 、b 的值,再代入求值即可得.【详解】由题意得:106a b a b +=⎧⎨-=⎩,解得82a b =⎧⎨=⎩,则22222864460a b -==-=-, 故选:B . 【点睛】本题考查了解二元一次方程组、有理数的乘方和减法运算,掌握方程组的解法是解题关键.9.D解析:D 【解析】 【分析】根据题中的等量关系:①把小捷的珠子的一半给小敏,小敏就有30颗珠子; ②把小敏的12给小捷,小捷就有30颗.列出二元一次方程组即可. 【详解】解:根据把小捷的珠子的一半给小敏,小敏就有30颗珠子,可表示为y+2x=30,化简得2y+x=60;根据把小敏的12给小捷,小捷就有30颗.可表示为x+y2=30,化简得2x+y=60. 故方程组为:260260x y x y +=⎧⎨+=⎩故选:D. 【点睛】本题首先要能够根据题意中的等量关系直接表示出方程,再结合答案中的系数都是整数,运用等式的性质进行整理化简.10.A解析:A 【分析】先根据代入消元法解方程组,然后判断即可; 【详解】21x y y x +=⎧⎨=-⎩, 把1y x =-代入2x y +=中,得:12x x -+=,解得:32x =, ∴31122y =-=, ∴点31,22⎛⎫⎪⎝⎭在第一象限. 故选A . 【点睛】本题主要考查了解二元一次方程组及象限与点的坐标,准确计算判断是解题的关键.二、填空题 11.是 【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可.【详解】解:如果方程组中含有三解析:是【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可.【详解】解:如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组.所以251036238x y zx z⎧+-=⎪⎨⎪-=⎩是三元一次方程组;故填:是.【点睛】本题主要考查三元一次方程组的定义.12.±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩①②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.13.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本,设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2x 本, 设甲班有y 人,乙班有(80﹣y )人.根据题意,得xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64,共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.14.m >﹣【分析】利用方程组中两个式子加减可得到和x-3y 用m 来表示,根据等量代换可得到关于m 的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x ﹣y =3m+2,将两个方程相减解析:m >﹣23【分析】利用方程组中两个式子加减可得到5x y-和x-3y用m来表示,根据等量代换可得到关于m的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x﹣y=3m+2,将两个方程相减可得x﹣3y=﹣m﹣4,由题意得32040 mm+>⎧⎨--<⎩,解得:m>23 -,故答案为:m>23 -.【点睛】此题考查含参数的二元一次方程组与不等式组相结合的题目,注意先观察,通过二元一次方程的加减得到不等式组的相关式子,再进行等量代换15.98【解析】【分析】设未知的三块面积分别为x,y,z(如图).根据S△BCF=S△ABF+S△CDF,S△ABE=S△ADE+S△BCE列出三元一次方程组,再利用加减消元法即可求得y的值.【解析:98【解析】【分析】设未知的三块面积分别为x,y,z(如图).根据S△BCF=S△ABF+S△CDF,S△ABE=S△ADE+S△BCE 列出三元一次方程组,再利用加减消元法即可求得y的值.【详解】设未知的三块面积分别为x,y,z(如图),则x+y+76=24+87+55+19+z,z+y+87=55+x+24+19+76,即x+y-z=109①,z+y-x=87②由①+②得,y=98.即图中阴影部分的面积是98﹒故答案为:98.【点睛】本题主要考查了矩形的性质,解决本题的关键是理清三角形与矩形间的面积关系,列出三元一次方程组,再通过加减消元,得到阴影部分的面积.16.14或19【解析】【分析】由、、、…、是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a1+2)2、(a2+2)2、…、(an+2)2有x 个9,y 个4,列不定方程解答即解析:14或19【解析】【分析】由1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a 1+2)2、(a 2+2)2、…、(a n +2)2有x 个9,y 个4,列不定方程解答即可确定正确的答案.【详解】解:设有x 个1,y 个0,则对应(a 1+2)2、(a 2+2)2、…、(a n +2)2中有x 个9,y 个4, ∵()()()()2222123222281n a a a a ++++++⋯++=,∴9x +4y =81 ∴499y x =-, ∵x ,y 均为正整数,∴y 是9的倍数,∴59x y =⎧⎨=⎩,118x y =⎧⎨=⎩, ∴这列数的个数n =x +y 为14或19,故答案为:14或19.【点睛】本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,得到不定方程然后求整数解即可.17.16【解析】【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:3b+2a-(x-a)=1解析:16【解析】【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:(2)×3-(1)得x=16,∴该次数学竞赛中一共有16道普通题.【点睛】本题考查了三元一次方程组的实际应用,中等难度,正确对方程组进行化简是解题关键. 18.4x+3y=27x+5y=3.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是4解析:.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元的方法是解题关键.19.①②③【分析】解方程组得出x、y的表达式,根据a的取值范围确定x、y的取值范围,再逐一判断即可.【详解】解方程组,得,,,,当时,,,x ,y 的值互为相反数,结论正确;当时,,,方程两解析:①②③【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,再逐一判断即可.【详解】解方程组343x y ax y a +=-⎧-=⎨⎩,得{121x a y a =+=-, 31a -≤≤,53x ∴-≤≤,04y ≤≤,①当2a =-时,123x a =+=-,13y a =-=,x ,y 的值互为相反数,结论正确; ②当1a =时,23x y a +=+=,43a -=,方程4x y a +=-两边相等,结论正确; ③当1x ≤时,121a +≤,解得0a ≤,且31a -≤≤,30a ∴-≤≤,114a ∴≤-≤,14y ∴≤≤结论正确,故答案为①②③.【点睛】本题考查了二元一次方程组的解,解一元一次不等式组.关键是根据条件,求出x 、y 的表达式及x 、y 的取值范围.20.﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】 分析:先把代入得 ,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案. 解答:解:把代入,得,解得,c=-2.再把代入ax+by=-2,得,解得:,所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.三、解答题21.1【分析】利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9ym,进而利用AD为18m,AB为13m,得出等式求出即可.【详解】设通道的宽是xm,AM=8ym.因为AM∶AN=8∶9,所以AN=9ym.所以22418,1813.x yx y+=⎧⎨+=⎩解得1,2.3xy=⎧⎪⎨=⎪⎩答:通道的宽是1m.故答案为1.【点睛】本题考查了二元一次方程组的应用.22.(1)2;(2)a=11或a=53;(3)﹣281033m≤≤且m≠﹣83.【分析】(1)求出A点坐标,可求出答案;(2)由题意得出b=a+3,c=a-4,则B(a+3,2),C(a-4,m),则|a+3|=2|a-4|,解方程即可得出答案;(3)过点C作y轴的平行线l,延长BA交l于M,过点B作x轴的平行线交直线l于点D,直线l交x轴于点E,由面积法得M(a﹣4,﹣83),根据S△BCM-S△ACM≤9,可得出关于a的不等式组,则可得出答案.【详解】(1)∵点A坐标为(a,0),点B坐标为(b,2),a=2,∴A(2,0),∴三角形AOB的面积为12×2×2=2;故答案为:2;(2)∵a、b、c满足方程组211 322 a b ca b c+-=⎧⎨--=-⎩.∴b=a+3,c=a﹣4,∴B(a+3,2),C(a﹣4,m),∵点B到y轴的距离是点C到y轴距离的2倍,∴|a+3|=2|a﹣4|,∴a=11或a=53;(2)过点C作y轴的平行线l,延长BA交l于M,过点B作x轴的平行线交直线l于点D,直线l交x轴于点E,设EM=n,则BD=7,DE=2,AE=4,∵S△BDM=S△AEM+S梯形BDEA,∴12×7×(2+n)=12×4×n+12×2×(4+7),解得:n=83,∴M(a﹣4,﹣83),∵S△ABC≤9,∴S△BCM﹣S△ACM≤9,∴18187492323m m⨯⨯+-⨯⨯+≤|,83m+|≤6,∴2810 33m-≤≤,∵m≠﹣83,∴281033m-≤≤且m≠﹣83.【点睛】此题是三角形综合题,主要考查了解三元一次方程组,坐标与图形的性质,几何图形面积的计算方法,解本题的关键是得出b=a+3,c=a-4.23.(1)手动型汽车560台,自动型汽车400台;(2)577.6万元.