上海市奉贤区2014年中考二模数学试题
- 格式:doc
- 大小:432.00 KB
- 文档页数:10
2014年上海市初中毕业生统一学业考试模拟测试数学试卷参考答案 (2014.6)说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做到这一步可得到的分数; 4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原.则上不超过后继部分应得分数的一半................. 一、填空题(本大题共6题,每题4分,满分24分)1. B ;2. A ;3. A ;4. B ;5. C ;6. C . 二、选择题(本大题共12题,每题4分,满分48分)7.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+23234x x ; 8.3->x ; 9.1-; 10.75; 11.︒1440; 12.1)2(22+-=x y ; 13.554或3148; 14.b a 6161+; 15.12; 16.213±; 17.如1-=k 等,不唯一; 18.()a 12±.三、解答题(本大题共7题,满分78分) 19.解:原式aba b a b a b b a +⋅-+-+=))((………………………………………………………(3分) ba -=1………………………………………………………………………(6分) 将2=a 、1=b 代入,上式12121+=-=……………………………(10分)20.解:1232322--=+-x x x x …………………………………………………………(2分) 0322=-+x x ……………………………………………………………………(3分) ()()0132=-+x x …………………………………………………………………(5分)解得:231-=x ,12=x …………………………………………………………(7分) 经检验,当1=x 时,方程无解,舍去……………………………………………(9分)故原方程的解为23-=x …………………………………………………………(10分) 21.解:(1)22……………………………………………………………………………(2分) (2) 过O 作AB OD ⊥、过C 作OB CE ⊥,D 、E 为垂足 由题意可知:︒=∠=∠45B A22)32(2222222=+⋅==∴AO OD ……………………………(3分))32,2(A 3232tan ==∠AOC ︒=∠︒=∠∴30,60COB AOC设x EB CE ==,则x EO 3=,x OB )13(+=4)13(=+∴x 解得)13(2-=x ………………………………………(4分) )13(42-==∴x OC426sin +==∠OC OD OCA ………………………………………………(5分) (3) 过A 、B 分别作x 轴的垂线,D 、E 为垂足;过O 作AB OF ⊥,F 为垂足 ︒=90AOB ︒=∠+∠∴90COB AOC 又︒=∠+∠90OAD AOC OAD COB ∠=∠∴易证BOE OAD ∆≅∆,m BE OD ==、n OE AD ==),(m n B -∴ ……………………………………………………………………(6分)因而可求得直线AB 解析式为n m nm x n m n m y -+-⎪⎭⎫ ⎝⎛-+=22…………………(7分) 令0=y 则n m n m x ++=22 即nm n m OC ++=22……………………………… (8分)又由(2)同理可得2222n m OF +⋅=)(2)()(2sin 2222n m n m n m OC OFOCA ++⋅+==∠∴……………………………(10分)22.证明:连接GE ;过A 作BC AH ⊥,H 为垂足 47103422=+⋅=+=BC AD S AH ABCD ,3=-=AD BC BH ……………………(2分)522=+=∴BH AH AB ……………………………………………………(3分) F 为AE 中点xyOABC DExyOABC DE FEF AF =∴易证EBF AGF ∆≅∆,BE AG =……………………………………………(4分) E 为BC 中点, AB BE ==∴5ABEG ∴为菱形,GBC ABG ∠=∠,︒=∠90BFE ……………………(6分) 又CE AG //且CE AG =AECG ∴为平行四边形,GC AE //……(7分) D BFE BGC ∠=︒=∠=∠∴90……(8分) GCB DGC ∠=∠CBG GCD ∠=∠∴…………(9分) GCD ABC ∠=∠∴2………(10分) 23.解:(1) 当100≤≤x 时,设函数解析式为)0(2≠++=a c bx ax y将点)20,0(、)39,5(、)48,10(代入⎪⎩⎪⎨⎧=+=+=28101001952520b a b a c 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=2052451c b a20524512++-=∴x x y ……………………………………………………(1分) 当2010≤≤x 时,由于函数图像为平行于x 轴的线段,故函数解析式为48=y ………………………………………………………(2分)当20≥x 时,设函数解析式为)0(≠=k xky 将点)48,20(代入解得960=k xy 960=∴……………………………………………………………………(3分) 画图正确………………………………………………………………………(4分)(2) 将6=x 代入20524512++-=x x y ,解得5208=y ……………………(5分) 将25=x 代入x y 960=,解得5192=y ……………………………………(6分)51925208> 故第6分钟学生的听课注意力更集中………………………………………(8分)(3) 把36=y 代入20524512++-=x x y 解得41=x ,202=x (不符题意,舍去)……………………………………(9分)F ABCEGDH把36=y 代入x y 960= 解得380=x ……………………………………(10分) 243684380<=-∴…………………………………………………………(11分) 故老师无法经过适当的安排,从而能使学生在听这道题时的听课注意力指数都不 低于36.…………………………………………………………………………(12分)25.解:(1)ADEF的值保持不变,证明过程如下:………………………………………(1分) 【解法一】延长FO 、DB ,相交于点G BD AB = ,D A ∠=∠∴ 易证AFO RT ∆∽DFG RT ∆DGAODF AF =∴,G AOF ∠=∠……………………………………………(2分) 又BOG AOF ∠=∠,G BOG ∠=∠∴,5==BO BG ………………(3分)315105=+=+=∴BG DB AO DF AF 又由垂径定理可知EF AF =41=+=∴DF AF AF AD EF ,是定值…………………………………………(4分) 【解法二】连接OE 、BE OB OE AO ==AEO EAB ∠=∠∴、EBO OEB ∠=∠︒=∠+∠=∠∴90OEB AEO AEB …………………………………………(2分) 又BD AB =E ∴为AD 中点,ED AE =………………………………………………(3分) 由垂径定理可知EF AF =4142===∴EF EF AE EF AD EF ,是定值………………………………………(4分). OA BCF E DG. OABCFE D(2) 连接AC 、CE ,并过E 作CD EG ⊥,G 为垂足 由(1)同理可证︒=∠90ACD 又由(1)可知E 为AD 中点【注:若上述结论在(1)中未证明,则需在(2)中给予证明】ED AD CE ==∴21…………………………………………………………(5分) y CD DG 2121==∴…………………(6分) 易证AFO RT ∆∽DGE RT ∆AODEAF DG =∴………………(7分) 5221x x y=∴ 整理得254x y =……………(9分)(3) 若圆F 与圆D 相切,这里只存在外切的可能……………………………(10分) 若两圆外切,则DE DC =易证DCE ∆为等边三角形,︒=∠60DABD ∆∴也为等边三角形,10==BD AD ………………………………(11分)521===∴AD AE BC ……………………………………………………(12分) 故当50<<BC 时,圆F 与圆D 相交;…………………………………(13分) 当5=BC 时,圆F 与圆D 相切;当105<<BC 时,圆F 与圆D 相离.…………………………………(14分). OA BCF ED G。
崇明县2014学年第二学期教学调研卷九年级数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分) 1.D ; 2.C ;3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.(2)(2)x x x +- 8.1 9.2 10. 10 11. 2320y y -+= 12.2513. 540 14.22b a -15.216.[]68, 18. 35三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6302x tan =-. 解:原式=21(1)212x x x x x --+-+ ……………………………………………………2分 122x x x x -=-++ ………………………………………………………2分 12x =+ ………………………………………………………………2分∵6302x tan =-6223=⨯-= ………………………………………2分 ∴原式6=………………………………………………………………2分 20. (本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩ (1)…(2) 解:由(2)可得:(3)()0x y x y -+=∴30x y -=,0x y += ………………………………2分∴原方程组可化为:230x y x y -=⎧⎨-=⎩,2x y x y -=⎧⎨+=⎩ …………………………4分解得原方程组的解为1131x y =⎧⎨=⎩,2211x y =⎧⎨=-⎩ ………………………………4分21.(本题满分10分,第(1)小题5分、第(2)小题5分)(1)解:909oBAC AC ∠==∵, 93cos 5AC C AB BC ===∴ …………………………………………1分 15BC =∴ ………………………………………………………………2分 90oBAC ∠=∵,点E 是BC 的中点 11522AE BC ==∴ ……………………………………………………2分 (2)解:AD BC ⊥∵ 90oADC ADB ∠=∠=∴3cos 95CD CD C AC ===∴ 275CD =∴ …………………………………………………2分∵点E 是BC 的中点,BC=15 ∴CE=152 ∴DE=2110………………………………………1分 ∵90oADB ∠= ∴sin DAE ∠=2127101525DE AE =⨯= ……………………………2分 22. (本题满分10分,第(1)小题4分,第(2)小题6分)(1) 20;0.5 ……………………………………………………………各2分 (2)解:设小明出发x 小时的时候被妈妈追上.420(1)10203()3x x -+=⨯- ……………………………………3分解得:74x =……………………………………………………1分 ∴320(1)102010254x -+=⨯+= ……………………………1分答:当小明出发74小时的时候被妈妈追上,此时他们离家25千米.…1分23.