【分析】(1)根据题意设在政策出台前一个月,销售的手动型汽车x 台,自动型汽车y 台,根据政策出台前一个月及出台后的第一月销售量,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)由题意根据总价=单价×数量结合政府按每台汽车价格的5%给购买汽车的用户补贴,即可求出结论.【详解】解:(1)设在政策出台前一个月,销售的手动型汽车x 台,自动型汽车y 台,依题意,得:()()960130%125%1228x y x y +=⎧⎪⎨+++=⎪⎩, 解得:560400x y =⎧⎨=⎩. 答:在政策出台前一个月,销售的手动型汽车560台,自动型汽车400台.(2)[560×(1+30%)×9+400×(1+25%)×10]×5%=577.6(万元).答:政府对这1228台汽车用户共补贴了577.6万元.【点睛】本题考查二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(1)A 款瓷砖单价为80元,B 款单价为60元.(2)买了11块A 款瓷砖,2块B 款;或8块A 款瓷砖,6块B 款.(3)B 款瓷砖的长和宽分别为1,34或1,15. 【解析】【分析】(1)设A 款瓷砖单价x 元,B 款单价y 元,根据“一块A 款瓷砖和一块B 款瓷砖的价格和为140元;3块A 款瓷砖价格和4块B 款瓷砖价格相等”列出二元一次方程组,求解即可; (2)设A 款买了m 块,B 款买了n 块,且m>n ,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A 款正方形瓷砖边长为a 米,B 款长为a 米,宽b 米,根据图形以及“A 款瓷砖的用量比B 款瓷砖的2倍少14块”可列出方程求出a 的值,然后由92b b-+是正整教分情况求出b 的值.【详解】解: (1)设A 款瓷砖单价x 元,B 款单价y 元,则有14034x y x y +=⎧⎨=⎩, 解得8060x y =⎧⎨=⎩, 答: A 款瓷砖单价为80元,B 款单价为60元;(2)设A 款买了m 块,B 款买了n 块,且m>n ,则80m+60n=1000,即4m+3n=50∵m ,n 为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A 款瓷砖,2块B 款瓷砖或8块A 款瓷砖,6块B 款瓷砖;(3)设A 款正方形瓷砖边长为a 米,B 款长为a 米,宽b 米. 由题意得:79972211422b b a a b a b a --⎛⎫⨯⨯=+⨯- ⎪++⎝⎭, 解得a=1. 由题可知,92b b -+是正整教. 设92b k b-=+ (k 为正整数), 变形得到921k b k -=+, 当k=1时,77(122b =>,故合去), 当k=2时,55(133b =>, 故舍去), 当k=3时,34b =, 当k=4时,15b =, 答: B 款瓷砖的长和宽分别为1,34或1,15. 【点睛】 本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.25.(1)(0,4)A ,0()6,B -; (2)4(0,)D -;(3)()8,8P --【解析】【分析】(1)利用非负数的性质即可解决问题;(2)利用三角形面积求法,由ABO ACO BCO S S S ∆∆∆=+列方程组,求出点C 坐标,进而由△ACD 面积求出D 点坐标.(3)由平行线间距离相等得到20PAB EAB S S ∆∆==,继而求出E 点坐标,同理求出F 点坐标,再由GE=12求出G 点坐标,根据PGE OEF GPFO S S S ∆∆=+梯形求出PG 的长即可求P 点坐标.【详解】解:(1)40a -≥ 60b +≥, ∴460a b -++=,40a ∴-=,60b +=,4a ∴=,6b =-,()0,4A ∴,()6,0B -,(2)由BCM DOM S S ∆∆=∴ABO DOM S S ∆∆=,ABO ACD S S ∆∆∴=,1122ABO S AO BO ∆=⨯⨯=, 如图1,连CO ,作CE y ⊥轴,CF x ⊥轴,ABO ACO BCO S S S ∆∆∆=+,即()11641222m m ⨯⨯+⨯⨯-= 53212n m n m -=⎧∴⎨-=⎩, 32m n =-⎧∴⎨=⎩, ()3,2C ∴-,而12ACD S CE AD ∆=⨯⨯,()134122OD =⨯⨯+=, 4OD ∴=,()0,4D ∴-,(3)如图2:∵EF ∥AB ,∴20PAB EAB S S ∆∆==,∴1202AO BE ⨯=,即()4640OE ⨯+=, 4OE ∴=,()4,0E ∴,12GE =,8GO ∴=,()8,0G ∴-,20ABF PBA S S ∆∆==, ()11642022ABF S BO AF OF ∆∴=⨯⨯=⨯⨯+=, 83OF ∴=, 80,3F ⎛⎫∴- ⎪⎝⎭, PGE OEF GPFO S S S ∆∆=+梯形,11818128422323PG PG ⎛⎫∴⨯⨯=⨯+⨯+⨯⨯ ⎪⎝⎭, 8PG ∴=,()8,8P ∴--,【点睛】本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键.26.(1)4;(2)见解析.【解析】【分析】(1)根据代入法,把已知的二元一次方程的解代入方程即可求解a的值;(2)利用(1)中的a值,得到二元一次方程组,代入求解完成表格,然后描点即可.【详解】(1)将12xy=⎧⎨=⎩代入2x+y=a,解得a=4.(2)完成表格如下:x-10123y6420-2由图可知,如果过其中任意两点作直线,其他点也在这条直线上.【点睛】解题关键是把方程的解代入原方程,使原方程转化为以系数k为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.。
中考试题中典型二元一次方程组的整理一、选择、填空题整理1.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元) 1 23 4 人数67表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚. 若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( ).(A )272366x y x y +=⎧⎨+=⎩(B )2723100x y x y +=⎧⎨+=⎩(C )273266x y x y +=⎧⎨+=⎩(D )2732100x y x y +=⎧⎨+=⎩2.已知二元一次方程组为2728x y x y +=⎧⎨+=⎩,则x y -=______,x y +=_______.3.若方程组4311 3.x y ax a y +=⎧⎨+-=⎩,()的解x 与y 相等,则a =________.4.若359427342m n m n x y ++--+=是二元一次方程,则m n值等于__________. 5.有一个两位数,减去它各位数字之和的3倍,值为23,除以它各位数字之和,商是5,余数是1,则这样的两位数( )A .不存在B .有惟一解C .有两个D .有无数解 6.4x +1=m (x -2)+n (x -5),则m 、n 的值是( )A.⎩⎨⎧-=-=14n m B.⎩⎨⎧==14n m C.73m n =⎧⎨=-⎩ D.⎩⎨⎧=-=37n m7.如果方程组3921ax y x y +=⎧⎨-=⎩无解,则a 为( )A.6B.-6C.9D.-98.若方程组322543x y kx y k +=⎧⎨+=+⎩的解之和:x +y =-5,求k 的值,并解此方程组.9.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限10.若关于x y ,的方程组2x y mx my n-=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则||m n -为( )A .1B .3C .5D .211.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+ky x ky x 95的解也是二元一次方程632=+y x 的解,则k 的值为 ( ) (A )43-(B )43 (C )34(D )34-12.已知代数式133m x y--与52n m nx y +是同类项,那么m n 、的值分别是( ) A .21m n =⎧⎨=-⎩B .21m n =-⎧⎨=-⎩C .21m n =⎧⎨=⎩D .21m n =-⎧⎨=⎩二、应用问题的整理13.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶? (2)该校准备再.次.购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?14.在直角坐标系中有两条直线:3955y x =+和362y x =-+,它们的交点为P ,第一条直线与x 轴交于点A ,第二条直线与x 轴交于点B .(1)求A ,B 两点的坐标.(2)求△PAB 的面积.15.一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.问题:根据这些信息,请你推测这群学生共有多少人?16.在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元.求:(1)A型洗衣机和B型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?17.某服装专卖店老板对第一季度男、女服装的销售收入进行统计,并绘制了扇形统计图(如图).由于三月份开展促销活动,男、女服装的销售收入分别比二月份增长了40%,64%,已知第一季度男女服装的销售总收入为20万元.(1)一月份销售收入为万元,二月份销售收入为万元,三月份销售收入为万元;(2)二月份男、女服装的销售收入分别是多少万元?18.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x ,y 的值;(2)在备用图中完成此方阵图.19.某旅游商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件。
2010年部分省市中考数学试题分类汇编二元一次方程组及其应用16. (1)(2010年山东省青岛市) 解方程组:【关键词】二元一次方程组的解法解:②X 4得:4x 4y 16,③①+③得:7x = 35 , 解得:x = 5. 把x = 5代入②得,y = 1. •••原方程组的解为根据以下对话,可以求得小红所买的笔和笔记本的价格分别是 小红,你上周买的笔和笔记本的价格是多少啊?哦,…,我忘了!只记得先后买了两次,第一次买了 5支笔和10本笔记本共花了 42元钱,第二次买了 10支笔和5本笔记本共花了 30元钱。
13. (2010江西)某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x 张,乙种票y 张,由此可列出方程组:- 【分析】根据题意可找到等量关系:甲种票数量 +乙种票数量=40,甲种票总费用+乙种票总费用=370。
【关键词】列二元一次方程组x y 40【答案】10x 8y 370【关键词】解方程组3x 4y 19 x y 4【答案】(1)3x 4y 19 ①x y 4 ② 8 . ( 2010浙江省喜嘉兴市) ( )A . 0.8元/支,2.6元/本 C. 1.2元/支,2.6元/本 【关键词】二元一次方程组【答案】D.0.8元/支,3.6元/本 .1.2元/支,3.6元/本(2010年广东省广州市)解方程组x 2y 1, 3x 2y 11【答案】x 2y 1 ① 3x 2y 11②.①+②,得4x = 12,解得:x = 3.将x = 3代入①,得9-2y = 11,解得y =— 1. 所以方程组的解是16. (2010年重庆)含有同种果蔬但浓度不同的A, E 两种饮料,A 种饮料重 40千克,E 种饮料重60千克•现从这两种饮料中各倒出一部分, 且倒出部分的重量相同, 再将每种饮料所 倒出的部分与另一种饮料余下的部分混合•如果混合后的两种饮料所含的果蔬浓度相同, 那么从每种饮料中倒出的相同重量是 _________________ 千克. 【答案】 2413. (2010江苏泰州,13, 3分)一次函数y kx b ( k 为常数且k 0)的图象如图所示,则使y 0成立的x 的取值范围为 _________【答案】x v -2【关键词】一次函数与二元一次方程的关系(2010年宁德市)(本题满分10分)据宁德网报道:第三届海峡两岸茶业博览会在宁德市的 成功举办,提升了闽东茶叶的国内外知名度和市场竞争力,今年第一季茶青(刚采摘下 的茶叶)每千克的价格是去年同期价格的10倍.茶农叶亮亮今年种植的茶树受霜冻影响,第一季茶青产量为198.6千克,比去年同期减少了87.4千克,但销售收入却比去年同期增加8500元.求茶农叶亮亮今年第一季茶青的销售收入为多少元? 【答案】解法一:设去年第一季茶青每千克的价格为 X 元,则今年第一季茶青每千克的价格为10X 元, (2)分依题意,得:(198.6 + 87.4 ) x + 8500= 198.6 X 10x.解得x = 5.198.6 X 10X 5= 9930 (元).答:茶农叶亮亮今年第一季茶青的总收入为9930元.解法二:设今年第一季茶青的总收入为x元,依题意,得:x 8500亠=10 X198.6 198.6 87.4解得x=9930.答:茶农叶亮亮今年第一季茶青的总收入为9930元.1. (2010年福建省晋江市)(10分)2010年春季我国西南大旱,导致大量农田减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分【关键词】二元一次方程组与实际问题、产量问题【答案】解一:设去年第一块田的花生产量为x千克,第二块田的花生产量为y千克, 根据题意,得x y 470(1 80%)x (1 90%)y 57x 100解得y 370100 (1 80%) 20 , 370 (1 90%) 37答:该农户今年第一块田的花生产量是20千克,第二块田的花生产量是37千克。
中考数学复习《二元一次方程组》专项练习题及答案学校:___________班级:___________姓名:___________考号:___________温故而知新:二元一次方程组 1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是( 2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。
4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
5、二元一次方正组的解法 (1)代入法(2)加减法 6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。
7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。
练习题一、选择题:(本题共8小题,每小题5分,共40分.) 1.方程组02x y x y -=⎧⎨+=⎩的解为( )A .11x y =⎧⎨=-⎩B .11x y =-⎧⎨=⎩C .20x y =⎧⎨=⎩D .11x y =⎧⎨=⎩2.为响应“科教兴国”的战略号召,某学校计划成立创客实验室,现需购买航拍无人机和编程机器人,已知购买2架航拍无人机和3个编程机器人所需费用相同,购买4个航拍无人机和7个编程机器人共需3480元,设购买1架航拍无人机需x 元,购买1个编程机器人需y 元,则可列方程组为( )A .23473480x y x y =⎧⎨+=⎩B .3=24+7=3480x yx y ⎧⎨⎩C .2=37+4=3480x yx y ⎧⎨⎩D .3=27+4=3480x yx y ⎧⎨⎩3.小丽在用“加减消元法”解二元一次方程组524239x y x y -=⎧⎨+=⎩①②时,利用a b ⨯+⨯①②消去x ,则a 、b 的值可能是( ) A .2a =和5b = B .3a =和2b =C .3a =-和2b =D .2a =和=5b -4.有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币多少枚( ) A .22 B .16 C .14 D .12 5.已知 12x y =-⎧⎨=⎩是关于 x y 、 的二元一次方程 3mx y -= 的一个解,则 m 的值是( ) A .-1B .1C .-5D .56.若方程组31331x y ax y a +=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为( )A .-1B .1C .0D .无法确定7.已知关于x ,y 的方程组 111222a x b y c a x b y c +=⎧⎨+=⎩ 的解为 24x y =⎧⎨=⎩,则关于方程组()()()()11122212131213a x b y c a x b y c ++-=⎧⎪⎨++-=⎪⎩ 的解为( ) A .57x y =⎧⎨=⎩B .513x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .17x y =⎧⎨=⎩8.已知关于x ,y 的二元一次方程组2332x y a x y a +=-⎧⎨-=⎩,有下列说法:①当a =2时,方程的两根互为相反数;②不存在自然数a ,使得x ,y 均为正整数;③x ,y 满足关系式x -5y =6;④当且仅当a =-5时,解得x 为y 的2倍.其中正确的是( ) A .①②③④ B .①③④ C .②③ D .①②④ 二、填空题:(本题共5小题,每小题3分,共15分.)9.某班级为奖励网络课堂线上学习先进个人,花了800元钱购买甲、乙两种奖品共60件,其中甲种奖品每件16元,乙种奖品每件12元求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,根据题意可列方程组为 . 10.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买 支.11.以方程组 12y x y x =+⎧⎨=-+⎩的解为坐标的点(x,y)在第 象限.12.已知 21x y =⎧⎨=⎩ 是二元一次方程组 71ax by ax by +=⎧⎨-=⎩ 的解,则 a b - = 。
中考数学专项复习《二元一次方程组》练习题(附答案)一、单选题1.某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得 1分.七年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是( ) A .{y =−x +2y =x −1B .{y =−x +2y =x −1C .{x +y =16x +2y =26D .{x +y =162x +y =262.有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问甲乙债券各有多少?( ) A .150,350 B .250,200 C .350,150 D .150,2503.如图小亮拿了一个天平,测量饼干和糖果的质量(每块饼干质量相同,每颗糖果质量相同),第一次,左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10g 砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次,左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再次平衡( )A .在糖果的秤盘上加2g 砝码B .在饼干的秤盘上加2g 砝码C .在糖果的秤盘上加5g 砝码D .在饼干的秤盘上加5g 砝码4.小明在解关于x 、y 的二元一次方程组{x +y =△2x −3y =5时解得{x =4y =⊗,则△和△代表的数分别是( ) A .△=1,△=5 B .△=5,△=1 C .△=﹣1,△=3D .△=3,△=﹣15.已知 △ABC 三边为 abc ,满足 (a −17)2+√b −15+c 2−16c +64=0 ,则△ABC 是( )A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形以C .以c 为斜边的直角三角形D .不是直角三角形6.已知关于x ,y 的二元一次方程组{ax −by =−2cx +dy =4的解为{x =3y =2,则方程组{ax −by +2a +b =−2cx +dy −d =4−2c的解为( )A .{x =1y =2B .{x =1y =3C .{x =2y =2D .{x =2y =37.方程组 {3x +y =3,−4x −y =3 的解是( )A .{x =0,y =3B .{x =0,y =−3 C .{x =6,y =−15D .{x =−6,y =218.已知关于x ,y 的方程组{x +2y =5−2ax −y =4a −1给出下列结论:①当a =1时方程组的解也是x +y =2a +1的解; ②无论a 取何值x ,y 的值不可能是互为相反数; ③x ,y 都为自然数的解有4对; ④若2x +y =8,则a =2. 