(本题满分12分,每小题各6分)(1)证明:∵点D 、E 分别是BC 、AC 的中点∴DE//AB ,BC=2BD …………………………………………………1分 ∵AF//BC∴四边形ABDF 是平行四边形 ……………………………………………2分 ∵BC=2AB∴AB=BD …………………………………………………………………1分 ∴四边形ABDF 是菱形. …………………………………………………2分(2)证明:∵四边形ABDF 是菱形 ∴AF=DF∵点G 是AF 的中点 ∴FG=12AF ∵点E 是AC 的中点 ∴AE=CE ∵AF//BC ∴1EF AEDE CE== ∴EF=12DF , ∴FG=EF ……………………………………………………………1分 在△AFE 和△DFG 中AF DF F F EF GF =⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DFG (S.A.S )∴∠FAE=∠FDG ………………………………………………………1分 ∵AF//BC ∴∠FAE=∠C∴∠FDG=∠C ………………………………………………………1分 又∵∠EHD=∠DHC (公共角)∴△HED ∽△HDC ……………………………………………………2分 ∴HE HDHD HC= ∴2DH HE HC = ………………………………………………………1分 24.(本题满分12分,每小题各6分)(1)解:∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩……………………………………………………1分解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩………………………………………………2分∴这个抛物线的解析式为:2142y x x =-- ………………………………1分 顶点为9(1,)2- ……………………………………………………………2分(2)如图:取OA 的中点,记为点N ∵OA=OC=4,∠AOC=90° ∴∠ACB=45°∵点N 是OA 的中点 ∴ON=2 又∵OB=2 ∴OB=ON 又∵∠BON=90° ∴∠ONB=45° ∴∠ACB=∠ONB ∵∠OMB+∠OAB=∠ACB ∠NBA+∠OAB=∠ONB∴∠OMB=∠NBA ………………………………………………………………2分 1° 当点M 在点N 的上方时,记为M 1 ∵∠BAN=∠M 1AB ,∠NBA=∠OM 1B , ∴△ABN ∽△AM 1B ∴1AN ABAB AM = 又∵AN=2,∴110AM = 又∵A (0,—4)∴1(0,6)M ………………………………………………………………………2分 2° 当点M 在点N 的下方时,记为M 2点M 1与点M 2关于x 轴对称,∴2(0,6)M - ……………………………………2分 综上所述,点M 的坐标为(0,6)或(0,6)-25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:过点P 作PH ⊥AD ,垂足为点H∵∠ACB=90°,43tanB = ∴35sinA =∵PA x = ∴35PH x = ∵∠PHA=90° ∴222PH AH PA += ∴45AH x =……………………1分 ∵在⊙P 中,PH ⊥弦AD ∴45DH AH x ==, ∴85AD x = 又∵AC=8 ∴885CD x =- ………………………………………………1分∵∠PHA=∠BCA=90°,∴PH ∥BE ∴PH DHCE CD = ∴3455885x xy x=- ……………………………1分 ∴665y x =- (x 0<<5) (1)(2)∵PA=PD ,PH ⊥AD ∴∠1=∠2 ∵PH ∥BE∴∠1=∠B ,∠2=∠3 ∴PB=PE ∵Q 是BE 的中点∴PQ ⊥BE ………………………………………………………………………1分 ∴43PQ tanB =BQ = ∴35BQ cosB =BP = ∵PA x = ∴10PB x =- ∴365BQ x =-, 485P Q x =- 1°当⊙Q 和⊙P 外切时:PQ=AP+BQ∴438655x x x -=+- …………………………………………………………1分 53x = …………………………………………………………………1分2°当⊙Q 和⊙P 内切时,此时⊙P 的半径大于⊙Q 的半径,则PQ=AP —BQ ∴438(6)55x x x -=-- …………………………………………………………1分 321HQABP CED356x =……………………………………………………………………1分 ∴当⊙Q 和⊙P 相切时,⊙P 的半径为53或356.(3)当△PMC 是等腰三角形,存在以下几种情况:1°当MP=MC x =时 ,∵336(6)55QC x x =--= ∴45MQ x =若M 在线段PQ 上时,PM+MQ=PQ∴44855x x x +=- 4013x = ……………………………………………………………………1分若M 在线段PQ 的延长线上时,PM —MQ=PQ ∴44855x x x -=- 8x = …………………………………………………………………………1分 2°当CP=CM 时 ∵CP=CM ,CQ ⊥PM∴PQ=QM=1122PM x = ∴41852x x -=8013x = …………………………………………………………………………1分3°当PM=PC x =时∵AP x = ∴PA=PC 又∵PH ⊥AC ∴AH=CH ∵PH ∥BE∴1AP AHBP CH == ∴110xx=- 5x = …………………………………………………………………………1分 综上所述:当△PMC 是等腰三角形时,AP 的长为4013或8013或5或8.奉贤区初三调研考数学卷参考答案 201504一 、选择题:(本大题共8题,满分24分)1.B ; 2.D ; 3.A ; 4.C ; 5.B ; 6.D . 二、填空题:(本大题共12题,满分48分)7.b a 725-; 8.)3)(5(+-x x ; 9.1; 10.7104.9-⨯; 11.1->k ; 12.72; 13.减小; 14.9;15.32+; 16.50; 17.2或1; 18.20°.三.(本大题共7题,满分78分) 19. (本题满分10分)解:原式=1222223-+--+. (2)= 122+. ………………………………………………………………………2分 20. (本题满分10分)解:由①得:2x >- .………………………………………………………………………2分由②得:4x ≤ .………………………………………………………………………2分 所以,原不等式组的解集是24x -<≤.……………………………………………2分 数轴上正确表示解集. ………………………………………………………………2分所以,这个不等式组的最小整数解是-1.…………………………………………2分21. (本题满分10分)(1)过点A 作AH ⊥BC 于点H ………………………………………………………………1分 ∵ AB=AC ,BC =4 ∴BH =21BC =2 在△ABH 中,∠BHA=90°, ∴sin ∠BAH =31=AB BH …………………………………2分∵ DE 是AB 的垂直平分线 ∴∠BED=90° BE=3 ∴∠BED=∠BHA又∵∠B=∠B ∴∠BAH=∠D …………………………………………………1分∴sin ∠D= sin ∠BAH=13……………………………………………………………1分 即∠D 的正弦值为13(2)解:过点C 作CM ⊥DE 于点M ………………………………………………………1分在△BED 中,∠BED=90°, sin ∠D =13, BE=3 ∴BD =9sin =∠DBE∴CD=5………………………………………………2分在△MCD 中,∠CMD=90°, sin ∠D =31=CD CM ∴CM=35.…………………2分即点C 到DE 的距离为3522.(本题满分10分)解:设七年级人均捐款数为x 元,则八年级人均捐款数为)4(+x 元 .…………………1分 根据题意,得4%)201(1000251000++=-x x . ……………………………………4分 整理,得 0160122=-+x x . ……………………………………………1分解得 20,821-==x x .……………………………………………………2分经检验:20,821-==x x 是原方程的解,0202<-=x 不合题意,舍去.………… 1分 答:七年级人均捐款数为8元.……………………………………………………………1分 23.(本题满分12分,每小题满分各6分) 证明:(1)CA CE CD ⋅=2 ∴CACDCD CE =∵∠ECD =∠DCA ∴△ECD ∽△DCA ……………………………………………2分 ∴∠ADC =∠DEC ∵∠DEC =∠ABC ∴∠ABC =∠ADC …………………1分∵AB ∥CD ∴∠ABC+∠BCD=1800 ∠BAD+∠ADC =1800∴∠BAD =∠BCD ………………………………………………………………………2分 ∴四边形ABCD 是平行四边形 ………………………………………………………1分 (2)∵ EF ∥AB BF ∥AE ∴四边形ABFE 是平行四边形∴ AB ∥EF AB=EF …………………………………………………………………2分 ∵四边形ABCD 是平行四边形 ∴ AB ∥CD AB=CD ∴CD ∥EF CD=EF∴四边形EFCD 是平行四边形 ………………………………………………………2分 ∵CD ∥EF ∴∠FEC=∠ECD 又∵∠DCE=∠FCE ∴∠FEC=∠FCE ∴EF=FC∴平行四边形EFCD 是菱形 …………………………………………………………2分24.(本题满分12分,每小题4分)(1)∵ 抛物线x ax y +=2的对称轴为直线x =2.∴221=-a ∴41-=a .……………………………………………………………1分 ∴抛物线的表达式为:x x y +-=241.…………………………………………………1分∴顶点A 的坐标为(2,1). ……………………………………………………………2分 (2)设对称轴与x 轴的交点为E .①在直角三角形AOE 和直角三角形POE 中, AE OE OAE =∠tan ,OEPEEOP =∠tan ∵OA ⊥OP ∴EOP OAE ∠=∠ ∴OEPEAE OE =……………………………2分 ∵AE =1,OE=2 ∴PE=4 …………………………………………………………1分 ∴OP=524222=+ ……………………………………………………………1分②过点B 作AP 的垂线,垂足为F ………………………………………………………1分 设点B (a a a +-241,),则2-=a BF ,a a EF -=241 在直角三角形AOE 和直角三角形POB 中,OE AE OAE =∠cot ,OPBPOBP =∠cot ∵OBP OAE ∠=∠, ∴21==OP BP OE AE ∵PEO BFP ∠=∠,POE BPF ∠=∠ ∴△BPF ∽△POE , ∴OEPFPO BP PE BF == ∵OE=2, ∴PF=1,1412+-=a a PE ∴2114122=+--a a a解得101=a ,22=a (不合题意,舍去)…………………………………………2分 ∴点B 的坐标是(10,-15).……………………………………………………………1分 25.