正确的有几个( ) A .1B .2C .3D .49.对于实数,规定新运算:x△y=ax+by ﹣xy ,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知: √2 △1=﹣ √2 ,(﹣3)△ √2 =8 √2 ,则a△b 的值为( ) A .6﹣2 √2B .6+2 √2C .4+ √2D .4﹣3√210.△ABC 中|sinA −√32|+(cosB −12)2=0,则△ABC 是( )A .等腰但不等边三角形B .等边三角形C .直角三角形D .等腰直角三角形11.已知方程组 {ax −by =4ax +by =2 的解为 {x =2y =1 则 2a −5b 的立方根是( )A .-2B .2C .√53D .−√2312.若满足方程组 {3x +y =m +32x −y =2m −1 的x 与y 互为相反数,则m 的值为( )A .1B .-1C .11D .-11二、填空题13.已知方程组{ax +by =4bx +ay =5的解是{x =2y =1,则a −b 的值为 .14.若|2x-3y-7|+ √x −2y −3 =0,则x-y=15.若3x 2m ﹣3﹣y 2n ﹣1=5是二元一次方程,则m= ,n= . 16.已如等腰 ΔABC 的两边长 a , b 满足 |a −4|+√b −2=0 ,则第三边长 c的值为17.若实数m 、n 满足 (m −3)2+√n +2=0 ,则m n = .18.关于x ,y 的二元一次方程组 {x +y =1−mx −3y =5+3m 中 m 与 方程组的解中的或相等,则m 的值为 .三、综合题19.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x 个,乙每天做y 个. (1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当x =32时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?20.已知关于x 、y 的方程组 {2x +y =m +12x −y =3m −9 的解都不小于1(1)求m 的取值范围; (2)化简|2m ﹣6|﹣|m ﹣4|.21.解下列方程组:(1){2x +3y =7x =−2y +3 (2){2s +3t =−14s −9t =822.如图,在数轴上点A 表示的数是a ,点C 表示的数是c ,且 |a +10|+(c −20)2=0 .(点A 与点C 之间的距离记作AC )(1)求a 和c 的值(2)若数轴上有一点D ,满足CD =2AD ,则点D 表示的数是 ; (3)动点B 从数1对应的点以每秒1个单位长度的速度开始向右匀速运动,同时点A ,C 分别以每秒2个单位长度、每秒3个单位长度的速度在数轴上匀速运动.设运动时间为t 秒.若点A 向右运动,点C 向左运动,当AB =BC 时求t 的值;23.在平面直角坐标系中已知点A(0,m),点B(n ,0),且m ,n 满足(m −n)2+√n −4=0.(1)求点A ,B 的坐标;(2)若点E(x ,4)为第二象限内一点,且满足S 三角形AOE =13S 三角形AOB ,求点E 的坐标;(3)把线段AB 向左平移a(a >0)个单位长度得到线段A 1B 1. ①直接写出点B 1的坐标: ▲ (用含a 的式子表示) ②若S 四边形ABB 1A 1=3S 三角形AOB ,求a 的值.24.已知代数式 A =x 2−xy B =2x 2+3xy +2y −1 .(1)(x +1)2+|y −2|=0 求 2A −B 的值. (2)若 2A −B 的值与 y 的取值无关,求 x 的值.参考答案1.【答案】D 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】D 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】C 13.【答案】-1 14.【答案】4 15.【答案】2;1 16.【答案】4 17.【答案】1918.【答案】2或 −1219.【答案】(1)解:由题意可得(3+6)x +6y =558(2)解:由(1)可得y =−32x +93,当x =32时y =−32×32+93=45.(3)解:当y =48时(3+6)x +6×48=558,x =30.答:若乙每天做48个,则甲每天做30个.20.【答案】(1)解:解:(1)解原方程组可得: {x =m −2y =−m +5 因为方程组的解为一对正数所以有 {m −2≥1−m +5≥1 解得:3≤m≤4即a 的取值范围为:3≤m≤4;(2)解:由(1)可知:2m ﹣6>0,m ﹣4<0 所以|2m ﹣6|﹣|m ﹣4|. =(2m ﹣6)﹣(m ﹣4) =m ﹣2.21.【答案】(1){2x +3y =7(1)x =−2y +3(2)将(2)代入(1)中得2(-2y+3)+3y=7,去括号得-4y+6+3y=7,解得y=-1,将y=-1代入(2)得x=-2×(-1)+3=5 则方程组的解为{x =5y =−1. (2){2s +3t =−1(1)4s −9t =8(2)由3×(1)+(2)得6s+4s=-3+8,解得s=12将s=12,代入(1)中得1+3t=-1,解得y=-23则方程组的解为{s =12t =−23. 22.【答案】(1)解:由非负性得出a+10=0;c-20=0∴a=-10;c=20; (2)-40或0(3)解:当时间为t 时 点A 表示的数为-10+2t 点B 表示的数为1+t 点C 表示的数为20-3tAB= |1+t −(−10+2t)| = |11−t| BC= |1+t −(20−3t)| = |4t −19| ∴|11−t| = |4t −19| 解得:t= 83或t=6.23.【答案】(1)解:∵(m −n)2+√n −4=0∴{m −n =0n −4=0 解得{m =4n =4∴A(0,4),B(4,0);(2)解:∵点E(x ,4)为第二象限内一点,且满足S 三角形AOE =13S 三角形AOB∴12OE ×OA =13×12OB ×OA 12|x|×4=13×12×4×4 ∵点E(x ,4)为第二象限内 ∴x<0∴x=−43∴E(−43,4)(3)①(4−a ,0);②∵S 四边形ABB 1A 1=3S 三角形AOB∴BB 1×OA =3×12×OA ×OB4a =3×12×4×4 解得a=624.【答案】(1)∵A =x 2−xy , B =2x 2+3xy +2y −1∴2A −B=2(x 2−xy)−(2x 2+3xy +2y −1) =2x 2−2xy −2x 2−3xy −2y +1=−5xy −2y +1∵(x +1)2+|y −2|=0 ∴x +1=0 ∴x =−1∴原式 =−5×(−1)×2−2×2+1=10−4+1=7(2)若 2A −B 的值与 y 的取值无关 即 −5xy −2y +1 的值与 y 的取值无关 ∴−5xy −2y =(−5x −2)y =0 ∴−5x −2=0∴x =−25。
中考数学一轮复习第八章 二元一次方程组(讲义及答案)及答案一、选择题1.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( )A .2B .2-C .1D .1-2.若关于x 、y 的二元一次方程组3234x y ax y a +=+⎧⎨+=-⎩的解满足x +y >2,则a 的取值范围为( ) A .a <−2B .a >−2C .a <2D .a >23.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( )A .449x y y x y x -=+⎧⎨-=+⎩B .449x y y x y x -=+⎧⎨-=-⎩C .449x y y x y x -=-⎧⎨-=+⎩D .449x y y x y x -=-⎧⎨-=-⎩4.已知方程组221x y kx y +=⎧⎨+=⎩的解满足3x y -=,则k 的值为( )A .2B .2-C .1D .1- 5.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .4种B .5种C .6种D .7种6.已知甲乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为x 元,年支出为y 元,可列出方程组为( )A .4002740034x y x y -=⎧⎪⎨+=⎪⎩ B .4003440027x y x y =+⎧⎪⎨-=⎪⎩ C .4002440037x y x y -=⎧⎪⎨-=⎪⎩ D .4003740024x y x y -=⎧⎪⎨-=⎪⎩ 7.《九章算术》是我国东汉初年编订的一部数学经典著作。
在它的“方程”一章里,一次方程组是由算筹布置而成的。
《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,x y 的系数与相应的常数项。