解:(1)作AH ⊥CD ,垂足为点H ……………………………………………………1分∵ CD=6 ∴321===CD DH CH …………………………………………………1分 ∵AD=5 ∴ AH=4 ………………………………………………………………1分 ∴28)(21=⋅+=AH AB CD S ABCD 梯形……………………………………………1分(2)作CP ⊥AB ,垂足为点P ∵⊙A 中,AH ⊥CD ,CD= x∴x CH 21=∴x CH AP 21==…………… ………………………………1分 ∴x BP 218-= ……………………………… ………………………………1分 222DH AD AH AHD Rt -=∆中,24125x -=∴2224125x AH CP -== …………………… ………………………………1分 在222BP CP BC BPC Rt +=∆中, 即222)218()4125(x x y -+-= 解得:()100889≤<-=x xy ………………………………………………2分(3)设AH 交MN 于点F ,联结AE∵ BC 的中点为M ,AD 的中点为N ∴MN ∥CD∵CE ∥AD ∴DC=NE=x ………………………………………………………………1分 ∵MN ∥CD ∴AD AN DH NF =∵ 2xDH = ∴4x NF = ∴43x EF =……1分 在直角三角形AEF 和直角三角形AFN 中222EF AE AF -= 222NF AN AF -= ∴2222)43(5)4()25(x x -=- ∴265=x …………………………………………………………………2分 即当CD 长为265时,CE//AD .黄浦区2015年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1. C ; 2. C ; 3.B ; 4. D ; 5. B ; 6. D . 二、填空题:(本大题共12题,每题4分,满分48分)7. 4a ; 8. 22(2)x -; 9. 21(1)(1)x x x ++-; 10. 3x =; 11. 2a <;12. 40%; 13.14 ; 14. 3; 15.16. 1123a b - ; 17. 15︒;18. .三、解答题:(本大题共7题,满分78分) 19. (本题满分10分) 原式=))1211+-+………………………………………………………(8分)=1. ………………………………………………………………………………(2分)20. (本题满分10分)解:由②得 1x y =+.③ ……………………………………………………(2分)将③代入①得22(1)22y y +-=-.………………………………………………………(1分)整理,得 2230y y --=.……………………………………………………………(2分)解得 11y =-,23y =. …………………………………………………………(2分)代入③得 10x =,24x =.………………………………………………………………(2分)所以,原方程的解是110,1;x y =⎧⎨=-⎩214,3.x y =⎧⎨=⎩…………………………………………………(1分)21. (本题满分10分,第(1)满分7分,(2)小题满分3分) 解:(1)设函数解析式为y kx b =+(0k ≠). ……………………………………………(2分)由0x =时,32y =, 得 320k b =⋅+.…………………………………………(1分)解得 32b = . ………………………………………………(1分)由100x =时,212y =,得 2121003k =+. ……………………………………(1分) 解得 95k =. ……………………………………………………(1分)∴y 关于x 的函数解析式是9325y x =+. ………………………………………………(1分)(2)将5x =-,代入9325y x =+,得9(5)325y =⋅-+. …………………………………(1分)解得 23y =. …………………………………………………………………(1分)∴这天的最低气温是23F . ……………………………………………………………(1分)22. (本题满分10分,第(1)、(2)小题满分各5分) 解:(1)设AB x =.∴ 4cot 3BC AB ACB x =⋅∠=. …………………………………………………………(1分)由题意得431(2)92x x +⋅=. …………………………………………………………(2分)解得1293, 2x x ==-(舍). …………………………………………………………(1分)所以AB 的长为3. ………………………………………………………………………(1分)(2)过点D 作DE ⊥AC ,垂足为E .…………………………………………………………(1分)在Rt △ABC 中,AB =3,BC =4,∴5AC ==. ……………………………………………………………(1分)∴ 3sin 5AB ACB AC∠==,4cos 5BC ACB AC∠==. ……………………………………(1分)∵AD //BC ,∴DAC ACB ∠=∠. 在Rt △AED 中,AD =2,s i n 56D E A DD A C =⋅∠=,cos 58AE AD DAC =⋅∠=.………………………………(1在Rt△CED中,665tan81755DEACDCE∠===-.………………………………………(1分)23. (本题满分12分,第(1)、(2)小题满分各6分)证明:(1)∵四边形ABCD是正方形,∴AD=CD. ……………………………………………………………………………(1分)∴DAE DCG∠=∠.……………………………………………………………………(1分)∵DE=DG,∴DEG DGE∠=∠.………………………………………………………(1分)∴AED CGD∠=∠.……………………………………………………………………(1分)在△AED与△CGD中,DAE DCG∠=∠,AED CGD∠=∠,AD=CD,∴△AED≌△CGD.……………………………………………………………………(1分)∴AE=CG. ……………………………………………………………………………(1分)(2) ∵四边形ABCD是正方形,∴AD//BC. ………………………………………………………………………………(1分)∴CG CFAG AD=. …………………………………………………………………………(1分)∵AE=CG.∴AC AE AC CG-=-,即CE=AG. ……………………………………………………………………………(1分)∵四边形ABCD是正方形,∴AD=BC. ……………………………………………………………………………(1分)∴CG CFCE BC=. …………………………………………………………………………(1分)∴BE//DF. ……………………………………………………………………………(1分)24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)解:(1)∵反比例函数12yx=的图像经过横坐标为6的点P,∴点P的坐标为(6,2).………………………………………………………(1分)设直线AO的表达式为y kx=(0k≠).…………………………………………(1将点P (6,2)代入y kx =,解得13k =.∴所求反比例函数的解析式为13y x =.………………………………………………(1分)(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,解得 4x =. ∴点B 坐标为(4,3).…………………………………………………………………(1分)∵AB =BO ,∴4a -解得9a =. ……………………………………………………………………………(2分)∴点A 坐标为(9,3).…………………………………………………………………(1分)(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E , ∴32ADO AEO S S a ∆∆==.……………………………………………………………………(1分)∵点C 坐标为(a ,12a).∴6CEO S ∆=,同理6BDO S ∆=,…………………………(1分) ∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.……………………………………(1分)∵△ABP 与△ABO 同高,∴ABP ABO S APS AO∆∆=.……………………………………………(1分)同理ACP ACO S AP S AO ∆∆=.∴1ABP ACPSS ∆∆=. 即当a 变化时,ABPACPS S ∆∆的值不变,且恒为1.……………………………………………(1分)25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分) 解:(1)∵Rt △ABC 中,90C ︒∠= ,∵CD 是斜边AB 上的高, 即90ADC ︒∠=,又∵90C ︒∠= ,∴BCD ACD A ACD ∠+∠=∠+∠.∴30BCD A ∠=∠= .…………………………………………………………………………(1分)在Rt △BDC中,cos 2cos30CD BC BCD =⋅∠=⋅ 1分)在Rt △ADC 中,cot 3AD CD A =⋅∠=. ………………………………………………(1分)(2)∵CF ⊥DE ,CD ⊥AB ,∴CDG EDF CFD EDF ∠+∠=∠+∠.即=CDG CFD ∠∠. ……………………………(1分)同理 ACD B ∠=∠.△CDE ∽△BFC .……………………………………………………………………………(1分) ∴CE CD BC BF =,即CE CDBC DF BD=+. 又∵在Rt △BDC 中,sin 1BD BC BCD =⋅∠=,∴2x =.…………………………………………………………………………………(1分)∴y =x ≤<.……………………………………………………………(2分)(3)∵EGF CGD ∠=∠,1°当FEG CDG ∠=∠时,EF //CD .∴FD AD CE AC =,即x x =.…………………………………………………………(1分)解得x =负值已舍).…………………………………………………………(1分) 2°当FEG DCG ∠=∠时,∵90CDF ∠= ,CF ⊥DE ,∴DCG EDF ∠=∠. 又∵FEG DCG ∠=∠,∴EDF FEG ∠=∠. ∴EF =FD .又∵CF ⊥DE ,∴GE =GD ,即CF 是DE 的垂直平分线.…………………………………(1分)∴CE =CD.………………………………………………………………………………(1分)综上所述CE(1分)2015年宝山嘉定联合模拟考试数学试卷参考答案与评分标准一、1.C ;2.D ;3.B ;4.B ;5.D ;6.A .二、7.41;8.x x 422+-;9.8-=x ;10.2≠x 的一切实数;11.x y 2-=;12.2-;13.15; 14.103;15.33-;16.34;17.3;18.53. 三、19.解:原式x x x x x x x x 1)2()2)(2()1()1(2++-+---=…………4分x x x x x 121+---=………………………2分 x2=…………………………………………2分把13-=x 代入x2得:原式132-=………………………………1分13+=………………………………1分20. ⎩⎨⎧=--=+.,0658222y xy x y x ②① 解:由②得:0))(6(=+-y x y x ……………………2分 即:06=-y x 或0=+y x …………………2分所以原方程组可化为两个二元一次方程组:⎩⎨⎧=+=-;82,06y x y x⎩⎨⎧=+=+;82,0y x y x ………………2分 分别解这两个方程组,得原方程组的解是⎩⎨⎧=-=8821x x ,⎩⎨⎧==1612x x …………4分.21.解:(1)过点A 作BC AH ⊥,垂足为点H在Rt △AHB 中,∵︒=∠45B∴︒=∠45BAH …………………………1分∴BH AH =………………………………1分∵222AB BH AH =+ ,216=AB∴16==BH AH …………………………1分 在Rt △AHC 中,HCAH C =∠tan ,∵2tan =∠C ∴8=HC ………………1分∴24=BC ………………1分 答:拐弯点B 与C 之间的距离为24米; (2)联结OC …………………………………1分 ∵BC AH ⊥,点A 是优弧CD 的中点∴AH 必经过圆心O …………………………1分 设圆O 的半径为r 米,则r OH -=16……1分在Rt △OHC 中,222OC HC OH =+∴222)16(8r r -+= ………………………1分∴10=r ………………………………………1分 答:圆O 的半径长为10米.A .O B C DH22.解:(1)设V 关于t 的函数解析式为:b kt V +=………………1分 由题意得:⎩⎨⎧=+=30010100b k b …………………………………1分解此方程组得:⎩⎨⎧==10020b k ……………………………………2分所以V 关于t 的函数解析式为:10020+=t V ……………1分 (2)设这个百分率为x …………………………………………1分 由题意得:726)1(6002=+x ………………………………2分解此方程得:%101.01==x ,1.22-=x (不符合题意舍去)……1分答这个百分率为%10.……………………………………………………1分23.证明:(1)∵△ABC 是等边三角形∴AC AB =,︒=∠=∠=∠60ACB BAC B ……1分 ∵△ADE 是等边三角形∴AE AD =,︒=∠60DAE ……………………1分 ∴DAE BAC ∠=∠∵=∠BAD DAC BAC ∠-∠ DAC DAE CAE ∠-∠=∠∴CAE BAD ∠=∠…………………………1分∴△ABD ≌△ACE ………………………1分 ∴ACE B ∠=∠ ……………………………1分∴︒=∠60ACE ……………………………1分 (2)∵BD BF =,︒=∠60B∴△BDF 是等边三角形∴FD BF BD ==…………………………1分 ∵△ABD ≌△ACE∴CE BD =∴CE FD BF ==…………………………1分 ∵︒=∠=∠=∠60ACE ACB B ∴︒=∠+∠180ECB B∴BF ∥CE ………………………………1分 ∴四边形ECBF 是平行四边形 …………1分 ∴DC ∥EF又DF 与CE 不平行∴四边形CDFE 是梯形……………………1分 又CE FD =∴四边形CDFE 是等腰梯形………………1分24.解:(1) ∵直线2+=x y 经过点),2(m A∴422=+=m ………………………………1分∴点A 的坐标为)4,2(A ……………………1分 ∵双曲线)0(≠=k xky 经过点)4,2(A ∴24k=…………………………………………1分 ∴8=k …………………………………………1分(2)由(1)得:双曲线的表达式为xy 8=∵双曲线xy 8=经过点)2,(n B ,∴n 82=,∴2=n∴点B 的坐标为)2,4(……………………………………1分 ∵直线BC 与直线2+=x y 平行∴可设直线BC 的表达式为:b x y +=∴b +=42,∴2-=b ,∴直线BC 的表达式为:2-=x y ∴点C 的坐标为)2,0(-……………………………………1分∴22=AB ,24=BC ,102=AC ,∴222AC BC AB =+ ∴︒=∠90ABC …………………………………………1分∴△ABC 的面积为821=⨯⨯BC AB ……………………1分 (3)根据题意设点E 的坐标为)2,(-x x ,这里的0>x∵直线2+=x y 与y 轴交于点D ∴点D 的坐标为)2,0(∴22=AD ,x CE 2= ∵AD ∥BC∴ACE DAC ∠=∠…………………………………………1分 当CAE ADC ∠=∠时,△ADC ∽△CAE∴CE ACAC AD = ∴x 210210222= ∴10=x∴点E 的坐标为)8,10( ……………………………………2分 当CEA ADC ∠=∠时,△ADC ∽△CEA ∴AC ACEC AD = ∴EC AD =又ACE DAC ∠=∠,CA AC = ∴△ADC ≌△CEA又已知△ADC 与△CEA 的相似比不为1∴这种情况不存在 …………………………………………1分 综上所述点E 的坐标为)8,10(25.解:(1)当点M 与点B 重合,由旋转得:2==BD BC ,ED AC =, EBD CBA ∠=∠,︒=∠=∠90C EDB ∵CB EM ⊥∴∠EBC ∴︒=∠=∠45EBD CBA …………1分∴︒=∠=∠45CBA CAB∴2==CB AC∴22=AB …………………………………1分 ∴2==DB DE∴222-=AD ……………………………1分 ∴12cot -==∠DEADBAE ………………1分 (2)设EM 与边AB 交点为G 由题意可知:︒=∠+∠9021,︒=∠+∠903CBA又32∠=∠,∴CBA ∠=∠1∵CBA EBD ∠=∠,∴EBD ∠=∠1,∵BDE EDG ∠=∠,∴△EDG ∽△BDE ∴EDDGBD ED =…………………………………………1分 ∵2==BD BC ,x ED AC == ∴x DG x =2,∴22x DG =…………………………1分 由题意可知:ABBCBG MB ABC ==∠cos 42+=x AB ,242xGB -=∴422422+=-x x y ……………………1分 ∴444222++-=x x x y ……………………1分 定义域为20<<x …………………………1分(3)当点M 在边BC 上时,由旋转可知:EB AB =,∴BAE AEB ∠=∠设︒=∠x CBA ,则︒=∠x ABE ,∵EBM BAE ∠=∠,分别延长EA 、BC 交于点H ∴︒=∠=∠=∠x EMB BAE AEB 2,∵︒=∠+∠+∠180AEB BAE ABE ∴36=x 易得:︒=∠=∠=∠36ABE ABH H ,︒=∠=∠=∠72AEB BAE HBE ∴BE AB AH ==,HE HB =,∵︒=∠90ACB ,∴2==BC HC∴4==HE HB ,∴△BAE ∽△HBE ,∴BEAEHB AB =,又AB BE = AB HA HE AE -=-=4,∴ABABAB -=44,∴522±-=AB (负值舍去)∴522+-=AB …………………………2分当点M 在边CB 的延长线上时,∵BAE AEB ∠=∠,EBM BAE ∠=∠∴EBM AEB ∠=∠∴AE ∥MC ∴CBA BAE ∠=∠ ∵EBA CBA ∠=∠∴EBA CBA EBM ∠=∠=∠∴︒=∠60CBA ,∵AB BCCBA =∠cos ,2=BC∴4=AB …………………………2分 综上所述:522+-=AB 或4.(M )2014学年金山第二学期期末质量检测 初三数学试卷参考答案2015.4一、选择题:(每小题4分,共24分) 1.A 2.A 3.C4.D 5.C 6.B二、填空题:(每小题4分,共48分)7.0; 8.1; 9.)1)(1(-+x x x ; 10.7≥x ;11.xy 2=; 12.2-=x ; 13.3=x ; 14.53;15.041≠m m 且 ; 16.→→-a b 2132; 17.)1,4(),5,0(-; 18.53三、解答题:19.原式=〔(2)1()1(1---+x x x x x )〕22)1(-+⨯x x x (4分) = 222)1(1---x x x x 22)1(-+⨯x x x (2分) =22)1(1--x x (3分)=11-+x x (1分) 20.由(2)得:22,22-=-=-y x y x (2分)⎩⎨⎧=-=+-2201y x y x ⎩⎨⎧-=-=+-2201y x y x (2分) ⎩⎨⎧-=-=3411y x ⎩⎨⎧==122y x (4分) ∴⎩⎨⎧-=-=3411y x⎩⎨⎧==1022y x (2分) 21.设1小时后甲船在C 处乙船在D 处,联接CD 正北交于点E (1分)由题意得,50=AP ,60=BP , 30=∠APE ,45=∠BPE ,CD PE ⊥ (3分)10=AC 40=-=PC AP PC (1分)在PCD Rt ∆中 32030cos =⨯=PC PE (1分) 在PED Rt ∆中 62045cos ==PEPD (1分) 62060-=-=PD PB BD )(乙62060162060-=-=V 海里/时 (2分) 答乙船的速度是)(62060-海里/时 (1分)22.(1)略 (4分)(2) 162度 (2分) (3)C (2分) (4)11000人 (2分)23.(1)∵︒=∠90ACB ∴︒=∠=∠90ACB ACD (1分) ∵BC AC = CD CE = (2分)∴ACD BCE ∆≅∆ (1分)(2)∵ACD BCE ∆≅∆ ∴EBC DAC ∠=∠ (1分)∵CEB AEF ∠=∠ ∴︒=∠=∠90BCE AFE ︒=∠90BFG (1分)∵CG //BF ∴︒=∠=∠90AFE CGF (1分) ∵DCG HCE ∠=∠ ∴︒=∠=∠90ACD GCH (1分) ∴四边形FHCG 是矩形 (1分)∵︒=∠=∠90CHE CGD DCG HCE ∠=∠ CD CE = (1分)∴CEH CDG ∆≅∆ ∴CH CG = (1分) ∴四边形FHCG 是正方形 (1分)24. (1)⎩⎨⎧-+=--=841608240b a b a⎩⎨⎧-==21b a (2分) 822--=x x y (1分)9)1(8222--=--=x x x y )9,1(-P (1分)(2) 设对称轴直线1=x 与x 轴交于点D ,过A 作BP AH ⊥垂足为H∵)0,2(-A ,)0,4(B , )9,1(-P∴6=AB 9=PD 103==BP AP (2分) ∵AH PB PD AB ⨯=⨯2121 ∴1059=AH (1分) 在APH Rt ∆中 ∴53AP AH APB sin ==∠ (1分) (3)∵MCN ACO ∠=∠∴MNC ∆与AOC ∆相似时 ①︒=∠=∠90AOC MNCOC NC AO MN = 25=MN ∴)2,25(-M (2分)②︒=∠=∠90AOC NMC 设MN 与x 轴交于点E∵2==OA ON ︒=∠=∠90AOC EON ACO NEO ∠=∠ ∴AOC ENO ∆≅∆ 8==OC OE ∴)0,8(-E∵)0,2(-A ,)0,4(B∴直线MN 的解析式是:241y +=x 直线AB 的解析式是:84y --=x∴)1724,1740(-M (2分) 25.(1)过A 作BC 的高AH 垂足为H∵10==AC AB ∴CH BH = (1分)在ABH Rt ∆中 34tan =∠B 设a AH 4= a BH 3=222AB BH AH =+ 2)4(a 2)3(a +=210 2=a (1分)∴8=AH 6=BH ∴12=BC (1分)(2) 联结DE ,过O 作BC OJ ⊥垂足为J ,延长JO 交DE 于I∵D 、E 分别是边AB 、AC 的中点∴DE //BC ∴DOE ∆∽MON ∆ ∴JOIOMN DE = (1分) ∵8=AH ∴4=IJ∴624+=x IO (1分) 124621=⨯⨯=∆ADE S 672624621+=+⨯⨯=∆x x S DEO (1分)∴61441267212++=++=x x x y )120( x (2分) (3)联结DE ,过O 作BC OJ ⊥垂足为J ,延长JO 交DE 于I ,过E 作BC EF ⊥垂足为F∵421==AH EF 5=EC ∴3=FC ∴8=MF ①当ON OM =时 ∵IJ //EF ∴MFMJEF OJ = ∵4=EF 8=MF 21=MJ x ∴x OJ 41=∵DE //BC ∴DOE ∆∽MON ∆ ∴MNDEOJ OI = ∴ 10=x 10=MN (2分) ②当MN OM =时 ∵DE //BC ∴OMEOMN DE = ∴EO DE = 在EFM Rt ∆中 5422=+=MF EF ME654-=-=OE ME OM ∴654-=MN (2分)③当ON MN =时 6==DE DO在ABN ∆中,B ∠是一个锐角 5=BD x DN +=6BD DN ∴BND ∠一定是锐角 (1分)过D 作BC DG ⊥垂足为G 4=DG 3=BG 在DGN Rt ∆中 222DN GN DG =+222)6()2(4x x +=-+ 1-=x 不合题意 (1分)综上所述 10=MN 或 654-=MN静安区质量调研九年级数学试卷参考答案及评分标准2015.4.23一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.C ; 3.D ; 4.D ; 5.A ; 6.B .