二元一次方程组及其应用◆【课前热身】1.若2x m+n-1-3y m-n-3+5=0是关于x,y的二元一次方程,则m=_____,n=_____.2.在式子3m+5n-k中,当m=-2,n=1时,它的值为1;当m=2,n=-3时,它的值是_____.3.若方程组26ax yx by+=⎧⎨+=⎩的解是12xy=⎧⎨=-⎩,则a+b=_______.4.已知x,y,t满足方程组23532x ty t x=-⎧⎨-=⎩,则x和y之间应满足的关系式是_______.5.若方程组2x y bx by a+=⎧⎨-=⎩的解是1xy=⎧⎨=⎩,那么│a-b│=_____.【参考答案】1.3;-12.-73.84.15y-x=65.1◆【考点聚焦】了解二元一次方程组及其解法,并灵活运用代入法、加减法解二元一次方程组.重点:掌握消元思想,熟练地解二元一次方程组.会用二元一次方程组解决一些简单的实际问题.难点:是图象法解二元一次方程组,数形结合思想.◆【备考兵法】思想方法:①消元思想--加减和代入两种消元方法②数学建模思想--列二元一次方程组解决实际问题的方法③数形结合思想--图象法解二元一次方程组二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.易错知识辨析:(1)二元一次方程有无数个解,它的解是一组未知数的值;(2)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值;(3)利用加减法消元时,一定注意要各项系数的符号.◆【考点链接】(对重点知识点的概括,主要以填空题形式考查)1.二元一次方程:含有未知数(元)并且未知数的次数是的整式方程.2. 二元一次方程组:由2个或2个以上的组成的方程组叫二元一次方程组.3.二元一次方程的解:适合一个二元一次方程的未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有个解.4.二元一次方程组的解:使二元一次方程组的,叫做二元一次方程组的解.5. 解二元一次方程的方法步骤:二元一次方程组方程.消元是解二元一次方程组的基本思路,方法有消元和消元法两种.◆【典例精析】例1 已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.消元转化【分析】由方程组的解的定义可知21x y =⎧⎨=⎩,同时满足方程组中的两个方程,将21x y =⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【答案】解:把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程. 例2 (2009年湖南郴州)李大叔今年五月份购买了一台彩电和一台洗衣机,根据“家电下乡”的补贴标准:农户每购买一件家电,国家将按每件家电售价的13%补贴给农户. 因此,李大叔从乡政府领到了390元补贴款. 若彩电的售价比洗衣机的售价高1000元,求彩电和洗衣机的售价各是多少元.【分析】本题主要考查学生运用二元一次方程组解决实际问题的能力. 【答案】解:设一台彩电的售价为x 元,一台洗衣机的售价为y 元根据题意得:100013()390x y %x y ì-=ïïíï+=ïî解得20001000x y ì=ïïíï=ïî答:一台彩电的售价为2000元,一台洗衣机的售价为1000元 例3(2009年广西钦州)小王购买了一套经济适用房,他准备 将地面铺上地砖,地面结构如图所示.根据图中的数据(单 位:m ),解答下列问题:(1)写出用含x 、y 的代数式表示的地面总面积; (2)已知客厅面积比卫生间面积多21m 2,且地面总面积 是卫生间面积的15倍,铺1m 2地砖的平均费用为80元, 求铺地砖的总费用为多少元?【答案】解:(1)地面总面积为:(6x +2y +18)m 2;(2)由题意,得6221,6218152.x y x y y -=⎧⎨++=⨯⎩解之,得4,3.2x y =⎧⎪⎨=⎪⎩∴地面总面积为:6x +2y +18=6×4+2×32+18=45(m 2).∵铺1m 2地砖的平均费用为80元,∴铺地砖的总费用为:45×80=3600(元). ◆【迎考精练】 一、选择题1. (2009年台湾)若二元一次联立方程式⎪⎩⎪⎨⎧=-+=-03515154632y x yx 的解为x =a ,y =b ,则a-b =?( ) A .35B .59C .329D .-31392. (2009年四川绵阳)小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( )A .⊗ = 1,⊕ = 1B .⊗ = 2,⊕ = 1C .⊗ = 1,⊕ = 2D .⊗ = 2,⊕ = 2 3. (2009年广西桂林)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值( ).A .1B .-1C . 2D .3 4. (2009年福建福州)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是( )A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩5. (2009年山东日照)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+ky x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为( ) A .43-B .43 C .34 D .34-6. (2009年黑龙江齐齐哈尔)一宾馆有二人间、三人间、四人间三种客房供游客租住, 某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )A .4种B .3种C .2种D .1种二、填空题1.(2009年湖南株洲)孔明同学在解方程组2y kx b y x=+⎧⎨=-⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为12=-⎧⎨=⎩x y ,又已知直线=+y kx b 过点(3,1),则b 的正确值应该是 . 2.(2009年湖南怀化)方程组321026x y x y +=⎧⎨+=⎩, 的解为 .3.(2009年甘肃定西)方程组25211x y x y -=-⎧⎨+=⎩,的解是 .4.(2009年四川达州)将一种浓度为15℅的溶液30㎏,配制成浓度不低于20℅的同种溶液,则至少需要浓度为35℅的该种溶液____________㎏.5.(2009年河北)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm , 此时木桶中水的深度是 cm .6.(2009年山东济宁)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?” 诗句中谈到的鸦为 只、树为 棵. 三、解答题1.(2009年北京市)列方程或方程组解应用题:北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人第5题次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?2.(2009年江苏省)一辆汽车从A地驶往B地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程.3.(2009年湖北襄樊)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15 万元.请你通过计算求出有几种改造方案?4.(2009年山东淄博)如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等. (1)求x ,y 的值;(2)在备用图中完成此方阵图.5.(2009年广东肇庆)2008 年北京奥运会,中国运动员获得金、银、铜牌共 100 枚,金牌数位列世界第一. 其中金牌比银牌与铜牌之和多 2 枚,银牌比铜牌少 7 枚.问金、银、铜牌各多少枚?6.(2009年湖南邵阳)为迎接“建国60周年”国庆,我市准备用灯饰美化红旗路,需采用A 、B 两种不同类型的灯笼200个,且B 灯笼的个数是A 灯笼的32。
专题07 二元一次方程组及其应用专题知识回顾1.二元一次方程:含有两个未知数,并且未知数的指数都是1的方程整式方程叫做二元一次。
方程一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
(1)代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
专题典型题考法及解析【例题1】(2019年福建省)解方程组.【答案】方程组的解为.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组利用加减消元法求出解即可.,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.【例题2】(2019年浙江省丽水市)解方程组【答案】∴【解析】根据二元一次方程组的解法,先将式子①化简,再用加减消元法(或代入消元法)求解;,将①化简得:﹣x+8y=5 ③,②+③,得y=1,将y=1代入②,得x=3,∴【例题3】(2019年湖南省怀化市)解二元一次方组:【答案】见解析。
【解析】直接利用加减消元法进而解方程组即可.,①+②得:2x=8,解得:x=4,则4﹣3y=1,解得:y=1,故方程组的解为:.【例题4】(2019年山东省潍坊市)己知关于x,y的二元一次方程组的解满足x>y,求k的取值范围.【答案】k<5.【解析】先用加减法求得x﹣y的值(用含k的式子表示),然后再列不等式求解即可.①﹣②得:x﹣y=5﹣k,∵x >y ,∴x ﹣y >0.∴5﹣k >0.解得:k <5.【例题5】(2019年海南省)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?【答案】“红土”百香果每千克25元,“黄金”百香果每千克30元.【解析】设“红土”百香果每千克x 元,“黄金”百香果每千克y 元,由题意得:解得: 【例题6】(2019年湖南省益阳市)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.求去年每千克小龙虾的养殖成本与售价。
2010年全国中考数学试题汇编《二元一次方程组》(01)中考数学试题汇编《二元一次方程组》(01)选择题2n ﹣1m m32.(2010•莱芜)已知是二元一次方程组的解,则2m﹣n的算术平方根为()D3.(2010•潍坊)二元一次方程组的解是().C D.4.(2010•台湾)解二元一次方程组,得y=()5.(2010•苏州)方程组的解是().C D.6.(2010•江津区)方程组的解是().C D.7.(2010•济南)二元一次方程组的解是().C D.8.(2010•百色)二元一次方程组的解是().C D.9.(2010•宁夏)甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程..10.(2010•丹东)某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得.C D.11.(2010•长春)端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元.设.12.(2010•巴中)巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km.一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为.13.(2010•台湾)甲、乙两种机器分别以固定速率生产一批货物,若4台甲机器和2台乙机器同时运转3小时的总产量,与2台甲机器和5台乙机器同时运转2小时的总产量相同,则1台甲机器运转1小时的产量,与1台乙机器.C D14.