二.填空题:(本大题共12题,满分48分)7.22; 8.2)3(y x -; 9.1; 10.2>x ; 11.2; 12.32; 13.︒45; 14.5:3; 15.4143-; 16.(3,5); 17.10; 18.3≥r .(第18题答3>r , 得2分)三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分)19.解:原式=)1()1)(1(1)1(1+⎥⎦⎤⎢⎣⎡-+--x x x x x x …………………………………………(3分) =11)1()1)(1(1-=+⋅+-x x x x x x .……………………………………(2+1分)当1333021-=-=x 时,原式=23)23)(23(23231--=+-+=-.…(2+2分)20.解:由①得 3477+<-x x ,103<x ,310<x .…………………………………(3分) 由②得 1264+≥+x x ,52-≥x ,25-≥x .…………………………………(3分)不等式组的解集为:31025<≤-x .……………………………………………(2分)它的整数解为–2,–1,0,1,2,3.………………………………………(1分)21.解:(1)设反比例函数的解析式为xky =.…………………………………………(1分) ∵横坐标为3的点A 在直线2-=x y 上,∴点A 的坐标为(3,1),…(1分)∴1=3k,∴3=k ,…………………………………………………………(1分) ∴反比例函数的解析式为xy 3=.…………………………………………(1分)(2)设点C (m m,3),则点B (m m ,2+).…………………………………(2分)∴BC =mm 32-+= 4,………………………………………………………(2分) ∴m m m 4322=-+,∴0322=-+m m ,1,321-==m m ,……………(1分)1,321-==m m 都是方程的解,但1-=m 不符合题意,∴点B 的坐标为(5,3).……………………………………………………(1分)22.解:设甲乙两人原来每小时各加工零件分别为x 个、y 个,………………………(1分)∴⎪⎪⎩⎪⎪⎨⎧=-=-,123024,13030y x x y …………………………………………………………………(4分)解得⎩⎨⎧==.5,6y x ………………………………………………………………………(4分)经检验它是原方程的组解,且符合题意.答:甲乙两人原来每小时各加工零件分别为6个、5个.………………………(1分)23.证明:(1)∵在梯形ABCD 中,AB //CD ,AD =BC ,∴∠ADE =∠BCE ,………(1分)又∵DE=CE ,∴△ADE ≌△BCE .…………………………………………(1分) ∴AE =BE ,……………………………………………………………………(1分) ∵FG //AB ,∴BEBFAE AG =,…………………………………………………(2分) ∴AG=BF .……………………………………………………………………(1分)(2)∵CF CA AD ⋅=2,∴AD CFCA AD =,…………………………………………(1分) ∵AD =BC ,∴BCCFCA BC =.…………………………………………………(1分) ∵∠BCF =∠ACB ,∴△CAB ∽△CBF .……………………………………(1分)∴BCACBF AB =.…………………………………………………………………(1分) ∵BF=AG ,BC =AD , ∴ADACAG AB =.………………………………………(1分) ∴AC AG AD AB ⋅=⋅.………………………………………………………(1分)24.解:(1)∵抛物线c ax ax y +-=22的对称轴为直线12=--=aax ,……………(1分)∴OC =1,OA=OC +AC = 4,∴点A (4,0).…………………………………(1分) ∵∠OBC =∠OAB ,∴tan ∠OAB= tan ∠OBC ,…………………………………(1分)∴OB OCOA OB =,…………………………………………………………………(1分) ∴OBOB 14=,∴OB =2,∴点B (0,2),……………………………………(1分) ∴⎩⎨⎧+-==,8160,2c a a c ……………………………………………………………(1分)∴⎪⎩⎪⎨⎧=-=.2,41c a ………………………………………………………………………(1分) ∴此抛物线的表达式为221412++-=x x y .…………………………………(1分)(2)由2:3:=∆∆A F G A D G S S 得DG :FG =3:2,DF :FG =5:2,…………………(1分) 设m OF =,得m AF -=4,221412++-=m m DF , 由FG //OB ,得OA AF OB FG =,∴24mFG -=,…………………………………(1分) ∴2:524:)22141(2=-++-m m m ,……………………………………………(1分) ∴01272=+-m m ,∴4,321==m m (不符合题意,舍去),∴点D 的坐标是(3,45).……………………………………………………(1分) 25.解:(1)在⊙O 中,∵OC ⊥AB ,∴AC =321=AB ,OC =22AC AO -=4.……(1分)∵OD //AB ,∴OD ⊥OC ,∴CD =41542222=+=+OD OC .……(1分)∵35==BC OD CE DE ,……………………………………………………………(1分)∴85=CD DE ,∴DE =4185.…………………………………………………(1分)(2)∵△OCD 是等腰三角形,OD >OC ,∴ ① 当DC =OD =5时,∠DOC =∠DCO ,∵∠DFC +∠DOC =∠DCF +∠DCO =90°,∴∠DFC =∠DCF .…(1分)∴DF =DC =DO =5,OF =10,CF =2124102222=-=-OC OF ,2123+=AF .………(1分) ② 当DC =OC =4时, 作△DOC 的高CH ,2521==OD OH , CH =3921)25(42222=-=-OH OC .……………………(1分) ∴tan ∠FOC=539==OH CH OC CF ,………………………………(1分) 5394=CF .53943+=AF .……………………………………(1分)(3)设OB =OD =r ,BC =x ,则2222x r BC OB OC -=-=,…………(1分)∵OD //AB ,OC ⊥AB ,∴OD ⊥OC ,又∵CD ⊥OB ,∴∠COB =90°-∠DOE =∠ODC ,∴tan ∠COB =tan ∠ODC ,…………(1分)∴OD OCOC BC =,∴r x r xr x 2222-=-,………………………………(1分) ∴22x r xr -=, 022--+r rx x ,∵0≠r ,01)(2≠-+rxrx,251±-=r x (负值舍去) ,…………………(1分) ∴sin ∠ODC =sin ∠COB 215-===r x OB BC .……………………………(1分)闵行区2014学年第二学期九年级质量调研考试数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.B ;2.C ;3.D ;4.B ;5.D ;6.A .二、填空题:(本大题共12题,每题4分,满分48分)7.2; 8.2a ; 9.2(4)x x -; 10.223x ≤<; 11.1m <-; 12.113y x =-; 13.1233a b + ;14.125;15.13;16.12001200302x x -=-;17.tan h α(或cot h α⋅);181.三、解答题:(本大题共7题,满分78分) 19.解:原式13+-………………………………………………(6分)4=. ……………………………………………………………………(4分)20.解:由① 得 122x y =-. ③ ……………………………………(2分) 把③ 代入②,得 22(122)3(122)20y y y y ---+=.整理后,得 27120y y -+=.……………………………………………(2分) 解得 13y =,24y =. ……………………………………………………(2分) 分别代入③,得 16x =,24x =.…………………………………………(2分)所以,原方程组的解是116,3,x y =⎧⎨=⎩ 224,4.x y =⎧⎨=⎩…………………………………(2分)另解:由② 得 ()(2)0x y x y --=.………………………………………………(2分)即得 0x y -=,20x y -=. ………………………………………………(2分) 原方程组化为212,0,x y x y +=⎧⎨-=⎩ 212,20.x y x y +=⎧⎨-=⎩…………………………………………(2分)解得原方程组的解为 114,4,x y =⎧⎨=⎩ 226,3.x y =⎧⎨=⎩……………………………………(4分)21.解:(1)联结AD .∵ AB = AC ,D 为边BC 的中点,∴ AD ⊥BC .…………………(1分)在Rt △ABD 中,由AB =sin B ∠= 得sin 4AD AB B =⋅∠==. ……………………………(1分) ∴22B D ==.∴ 24BC BD ==.……………………………………………………(1分) ∵ CE = BC ,∴ CE = 4.即得 DE = 6.………………………(1分)在Rt △ADE 中,利用勾股定理,得23A E又∵ F 是边AE 的中点,∴12DF AE ==1分)(2)过点C 作CH ⊥AE ,垂足为点H .∵ CH ⊥AE ,AD ⊥BC ,∴ ∠CHE =∠ADE = 90º. ……………(1分) 又∵ ∠E =∠E ,∴ △CHE ∽△ADE .……………………………(1分)∴ C H E H C EA D D E A E ==,即得46CH EH ==. 解得CH =EH =.…………………………………(1分) ∴13A H A E E H =-=.………………………(1分)∴4tan 7CH CAE AH ∠===.…………………………………(1分)22.解:(1)设所求函数为 y k x b =+.…………………………………………(1分)根据题意,得 150,120.b k b =⎧⎨+=⎩…………………………………………(1分)解得 30,150.k b =-⎧⎨=⎩………………………………………………………(2分)∴ 所求函数的解析式为 30150y x =-+.………………………(1分) (2)设在D 处至少加w 升油.根据题意,得 360460121504303021060w -⨯--⨯+≥⨯⨯+.……(3分) 解得 94w ≥. …………………………………………………………(1分) 答:D 处至少加94升油,才能使货车到达B 处卸货后能顺利返回D 处加油.…………………………………………………………………………………(1分) 说明:利用算术方法分段分析解答正确也给满分.23.证明:(1)过点D 作DH ⊥BC ,垂足为点H .∵ AD // BC ,∴ ∠ADH =∠DHC .……………………………(1分) ∵ DH ⊥BC ,∴ ∠ADH =∠DHC = 90º. 即得 ∠ADH =∠EDC = 90º. ……………………………………(1分)∵ A DE A DH E DH∠=∠-∠, C D H E D C E D H ∠=∠-∠, ∴ ∠ADE =∠CDH .………………………………………………(1分) ∵ AD // BC ,AB ⊥BC ,DH ⊥BC ,∴ AB = DH . ∵ AB = AD ,∴ AD = DH . 又∵ ∠A =∠DHC = 90º,∴ △ADE ≌△DHC .………………(2分) ∴ DE = DC .………………………………………………………(1分) (2)∵ DE = DC ,∠EDF =∠CDF ,∴ DF 垂直平分CE .………(1分)∴ FE = FC .即得 ∠FEC =∠FCE .……………………………(1分)∵ 2B E B F B C =⋅,∴ B E B CB F B E=. 又∵ ∠B =∠B ,∴ △BEC ∽△BEF .…………………………(2分) ∴ ∠BCE =∠BEF .………………………………………………(1分) ∴ ∠BEF =∠CEF .………………………………………………(1分)24.解:(1)抛物线224y ax ax =--经过点A (-3,0),∴ 2(3)2(3)40a a ----=.………………………………………(1分) 解得 415a =.…………………………………………………………(1分) ∴ 所求抛物线的关系式为 24841515y x x =--.…………………(1分)抛物线的对称轴是直线 1x =. ……………………………………(1分) (2)当 0x =,时,4y =-,即得 C (0,-4).又由 A (-3,0),得5AC .…………(1分) ∴ AD = AC = 5.又由 A (-3,0),得 D (2,0).∴CD =1分) 又由直线1x =为抛物线24841515y x x =--的对称轴,得 B (5,0). ∴ BD = 3.设圆C 的半径为r .∵ 圆D 与圆C 外切,∴ CD = BD + r .…………………………(1分) 即得3r =+. 解得3r =.……………………………………………………(1分)∴ 圆C的半径长为3.(3)联结DN .∵ AC = AD ,∴ ∠ACD =∠ADC .………………………………(1分) ∵ 线段MN 被直线CD 垂直平分,∴ MD = ND . 即得 ∠MDC =∠NDC .∴ ∠NDC =∠ACD .∴ ND // AC .∴ B N B D N C D A=.………………………………………………………(1分) 即得 AD = 5.…………………………………………………………(1分) ∴ AB = 8,即得 BD = 3,.∴ 35B N B D C N D A ==.……………………………………………………(1分)25.解:(1)∵ AD // BC ,EF // BC ,∴ EF // AD .……………………………(1分)又∵ ME // DN ,∴ 四边形EFDM 是平行四边形.∴ EF = DM .…………………………………………………………(1分) 同理可证,EF = AM .…………………………………………………(1分) ∴ AM = DM .∵ AD = 4,∴ 122E F A M A D ===.……………………………(1分)(2)∵ 38A D N M E N FS S ∆=四边形,∴ 58A M E D M F A D N S S S ∆∆∆+=. 即得 58A M E D M F A D N A D N S S S S ∆∆∆∆+=.……………………………………………(1分)。
2014年上海市初中毕业统一学业考试数学试卷考生注意:.本试卷含三个大题,共 题;.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共 题,每题 分,满分 分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】).;; ;.据统计, 年上海市全社会用于环境保护的资金约为 元,这个数用科学记数法表示为( ).; ; ;..如果将抛物线 = 向右平移 个单位,那么所得的抛物线的表达式是( ).= - ; = + ; = - ; = + ..如图,已知直线 、 被直线 所截,那么 的同位角是( ).(此题图可能有问题); ; ; ..某事测得一周 的日均值(单位:)如下:, , , , , , ,这组数据的中位数和众数分别是( ). 和 ; 和 ; 和 ; 和 ..如图,已知 、 是菱形 的对角线,那么下列结论一定正确的是( ).与 的周长相等; 与 的面积相等;菱形的周长等于两条对角线之和的两倍; 菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题 分,共 分)【请将结果直接填入答题纸的相应位置】.计算: + = ..函数11yx=-的定义域是 ..不等式组12,28xx->⎧⎨<⎩的解集是 ..某文具店二月份销售各种水笔 支,三月份销售各种水笔的支数比二月份增长了 ,那么该文具店三月份销售各种水笔 支..如果关于 的方程 - + = ( 为常数)有两个不相等的实数根,那么 的取值范围是..已知传送带与水平面所成斜坡的坡度 = ,如果它把物体送到离地面 米高的地方,那么物体所经过的路程为 米..如果从初三( )、( )、( )班中随机抽取一个班与初三( )班进行一场拔河比赛,那么恰好抽到初三( )班的概率是 ..已知反比例函数kyx=( 是常数, ),在其图像所在的每一个象限内, 的值随着 的值的增大而增大,那么这个反比例函数的解析式是 (只需写一个)..如图,已知在平行四边形 中,点 在边 上,且 = .设AB a=,BC b=,那么DE = (结果用a、b表示)..甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是 ..一组数: , , , , , , , ,满足 从第三个数起,前两个数依次为 、 ,紧随其后的数就是 - ,例如这组数中的第三个数 是由 - 得到的,那么这组数中 表示的数为 ..如图,已知在矩形 中,点 在边 上, = ,将矩形沿着过点 的直线翻折后,点 、 分别落在边 下方的点 、 处,且点 、 、 在同一条直线上,折痕与边 交于点 , 与 交于点 .设 = ,那么 的周长为 (用含 的代数式表示)三、解答题:(本题共 题,满分 分) .(本题满分 13128233-+..(本题满分 分)解方程:2121111x x x x +-=--+..(本题满分 分,第( )小题满分 分,第( )小题满分 分)已知水银体温计的读数 ( )与水银柱的长度 ( )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度( )体温计的读数( )( )求 关于 的函数关系式(不需要写出函数的定义域);( )用该体温计测体温时,水银柱的长度为 ,求此时体温计的读数..(本题满分 分,每小题满分各 分)如图,已知 中, = , 是斜边 上的中线,过点 作 , 分别与 、 相交于点 、 , = .( )求 的值;( )如果 =5,求 的值..(本题满分 分,每小题满分各 分)已知:如图,梯形 中, , = ,对角线 、 相交于点 ,点 是边 延长线上一点,且 = ..(本题满分 分,每小题满分各 分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与 轴交于点 - 和点 ,与 轴交于点 - .( )求该抛物线的表达式,并写出其对称轴;( )点 为该抛物线的对称轴与 轴的交点,点 在对称轴上,四边形 为梯形,求点 的坐标;( )点 为该抛物线的顶点,设点 ,且 > ,如果 和 的面积相等,求 的值..(本题满分 分,第( )小题满分 分,第( )小题满分 分,第( )小题满分 分)如图 ,已知在平行四边形 中, = , = , =45,点 是边 上的动点,以 为半径的圆 与边 交于点 、 (点 在点 的右侧),射线 与射线 交于点 .( )当圆 经过点 时,求 的长;( )联结 ,当 时,求弦 的长;( )当 是等腰三角形时,求圆 的半径长.图 备用图年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题、 ; 、 ; 、 ; 、 ; 、 ; 、二、 填空题、2a a +; 、1x ≠; 、34x ; 、352 ; 、1k ; 、26 ;、13; 、1(0y k x =-即可); 、23a b - ; 、乙; 、 ; 、.三、 解答题、解:原式=、0;1(x x ==舍)、 1.2529.75y x =+、5,sinB sinCAE B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=、( )求证:四边形 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为( )联结 ,交 于点 ,求证:DG DFGB DB=. //,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF ADFB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为、、。
23题图FED CBA上海各区、县中考数学二模23题1、(宝山区)如图9,在直角梯形ABCD 中,AD ∥BC ,︒=∠=∠90ABC DAB , E 为CD 的中点,联结AE 并延长交BC 的延长线于F ; (1)联结BE ,求证EF BE =. (2)联结BD 交AE 于M ,当1=AD ,2=AB ,EM AM =时,求CD 的长.2、(长宁区)如图,在Rt △ABC 中,∠B =90°,∠C =30°,点D 、E 、F 分别在边BC 、AB 、AC 上,联结DE 、EF 、FD ,若BE =21ED ,且FD ⊥BC .(1) 求证:四边形AEDF 是平行四边形; (2) 若AE AC 3=,求证:四边形AEDF 是菱形.3、(奉贤区)已知:如图,点E 是四边形ABCD 的对角线BD 上一点,且∠BAC =∠BDC =∠DAE .⑴求证:△ABE ∽△ACD ;⑵求证:AC DE AD BC ⋅=⋅;A B CD F EM 图9 E第23题DCBA4、(虹口区)已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ΔABE 沿BC 方向平移,使点E 与点C 重合,得ΔGFC 。
(1)求证:BE=DG ;(2)若∠BCD=120°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论。