(2010•绵阳)有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客15.(2010•嘉兴)根据以下对话,可以求得小红所买的笔和笔记本的价格分别是()16.(2010•襄阳)已知:一等腰三角形的两边长x,y满足方程组,则此等腰三角形的周长为()填空题17.(2010•珠海)方程组的解是_________.18.(2010•顺义区)若|m﹣n|+(m+2)2=0,则m n的值是_________.19.(2010•江西)某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x张,乙种票y张,由此可列出方程组:_________.20.(2010•安顺)某校去年有学生1 000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%,问该校去年有寄宿学生与走读学生各多少名?21.(2010•威海)如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与_________个砝码C的质量相等.解答题22.(2010•宁德)(1)化简:(a+2)(a﹣2)﹣a(a+1);(2)解不等式≤1,并把它的解集在数轴上表示出来.23.(2010•大田县)(1)给出三个多项式2a2+3ab+b2,3a2+3ab,a2+ab,请你任选两个进行加(或减)法运算,再将结果分解因式;(2)解方程组.24.(2010•青岛)(1)解方程组:;(2)化简:25.(2010•潼南县)解方程组:26.(2010•顺义区)解方程组:.27.(2010•南京)解方程组:.28.(2010•丽水)解方程组:29.(2010•怀化)解方程组:30.(2010•广州)解方程组:2010年全国中考数学试题汇编《二元一次方程组》(01)参考答案与试题解析选择题2n﹣1m m3,.2.(2010•莱芜)已知是二元一次方程组的解,则2m﹣n的算术平方根为()D,;==23.(2010•潍坊)二元一次方程组的解是().C D.,∴原方程组的解为:台湾)解二元一次方程组,得y=()4.(2010•5.(2010•苏州)方程组的解是().C D.,.6.(2010•江津区)方程组的解是().C D.,.7.(2010•济南)二元一次方程组的解是().C D.故原方程组的解是:8.(2010•百色)二元一次方程组的解是().C D.的解是9.(2010•宁夏)甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程..10.(2010•丹东)某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得.C D..11.(2010•长春)端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元.设.得方程组12.(2010•巴中)巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km.一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为.分钟小汽车行进的路程为货车行进的路程为,则可得出,则可得出13.(2010•台湾)甲、乙两种机器分别以固定速率生产一批货物,若4台甲机器和2台乙机器同时运转3小时的总产量,与2台甲机器和5台乙机器同时运转2小时的总产量相同,则1台甲机器运转1小时的产量,与1台乙机器.C D小时的产量相同,14.(2010•绵阳)有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客,15.(2010•嘉兴)根据以下对话,可以求得小红所买的笔和笔记本的价格分别是(),16.(2010•襄阳)已知:一等腰三角形的两边长x,y满足方程组,则此等腰三角形的周长为()得,.填空题17.(2010•珠海)方程组的解是.故原方程组的解为18.(2010•顺义区)若|m﹣n|+(m+2)2=0,则m n的值是.解:由题意,得:.19.(2010•江西)某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x张,乙种票y张,由此可列出方程组:..20.(2010•安顺)某校去年有学生1 000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%,问该校去年有寄宿学生与走读学生各多少名?那么方程组可列成:21.(2010•威海)如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与2个砝码C的质量相等.解答题22.(2010•宁德)(1)化简:(a+2)(a﹣2)﹣a(a+1);(2)解不等式≤1,并把它的解集在数轴上表示出来.23.(2010•大田县)(1)给出三个多项式2a2+3ab+b2,3a2+3ab,a2+ab,请你任选两个进行加(或减)法运算,再将结果分解因式;(2)解方程组.,.24.(2010•青岛)(1)解方程组:;(2)化简:)∴原方程组的解为:﹣25.(2010•潼南县)解方程组:∴原方程组的解为26.(2010•顺义区)解方程组:.∴原方程组的解为27.(2010•南京)解方程组:..所以原方程组的解是28.(2010•丽水)解方程组:..29.(2010•怀化)解方程组:因此原方程组的解是30.(2010•广州)解方程组:,所以方程组的解是参与本试卷答题和审题的老师有:Linaliu;CJX;MMCH;疯跑的蜗牛;Liuzhx;HJJ;张超。
中考真题解析考点汇编解二元一次方程组以及简单的三元一次方程组一、选择题1. 若 a :b :c =2:3:7,且 a -b +3=c -2b ,则 c 值为何?()A .7B .63C .21 D . 2124考点:解三元一次方程组。
专题:计算题。
分析:先设 a =2x ,b =3x ,c =7x ,再由 a -b +3=c -2b 得出 x 的值,最后代入 c =7x 即可. 解答:解:设 a =2x ,b =3x ,c =7x , ∵a -b +3=c -2b ,∴2x -3x +3=7x -6x , 3解得 x = , 2∴c =7× 3 =21 ,22故选C .点评:本题考查了解三元一次方程组,解题的关键是由题意中的比例式设 a =2x ,b =3x ,c=7x ,再求解就容易了.2. 若二元一次联立方程式的解为 x=a ,y=b ,则a+b 之值为何?( )A 、1B 、3C 、4D 、6考点:解二元一次方程组。
分析:将其中一个方程两边乘以一个数,使其与另一方程中 x 的系数互为相反数,再将两方程相加,消去一个未知数,达到降元的目的,求出另一个未知数,再用代入法求另一个未知数. 解答:解:,⎩ ⎩ ⎩ ⎩ ⎩ ⎩ 专题:计算题.分析:解决本题关键是寻找式子间的关系,寻找方法消元,①②相加可消去y ,得到一个关于 x 的一元一次方程,解出 x 的值,再把 x 的值代入方程组中的任意一个式子,都可以求出 y 的值解答:解: ,①﹣2×②得,5y=﹣10,y=﹣2,代入②中得,x+4=7,解得, x=3∴a+b=3+(﹣2)=1, 故选(A )点评:本题主要考查解二元一次方程组:用加减法解二元一次方程组,用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数,把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求得未知数的值,将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⎧x + y = 3 3. 方程组⎨x - y = -1的解是()⎧x = 1A 、⎨y = 2⎧x = 1B 、⎨y = -2⎧x = 2C 、⎨y = 1⎧x = 0 D 、⎨y = -1考点:解二元一次方程组. ①+②得:2x=2,x=1,把 x=1 代入①得:1+y=3, y=2,⎧x = 1∴方程组的解为: ⎨ y = 2故选:A ,⎩⎩⎨点评:此题主要考查了二元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.⎧x + m = 64. 由方程组⎨ y - 3 = m 可得出 x 与y 的关系式是()A.x+y=9B.x+y=3C.x+y=﹣3D.x+y=﹣9考点:解二元一次方程组。
中考数学总复习之:二元一次方程组知识点:.用代入消元法解方程: 372x y y x +=⎧⎨=⎩2.用加减消元法解方程: 341223x y x y -=⎧⎨+=⎩一、选择题1. 下列方程组中是三元一次方程组的是 ( ) A. {x 2=4,x =z −1,x +y =0.B. {2x +y =1,x +z =2,y +z =0.C. {z =x +3,5x +y 3=12,x +2y =3.D. {3x +4y =1,x 3−y2=2,x −y =5.2. 方程组 {x +y =4,2x −y =5的解是 ( )A. {x =3,y =1B. {x =2,y =2C. {x =1,y =3D. {x =4,y =03. 二元一次方程 x +3y =7 的正整数解的个数是 ( ) 个.A. 1B. 2C. 3D. 44. 三元一次方程组 {x +y =1,y +z =5,z +x =6的解是 ( )A. {x =1y =0z =5B. {x =1y =2z =4C. {x =1y =0z =4D. {x =4y =1z =05. 下列各式中,属于二元一次方程的有 ( ) 个.① xy +2x −y =7;② 4x +1=x −y ;③ 1x +y =5;④ x =y ;⑤ x 2−y 2=2;⑥ 6x −2y ;⑦x +y +z =1;⑧ y (y −1)=2y 2−y 2+x .A. 1B. 2C. 3D. 46. 甲、乙、丙三种商品,若购买甲 3 件、乙 2 件、丙 1 件,共需 315 元钱,购甲 1 件、乙 2 件、丙3 件共需 285 元钱,那么购甲、乙、丙三种商品各一件共需多少钱 ( )A. 128 元B. 130 元C. 150 元D. 160 元7. 若 {x =2,y =−1是方程 mx +y =3 的一组解,则 m 的值为 ( )A. −3B. 1C. 3D. 28. 方程组 {2x +y =▫,x +y =3的解为 {x =2,y =▫, 则被遮盖的两个数分别为 ( )A. 2,1B. 2,3C. 5,1D. 2,49. 