5、(黄浦区) 如图8,Rt △ABC 中,∠ACB=90°,D 是边BC 上一点,点E 、F 分别是线段AB 、AD 中点,联结CE 、CF 、EF .(1)求证:△CEF ≌△AEF ;(2)联结DE ,当BD=2CD 时,求证:DE=AF .6、(金山区) 已知:如图7,线段,AB ∥CD ,AC ⊥CD ,AC 、BD 相交于点P ,E 、F 分别是线段BP 和DP 的中点. (1) 求证:AE // CF ;(2) 如果AE 和DC 的延长线相交于点Q ,M 、N 分别是线段AP 和DQ 的中点,求证:MN = CE .F E DC B A 图8 EF P DCBA7、(静安、青浦区、崇明县)已知:如图,在△ABC 中,AB =AC ,点D 、E 分别是边AC 、AB 的中点,DF ⊥AC ,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:BD DG AD ⋅=2;(2)联结CG ,求证:∠ECB =∠DCG .8、(闵行区)已知:如图,四边形ABCD 是平行四边形,分别以AB 、AD 为腰作等腰三角形△ABF 和等腰三角形△ADE ,且顶角∠BAF =∠DAE ,联结BD 、EF 相交于点G ,BD 与AF 相交于点H . (1)求证:BD =EF ;(2)当线段FG 、GH 和GB 满足怎样的数量关系时,四边形ABCD 是菱形,并加以证明.9、(浦东新区)已知,如图,在正方形ABCD 中,点E 是边AD 的中点,联结BE ,过点A 作BE AF ⊥,分别交BE 、CD 于点H 、F ,联结BF . (1)求证:BE =BF ;(2)联结BD ,交AF 于点O ,联结OE .求证:AEB DEO ∠=∠.(第23题图) AB CDE GFABD CEF (第23题图)G H(第23题图)10、(普陀区) 抛物线2y ax bx =+经过点A (4,0)、B (2,2),联结OB 、AB . (1) 求此抛物线的解析式;(5分) (2) 求证:△ABO 是等腰直角三角形;(4分)(3) 将△ABO 绕点O 按顺时针方向旋转135°得到△O 11A B ,写出边11A B 中点P 的坐标,并判断点P 是否在此抛物线上,说明理由. (3分)11、(松江区) 如图,在正方形ABCD 中,E 是边CD 上一点,AF AE ⊥交CB 的延长线于点F ,联结DF ,分别交AE 、AB 于点G 、P . (1)求证:AE=AF ;(2)若∠BAF =∠BFD ,求证:四边形APED 是矩形.12、(徐汇区) 已知:如图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,BC=2AD ,点 E 是BC 的中点、F 是CD 上的点,联结AE 、EF 、AC .(3) 求证:AO OF OC OE ⋅=⋅;(4) 若点F 是DC 的中点,联结BD 交AE 于点G , 求证:四边形EFDG 是菱形. (第23题图)BACFE DPG13、(杨浦区)如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F 。
上海市奉贤区2014年中考二模数学试题(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列各数中,属于无理数的是(▲)A. 0)2(π;B. 33 ; C.4; D. 38-; 2.下列根式中,属于最简二次根式的是(▲) A .28; B .22b a +; C.ba; D.4.0; 3.不等式062>+x 的解集在数轴上表示正确的是(▲)4. 右图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周体育锻炼时间的众数、中位数分别是(▲) A.16、10.5; B.8、9; C.16、8.5; D.8、8.5;5.在数学活动课上,老师要同学们判断一个四边形门框是否为矩形, 下面是某学习小组的4位同学拟定的方案,其中正确的是(▲)A .测量对角线是否相互平分;B .测量两组对边是否分别相等;C .测量一组对角是否都为直角;D .测量其中三个角是否都为直角; 6.如图,直线1l ∥2l ,3l ⊥4l .下列命题中真命题是(▲) A .︒=∠+∠9031; B .︒=∠+∠9032; C .42∠=∠; D .31∠=∠;二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:52)(m -= ▲ ; 8.分解因式:282-a = ▲ ;3- 0 3 A . 3-03B . 3-03C . 3-03D .316147891075101520学生人数(人)锻炼时间(小时)(第5题图)第4题第6题9.二次函数32+=x y 图象的顶点坐标是 ▲ ; 10.已知函数2)(-=x x f ,若3)(=x f ,那么 x = ▲ ;11.随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2013年海外学习汉语的学生人数已达1500000000人,将1500000000用科学记数法表示为 ▲ 人;12.若点A (1,y 1)和点B (2,y 2)都在正比例函数kx y =()0>k 图像上,则y 1 ▲ y 2(选择“>”、“<”、“=”填空);13.从-1,-2,3这三个数中任取两个不同的数作为点的坐标,该点在第三象限的概率是 ▲ ; 14.某校为鼓励学生课外阅读,制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形统计图。
2014年上海市浦东新区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)(2014•浦东新区二模)下列代数式中,属于单项式的是()A. a+1 B.C.D.考点:单项式.分析:根据单项式的定义逐个判断即可.解答:解:A、不是单项式,故本选项错误;B、不是单项式,故本选项错误;C、不是单项式,故本选项错误;D、是单项式,故本选项正确;故选D.点评:本题考查了对单项式定义的理解和运用,注意:单项式表示数与字母的积,单独一个数或字母也是单项式.2.(4分)(2014•浦东新区二模)数据1,3,7,1,3,3的平均数和标准差分别为()A. 2,2 B.2,4 C.3,2 D.3,4考点:标准差;加权平均数.分析:根据平均数的计算公式求出这组数据的平均数,再根据方差公式求出方差,从而得出标准差.解答:解:这组数据1,3,7,1,3,3的平均数是:(1+3+7+1+3+3)=3;方差S2=[(1﹣3)2+(3﹣3)2+(7﹣3)2+(1﹣3)2+(3﹣3)2+(3﹣3)2]=4,则标准差是2.故选C.点评:此题主要考查了平均数,方差和标准差,用到的知识点是平均数、方差和标准差的计算公式,关键是根据题意和公式列出算式.3.(4分)(2014•浦东新区二模)已知抛物线y=﹣(x+1)2上的两点A(x1,y1)和B(x2,y2),如果x1<x2<﹣1,那么下列结论一定成立的是()A. y1<y2<0 B.0<y1<y2C.0<y2<y1D.y2<y1<0考点:二次函数图象上点的坐标特征.分析:根据二次函数的性质得到抛物线y=﹣(x+1)2的开口向下,有最大值为0,对称轴为直线x=﹣1,则在对称轴左侧,y随x的增大而增大,所以x1<x2<﹣1时,y1<y2<0.解答:解:∵y=﹣(x+1)2,∴a=﹣1<0,有最大值为0,∴抛物线开口向下,∵抛物线y=﹣(x+1)2对称轴为直线x=﹣1,而x1<x2<﹣1,∴y1<y2<0.故选A.点评:本题考查了二次函数图象上点的坐标特征:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,则抛物线上的点的坐标满足其解析式;当a<0,抛物线开口向下;对称轴为直线x=﹣,在对称轴左侧,y随x的增大而增大,在对称轴右侧,y随x的增大而减小.4.(4分)(2014•浦东新区二模)某粮食公司2013年生产大米总量为a万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为()A. a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨考点:列代数式.分析:根据2013年生产大米比2012年大米生产总量增加了10%,可知2012年大米生产总量×(1+10%)=2013年大米生产总量,由此列式即可.解答:解:a÷(1+10%)=(万吨).故选:B.点评:此题考查列代数式,关键是找出题目蕴含的数量关系:2012年大米生产总量×(1+10%)=2013年大米生产总量.5.(4分)(2014•浦东新区二模)在四边形ABCD中,对角线AC、BD相交于点O,∠ADB=∠CBD,添加下列一个条件后,仍不能判定四边形ABCD是平行四边形的是()A.∠ABD=∠CDB B.∠DAB=∠BCD C.∠ABC=∠CDA D.∠DAC=∠BCA考点:平行四边形的判定.分析:利用平行四边形的判定定理逐步判定后即可确定答案.解答:解:由∠ADB=∠CBD科研得到AD∥BC,∴A、∠ABD=∠CDB能得到AB∥CD,所以能判定四边形ABCD是平行四边形;B、利用三角形的内角和定理能进一步得到∠ABD=∠CDB,从而能得到AB∥CD,所以能判定四边形ABCD是平行四边形;C、能进一步得到∠CDB=∠ABD,从而能得到AB∥CD,所以能判定四边形ABCD是平行四边形;D、不能进一步得到AB∥CD,所以不能判定四边形ABCD是平行四边形,故选D.点评:本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6.(4分)(2014•浦东新区二模)如果A、B分别是⊙O1、⊙O2上两个动点,当A、B两点之间距离最大时,那么这个最大距离被称为⊙O1、⊙O2的“远距”.已知,⊙O1的半径为1,⊙O2的半径为2,当两圆相交时,⊙O1、⊙O2的“远距”可能是()A. 3 B.4C.5D.6考点:圆与圆的位置关系.专题:新定义.分析:首先弄清缘聚的定义,然后结合两圆的圆心距的取值范围求解.解答:解:∵⊙O1的半径为1,⊙O2的半径为2,∴圆心距d的取值范围为:1<d<3,∴⊙O1、⊙O2的“远距”的取值范围为:4<远距<6,故选C.点评:本题考查了圆与圆的位置关系,解题的关键是弄清“远距的定义”.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2014•浦东新区二模)计算:|﹣π|=π﹣.考点:实数的性质.分析:根据绝对值是大数减小数,可得答案.解答:解:|﹣π|=,故答案为:.点评:本题考查了实数的性质,绝对值是非负数,可用大数减小数.8.(4分)(2014•浦东新区二模)化简:=.考点:约分.专题:计算题.分析:找出分式分子分母的公因式,约分即可得到结果.解答:解:原式==.故答案为:.点评:此题考查了约分,找出分子分母的公因式是约分的关键.9.(4分)(2014•浦东新区二模)计算:﹣=.考点:分式的加减法.专题:计算题.分析:原式两项通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣==.故答案为:.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.(4分)(2014•浦东新区二模)正八边形的中心角等于45度.考点:正多边形和圆.分析:根据中心角是正多边形相邻的两个半径的夹角来解答.解答:解:正八边形的中心角等于360°÷8=45°;故答案为45.点评:本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.11.(4分)(2014•浦东新区二模)如果关于x的方程3x2﹣mx+3=0有两个相等的实数根,那么m的值为±6.考点:根的判别式.分析:若一元二次方程有两等根,则根的判别式△=b2﹣4ac=0,建立关于m的方程,求出m的取值.解答:解:∵方程3x2﹣mx+3=0有两个相等的实数根,∴△=m2﹣4×3×3=0,解得m=±6,故答案为±6.点评:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.(4分)(2014•浦东新区二模)请写出一个平面几何图形,使它满足“把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合”这一条件,这个图形可以是圆.考点:轴对称图形.专题:开放型.分析:把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合,这样的图形为轴对称图形,写出一个轴对称图形即可.解答:解:这个图形可以是圆.故答案为:圆.点评:本题考查了轴对称图形的知识,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.13.(4分)(2014•浦东新区二模)如果关于x的方程bx=x+1有解,那么b的取值范围为b≠1.考点:一元一次方程的解.分析:移项,合并同类项,当x的系数不等于0时,方程有解,据此即可求解.解答:解:移项,得:bx﹣x=1,即(b﹣1)x=1,当b﹣1≠0时,即b≠1时,方程有解.故答案是:b≠1.点评:此题考查的是一元一次方程的解法,理解方程有解的条件是关键.14.(4分)(2014•浦东新区二模)在▱ABCD中,已知=,=,则用向量、表示向量为+.考点:*平面向量.分析:根据平行四边形的对角线互相平分的性质,可得出==,==,从而可表示出向量.