下列方程组是二元一次方程组的是 ( ) A. {x +y =9,x +y 2=3B. {x +y =9,y +z =10C. {x −3y =3,3x −y =10D. {x +y =4,xy =510. 已知 {x =1,y =1.,{x =2,y =3. 是关于 x ,y 的二元一次方程 y =kx +b 的解,则 k ,b 的值是 ( ) A. k =1,b =0 B. k =−1,b =2 C. k =2,b =−1 D. k =−2,b =1二、填空题 1. 已知方程 2x −4y =1,用含 x 的式子表示 y ,则 y = . 2. 已知 {2x −y =1,x +4y =3,则 x +y = .3. 在三元一次方程 x +6y −2z =50 中,用含 x ,y 的代数式表示 z : .4. 二元一次方程组 {x −2y =5,5x +4y =−3的解为 .5. 若 a +b =b +c =a +c =5,则 a +b +c = .6. 如果 {x =−2,y =−1 是方程 3x −ay =8 的一个解,那么 a = . 7. 已知方程组 {3x +5y =7, ⋯⋯①3x −5y =11, ⋯⋯②,①+② 得 ;①−② 得 .8. 已知 △ABC 的周长为 25 cm ,三边 a ,b ,c 中,a =b ,c:b =1:2,则边长 a = .9. 某学校要购买电脑,A 型电脑每台 5000 元,B 型电脑每台 3000 元.购买 10 台这两种型号的电脑共花费 34000 元.设购买A 型电脑 x 台,购买B 型电脑 y 台.则根据题意可列方程组为 .10. 若 3x 2m−3−y 2n−1=5 是二元一次方程,则 m = ,n = .三、解答题1. A 地至B 地的航线长 9750 km ,一架飞机从A 地顺风飞往 B 地需 12.5 h ,它逆风飞行同样的航线需 13 h ,求飞机无风时的平均速度与风速. 2. 解方程组 {x +y =1,2x +y =2.3. 判断下列方程组是否是二元一次方程组.(1){x −2y =1,3x +5y =12.(2){y =1,x −3y =5.(3){x =1,y =2.(4){x −7y =3,3y +5z =1.(5){x −2y =5,3x +8y =12.4. 写成用含 x 的代数式表示 y 的形式:2x −y =−1,x +4y −5=0.5. 求满足方程组 {3x +5y =k +2,2x +3y =k,且 x ,y 的值之和等于 2 的 k 的值.6. 解方程组:{x +y =2,① ⋯⋯①2x −13y =53. ②⋯⋯②7. 设甲数为 x ,乙数为 y ,根据下列语句,列出二元一次方程:(1)甲数的一半和乙数的 23 的和为 100; (2)甲数与乙数的 2 倍的和为 −5; (3)甲数的 2 倍与乙数的 12 的差为 −1; (4)甲数翻一番后与乙数的差的一半等于 9. 8. 若关于 x ,y 的方程组 {ax −by =1,3bx −ay =−1的解为 {x =3,y =5, 求 a ,b 的值.9. 解方程组:{x +y +z =2,x +2y +4z =−6,x =4y.10. 甲地到乙地全程 3.3 km ,一段上坡,一段平路,一段下坡,如果保持上坡每小时走 3 km ,平路每小时走 4 km ,下坡每小时走 5 km ,那么从甲地到乙地要 51 分钟,从乙地到甲地要 53.4 分钟.从甲地至乙地时,上坡、下坡、平路各走了多少?答案第一部分1. B2. A3. B 【解析】x=−3y+7,当y=1时,x=4;当y=2时,x=1,则方程的正整数解的个数是2个.4. A 5. C 6. C 7. D 8. C 9. C 10. C第二部分1. 12x−142. 433. z=12x+3y−254. {x=1, y=−25. 7.56. 14【解析】因为{x=−2,y=−1是方程3x−ay=8的一个解,所以3×(−2)−a×(−1)=8,解得a=14.7. 6x=18,10y=−48. 10cm9. {x+y=10,5000x+3000y=3400010. 2,11. 设飞机无风时的平均速度为 x (km/h ),风速为 y (km/h ),由题意得{x +y =975012.5,x −y =975013.解得:{x =765,y =15.答:飞机无风时的平均速度为 765 km/h ,风速为 15 km/h . 2.{x +y =1, ①⋯⋯①2x +y =2, ②⋯⋯②②②−①①得,x =1.把 x =1 代入 ②,得2+y =2.解得:y =0.则方程组的解为{x =1,y =0.3. (1) {x −2y =1,3x +5y =12是二元一次方程组.(2) {y =1,x −3y =5 是二元一次方程组.(3) {x =1,y =2 是二元一次方程组. (4) {x −7y =3,3y +5z =1不是二元一次方程组.(5) {x −2y =5,3x +8y =12不是二元一次方程组. 4. 方程2x −y =−1,解得:y =2x +1.方程x +4y −5=0,y =5−x4.5. 即求三元一次方程组 {3x +5y =k +2,2x +3y =k,x +y =2的 k 值.解得:k =4. 6. 由① ①,得x =2−y. ⋯⋯③③将 ③ ③代入② ②,得2(2−y )−13y =53.解这个方程,得y =1.将 y =1 代入 ③,得x =1.所以原方程组的解是{x =1,y =1.7. (1) 12x +23y =100. (2) x +2y =−5. (3) 2x −12y =−1. (4) 12(2x −y )=9. 8. 把 {x =3,y =5 代入方程组 {ax −by =1,3bx −ay =−1,得{3a −5b =1,9b −5a =−1.解得{a =2,b =1.所以 a 的值为 2,b 的值为 1.9. {x +y +z =2, ⋯⋯①①x +2y +4z =−6, ⋯⋯②②x =4y, ⋯⋯③③把 ③ ③代入① ①,得5y +z =2, ⋯⋯④④把③③代入②②,得6y+4z=−6, ⋯⋯⑤④⑤ ④×4−⑤⑤得14y=14,解得,y=1,把y=1代入④,解得z=−3,把y=1代入③,得x=4.故原方程组的解是{x=4, y=1, z=−3.10. 设从甲地到乙地上坡路、平路、下披路分别是x千米,y千米,z千米,根据题意得:{x+y+z=3.3, x3+y4+z5=5160, z3+y4+x5=53.460,解得{x=1.2, y=0.6, z=1.5.答:从甲地到乙地上坡路是1.2千米,平路是0.6千米,下坡路是1.5千米.。
中考数学一轮复习第八章 二元一次方程组(讲义及答案)及解析一、选择题1.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A .50人,40人B .30人,60人C .40人,50人D .60人,30人2.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩==是方程410x y +=的解的有( )A .1个B .2个C .3个D .4个3.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是3219423x y x y +=⎧⎨+=⎩,类似地,图2所示的算筹图表示的方程组为( )A .2114322x y x y +=⎧⎨+=⎩B .2114327x y x y +=⎧⎨+=⎩C .3219423x y x y +=⎧⎨+=⎩D .264327x y x y +=⎧⎨+=⎩ 4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天 5.若二元一次方程组 的解为x=a ,y=b ,则a+b 的值 ( )A .B .C .D .6.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( )A .173B .888C .957D .697.已知方程组222x y k x y +=⎧⎨+=⎩的解满足x+y=2,则k 的算术平方根为( ) A .4 B .﹣2 C .﹣4 D .28.下列方程组的解为31x y =⎧⎨=⎩的是( ) A .224x y x y -=⎧⎨+=⎩ B .253x y x y -=⎧⎨+=⎩ C .32x y x y +=⎧⎨-=⎩ D .2536x y x y -=⎧⎨+=⎩9.由方程组71x m y m +⎧⎨-⎩==可得出x 与y 的关系式是( ) A .x+y=8 B .x+y=1 C .x+y=-1 D .x+y=-810.已知关于x ,y 的方程组232x y a x y a -=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,x ,y 的值互为相反数;②20x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x ﹣y =1﹣a 的解;其中正确的是( ) A .①② B .①③C .②③D .①②③ 二、填空题11.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.12.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.13.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 14.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.15.已知a 、b 、c 分别是一个三位数的百位、十位、个位上的数字,且a 、b 、c 满足(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,则这个三位数的最大值为_____.16.已知关于x 、y 的方程组135x y a x y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y +的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)17.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.18.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题.19.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元.20.一人驾驶快船沿江顺流而下,迎面遇到一艘逆流而上的快艇.他问快艇驾驶员:“你后面有轮船开过吗”快艇驾驶员回答:“半小时前我超过一艘轮船”.快船继续航行了半小时,遇到了迎面而来的轮船.已知轮船静水速度是快船静水速度的2倍,那么快艇静水速度是快船的静水速度的____倍.三、解答题21.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2}(1)若点A 表示-3,a =3,直接写出点A 的3关联数.(2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值.②若G (A ,a )={-2,7},求a 的值和点A 表示的数.(3)已知G (A ,3)={x ,y},G (B ,2)={m ,n},若点A 、点B 从原点同时同向出发,且点A 的速度是点B 速度的3倍.当|y -m|=6时,直接写出点A 表示的数.22.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值. 三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值; 乙同学:将原方程组中的两个方程相加,再求k 的值;丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值. (1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.23.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.你认为哪种方案既省时又省钱?试比较说明.24.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由;(3)求C ∠的度数。
第七期:二元一次方程组二元一次方程组的考查在现在的中考中比较普遍,通常与数轴相结合,应用题出得比较多,考查形式比较多样,有选择、填空或者解答的形式,分值一般在3分左右。
知识点1:二元一次方程及其解例1:下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x +4y=6 D .4x=24y - 思路点拨:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.所以选D例2:二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解 思路点拨: 不加限制条件时,一个二元一次方程有无数个解.所以选B 练习1.如果方程x m+1y n-1是二元一次方程,那么m=_____,n=______. 2.二元一次方程2x-y=1,则当x=3蛙,y=______;当y=3时,x=_____. 答案: 1.0 2 ;2.5 2 最新考题1.(2009年日照)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为A .43-B .43 C . 34D .34-2.(2009年西宁市)如图中标有相同字母的物体的质量相同,若A 的质量为20克,当天平处于平衡状态时,B 的质量为 克.答案:1. B 2. 10知识点2:二元一次方程组及其解例1:下列方程组中,是二元一次方程组的是( )A .228423119 (237)54624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩思路点拨:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.所以选A例2:已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____. 思路点拨:由已知得x -1=0,2y+1=0,∴x=1,y=-12,把112x y =⎧⎪⎨=-⎪⎩代入方程2x -ky=4中,2+12k=4,∴k=1.练习:1.写出一个以12x y =⎧⎨=⎩为解的二元一次方程组________. 2.若满足方程组23451x y x y -=-⎧⎨+=⎩的y 的值是1,则该方程组的解是________.答案:1.答案不唯一如31x y =-⎧⎨=-⎩ 2.11x y =-⎧⎨=⎩最新考题1.(2009绵阳)小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( ) A .⊗ = 1,⊕ = 1 B .⊗ = 2,⊕ = 1 C .⊗ = 1,⊕ = 2 D .⊗ = 2,⊕ = 2 2.(2009年桂林市、百色市)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ).A .1B .-1C . 2D .3 答案:1.B 2.B知识点3:二元一次方程组的应用例1 :某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如表:47表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( ) A.⎩⎨⎧=+=+663227y x y x B.⎩⎨⎧=+=+1003227y x y xC.⎩⎨⎧=+=+662327y x y xD.⎩⎨⎧=+=+1002327y x y x思路点拨:这是一道表格信息题,通过已知条件可发现两个等量关系:总人数为40人,总捐款金额100元.利用表格信息可列方程组⎩⎨⎧=+=+663227y x y x ,故应选A .例2 :如图,点O 在直线AB 上,OC 为射线,1∠比2∠的3倍少︒10,设1∠,2∠的度数分别为x ,y ,那么下列求出这两个角的度数的方程是( )A.⎩⎨⎧-==+10180y x y x B.⎩⎨⎧-==+103180y x y xC.⎩⎨⎧+==+10180y x y x D.⎩⎨⎧-==1031803y x y思路点拨:本题侧重考查学生的数形结合思想.已知条件看似给了一个,其实还有一个隐含条件,即1∠与2∠互为邻补角.利用它们可列方程组⎩⎨⎧-==+103180y x y x ,故应选B .练习:1.如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A. 400 cm 2B. 500 cm 2C. 600 cm 2D. 4000 cm 22.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )CAB1 2 OA. 5B. 6C. 7D. 8 答案:1. A 2. A 最新考题1.(2009年齐齐哈尔市)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A .4种B .3种C .2种D .1种2.(2009年济宁市)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?” 诗句中谈到的鸦为 只、树为 棵.答案:1. C ;2. 20,5过关检测一、选择题以是( )A .2()486x y x y +=⎧⎨-=⎩ B .2()486x y y x +=⎧⎨-=⎩C .486x y x y +=⎧⎨-=⎩ D .486x y y x +=⎧⎨-=⎩3.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A .2B .3C .4D .5 4.如果3a 7x b y+7和-7a 2-4y b 2x 是同类项,则x 、y 的值是( )A .=-3,=2B .=2,=-3C .=-2,=3 D .=3,=-25.方程⎩⎨⎧=+=+10by x y ax 的解是⎩⎨⎧-==11y x ,则a ,b 为( ) A .⎩⎨⎧==10b a B .⎩⎨⎧==01b a C .⎩⎨⎧==11b a D .⎩⎨⎧==00b a6.若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k 的取值为( ) A .3 B .-3 C .-4 D .47.一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( )A .⎩⎨⎧=+-=18050y x y xB .⎩⎨⎧=++=18050y x y xC .⎩⎨⎧=+-=9050y x y x D .⎩⎨⎧=++=9050y x y x8.李勇购买80分与100分的邮票共16枚,花了14元6角,购买80分与100分的邮票的枚数分别是( )A .6,10B .7,9C .8,8D .9,7 二、填空题 9.如果⎩⎨⎧-==13y x 是方程3x -ay =8的一个解,那么a =_________.10.由方程3x -2y -6=0可得到用x 表示y 的式子是_________. 11.请你写出一个二元一次方程组,使它的解为⎩⎨⎧==21y x ,这个方程组是_________.12.若方程6=+ny mx 的两个解为 11x y =⎧⎨=⎩21x y =⎧⎨=-⎩,则m =__________.13.根据图提供的信息,可知一个杯子的价格是 . 14.若(2x-3y+5)2+2x y +-=0,则= ,= .15.在一本书上写着方程组21x py x y +=⎧⎨+=⎩ 的解是x y ⎧⎨⎩其中y 的值被墨渍盖住了,不过,我们可解得出p =___________.19.32522(32)28x y x x y x +=+⎧⎨+=+⎩ 20.⎪⎪⎩⎪⎪⎨⎧=+=+244263n m nm21. 22322143=-=+y x y x 22. 6123243=++=-+=+-z y x z y x z y x四、解答题23.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。
其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。
问王大伯一共获纯利多少元?24.长沙市某公园的门票价格如下表所示:某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?参考答案一、AADBB,DDD.二、9.-1;10.263-x;11.答案不唯一,符合题意即可。
12.4;13.8元;14.15,9 5;15.3;16.950.560.2843.4x yx y+=⎧⎨+=⎩.三、解方程组:17.14xy=⎧⎨=⎩18.21xy=⎧⎨=-⎩19.1232xy⎧=⎪⎪⎨⎪=⎪⎩24.设甲班有x人,乙班有y人,由题意得:8109205()515x yx y+=⎧⎨+=⎩解得:5548xy=⎧⎨=⎩.。