解答:解:∵四边形ABCD是平行四边形,∴==,==,∴=+=+.故答案为:+.点评:本题考查了平面向量的知识,注意掌握向量的加减,平行四边形对角线互相平分的性质.15.(4分)(2014•浦东新区二模)把分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,字面朝下随意放置在桌面上,从中任意摸出一张卡片数字是素数的概率是.考点:概率公式.分析:由有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,卡片数字是素数的有:2,3,5;直接利用概率公式求解即可求得答案.解答:解:∵有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,卡片数字是素数的有:2,3,5;∴从中任意摸出一张卡片数字是素数的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)(2014•浦东新区二模)为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图),那么仰卧起坐的次数在40~45的频率是0.62.考点:频数(率)分布直方图.分析:根据被抽查的女生中有90%的女生次数不小于30次,抽查了50名女生,求出次数不小于30次的人数,再根据直方图求出在40~45次之间的频数,然后根据频率公式:频率=频数÷总数,即可求解.解答:解:∵被抽查的女生中有90%的女生次数不小于30次,抽查了50名女生,∴次数不小于30次的人数是50×90%=45(人),∴在40~45次之间的频数是:45﹣3﹣5﹣6=31,∴仰卧起坐的次数在40~45的频率是=0.62;故答案是:0.62.点评:本题考查了频数分布直方图,关键是读懂统计图,从图中获得必要的信息,用到的知识点是频率公式:频率=频数÷总数.17.(4分)(2014•浦东新区二模)如图,已知点A在反比例函数y=的图象上,点B在x轴的正半轴上,且△OAB是面积为的等边三角形,那么这个反比例函数的解析式是y=﹣.考点:等边三角形的性质;反比例函数图象上点的坐标特征.分析:首先根据题意得出×|2x•y|=,进而得出xy=﹣,即可得出k的值.解答:解:过点A作AC⊥OB于点C,设A(x,y),∵△OAB是面积为的等边三角形,∴×|2x•y|=,∴|xy|=,∴xy=﹣,∴这个反比例函数的解析式是:y=﹣.故答案为:y=﹣.点评:此题主要考查了等边三角形的性质以及三角形面积求法和反比例函数图象上点的坐标特征,得出xy=﹣是解题关键.18.(4分)(2014•浦东新区二模)在Rt△ABC中,∠ACB=90°,AC=,cosA=,如果将△ABC绕着点C旋转至△A′B′C的位置,使点B′落在∠ACB的角平分线上,A′B′与AC相交于点H,那么线段CH的长等于﹣1.考点:旋转的性质.分析:根据题意画出图形,进而利用旋转的性质以及锐角三角函数关系和等腰直角三角形求出三角形各边长,再利用三角形面积求出即可.解答:解:过点B′作B′F⊥AC于点F,A′D⊥AC于点D,∵∠ACB=90°,点B′落在∠ACB的角平分线上,∴∠BCB′=∠B′CA=ACA′=45°,∴△CB′F,△CDA′都是等腰直角三角形,∵AC=,cosA=,∴==,解得:AB=,∴BC=,∴B′C=,∴B′F=×=,A′D=×CA′=1,∴S△A′CB′=S△CHB′+S△CHA′=××=××CH+×1×CH,解得:CH=﹣1,故答案为:﹣1.点评:此题主要考查了旋转的性质以及锐角三角函数关系和三角形面积求法等知识,利用S△A′CB′=S△CHB′+S△CHA′求出是解题关键.三、解答题:(本大题共7题,满分78分)19.(10分)(2014•浦东新区二模)计算:()2﹣5+()﹣1﹣.考点:实数的运算;分数指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用指数幂法则变形,第三项利用负指数幂法则计算,最后一项分母有理化,计算即可得到结果.解答:解:原式=5﹣+﹣=6﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2014•浦东新区二模)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再求出其公共部分即可.解答:解:由①得2x﹣7<3﹣3x,化简得5x<10,解得:x<2.由②得4x+9≥3﹣2x,化简得6x≥﹣6,解得:x≥﹣1,∴原不等式组的解集为﹣1<x<2.在数轴上表示出来为:点评:本题考查了解一元一次不等式组和在数轴上表示不等式的解集,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.(10分)(2014•浦东新区二模)已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.考点:垂径定理;含30度角的直角三角形;勾股定理.分析:(1)过点O作OH⊥EF,垂足为点H,求出AO,根据含30度角的直角三角形性质求出即可;(2)连接OE,根据勾股定理求出EH,根据垂径定理得出即可.解答:解:(1)过点O作OH⊥EF,垂足为点H,∵OH⊥EF,∴∠AHO=90°,在Rt△AOH中,∵∠AHO=90°,∠PAQ=30°,∴OH=AO,∵BC=10cm,∴BO=5cm.∵AO=AB+BO,AB=3cm,∴AO=3+5=8cm,∴OH=4cm,即圆心O到AQ的距离为4cm.(2)连接OE,在Rt△EOH中,∵∠EHO=90°,∴EH2+HO2=EO2,∵EO=5cm,OH=4cm,∴EH===3cm,∵OH过圆心O,OH⊥EF,∴EF=2EH=6cm.点评:本题考查了含30度角的直角三角形性质,勾股定理,垂径定理的应用,题目是一道比较典型的题目,难度适中.22.(10分)(2014•浦东新区二模)甲、乙两车都从A地前往B地,如图分别表示甲、乙两车离A地的距离S (千米)与时间t(分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B地,最终甲、乙两车同时到达B地,根据图中提供的信息解答下列问题:(1)甲、乙两车行驶时的速度分别为多少?(2)乙车出发多少分钟后第一次与甲车相遇?(3)甲车中途因故障停止行驶的时间为多少分钟?考点:一次函数的应用.分析:(1)分别根据速度=路程÷时间列式计算即可得解;(2)方法一:观察图形可知,第一次相遇时,甲车停止,然后时间=路程÷速度列式计算即可得解;方法二:设甲车离A地的距离S与时间t的函数解析式为s=kt+b(k≠0),利用待定系数法求出乙函数解析式,再令s=20求出相应的t的值,然后求解即可;(3)求出甲继续行驶的时间,然后用总时间减去停止前后的时间,列式计算即可得解.解答:解:(1)v甲==(千米/分钟),所以,甲车的速度是千米/每分钟;v乙==1(千米/分钟),所以,乙车的速度是1千米/每分钟;(2)方法一:∵t乙==20(分钟),∴乙车出发20分钟后第一次与甲车相遇;方法二:设甲车离A地的距离S与时间t的函数解析式为:s=kt+b(k≠0),将点(10,0)(70,60)代入得:,解得,,所以,s=t﹣10,当s=20时,解得t=30,∵甲车出发10分钟后乙车才出发,∴30﹣10=20分钟,乙车出发20分钟后第一次与甲车相遇;(3)∵t=(60﹣20)÷=30(分钟),∵70﹣30﹣15=25(分钟),∴甲车中途因故障停止行驶的时间为25分钟.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,待定系数法求一次函数解析式,读懂题目信息理解甲、乙两车的运动过程是解题的关键.23.(12分)(2014•浦东新区二模)已知:如图,在正方形ABCD中,点E是边AD的中点,联结BE,过点A 作AF⊥BE,分别交BE、CD于点H、F,联结BF.(1)求证:BE=BF;(2)联结BD,交AF于点O,联结OE.求证:∠AEB=∠DEO.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形性质得出AB=DA=BC=CD,∠BAD=∠ADF=∠BCF=90°,求出∠ABH=∠HAE,证△ABE∽△DAF,得出比例式,求出AE=DF,CF=AE,证出Rt△ABE≌Rt△CBF即可;(2)根据正方形性质求出∠ADB=∠CDB,证△DEO≌△DFO,推出∠DEO=∠DFO,根据△ABE∽△DAF推出∠AEB=∠DFA,即可得出答案.解答:证明:(1)∵四边形ABCD是正方形,∴AB=DA=BC=CD,∠BAD=∠ADF=∠BCF=90°,∴∠BAH+∠HAE=90°,∵AF⊥BE,∴∠AHB=90°,即∠BAH+∠ABH=90°,∴∠ABH=∠HAE,又∵∠BAE=∠ADF,∴△ABE∽△DAF,∴=,∴AE=DF,∵点E是边AD的中点,∴点F是边DC的中点,∴CF=AE,在Rt△ABE与Rt△CBF中,∴Rt△ABE≌Rt△CBF(HL),∴BE=BF.(2)∵四边形ABCD是正方形,∴DB平分∠ADC,∴∠ADB=∠CDB,在△DEO与△DFO中,∴△DEO≌△DFO(SAS),∴∠DEO=∠DFO,∵△ABE∽△DAF,∴∠AEB=∠DFA,∴∠AEB=∠DEO.点评:本题考查了正方形的性质,相似三角形的性质和判定,全等三角形的性质和判定的应用,主要考查学生的推理能力,题目比较好,难度适中.24.(12分)(2014•浦东新区二模)如图,已知在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A、B(点A在点B右侧),与y轴交于点C(0,﹣3),且OA=2OC.(1)求这条抛物线的表达式及顶点M的坐标;(2)求tan∠MAC的值;(3)如果点D在这条抛物线的对称轴上,且∠CAD=45°,求点D的坐标.考点:二次函数综合题.分析:(1)根据与y轴的交点C的坐标(0,﹣3)就可以求出OC的值及c的值,进而求出OA的值及A的坐标,由待定系数法就可以求出b的值而求出解析式及定点坐标;(2)如图1,过点M作MH⊥x轴,垂足为点H,交AC于点N,过点N作NE⊥AM于点E,垂足为点E.在Rt△AHM中,HM=AH=4,就可以求出AM的值,再由待定系数法求出直线AC的解析式,就可以求出点N的坐标,进而求出MN的值,由勾股定理就可以求出ME及NE的值,从而求出AE的值就可以得出结论;(3)如图2,分类讨论,当D点在AC上方时,根据角之间的关系就可以求出∠D1AH=∠CAM,当D点在AC下方时,∠MAC=∠AD2M就可以求出点D的坐标.解答:解:(1)∵C(0,﹣3),∴OC=3.y=x2+bx﹣3.∵OA=2OC,∴OA=6.∵a=>0,点A在点B右侧,抛物线与y轴交点C(0,﹣3).∴A(6,0).∴0=36+6b﹣3,∴b=﹣1.∴y=x2﹣x﹣3,∴y=(x﹣2)2﹣4,∴M(2,﹣4).答:抛物线的解析式为y=x2﹣x﹣3,M的坐标为(2,﹣4);(2)如图1,过点M作MH⊥x轴,垂足为点H,交AC于点N,过点N作NE⊥AM于点E,垂足为点E.∴∠AHM=∠NEM=90°.在Rt△AHM中,HM=AH=4,由勾股定理,得AM=4,∴∠AMH=∠HAM=45°.设直线AC的解析式为y=kx+b,由题意,得,解得:,∴直线AC的表达式为y=x﹣3.当x=2时,y=﹣2,∴N(2,﹣2).∴MN=2.∵∠NEM=90°,∠NME=45°,∴∠MNE=∠NME=45°,∴NE=ME.在Rt△MNE中,∴NE2+ME2=NM2,∴ME=NE=.∴AE=AM﹣ME=3在Rt△AEN中,tan∠MAC=.答:tan∠MAC=;(3)如图2,①当D点在AC上方时,∵∠CAD1=∠D1AH+∠HAC=45°,且∠HAM=∠HAC+∠CAM=45°,∴∠D1AH=∠CAM,∴tan∠D1AH=tan∠MAC=.∵点D1在抛物线的对称轴直线x=2上,∴D1H⊥AH,∴AH=4.在Rt△AHD1中,D1H=AH•tan∠D1AH=4×=.∴D1(2,);②当D点在AC下方时,∵∠D2AC=∠D2AM+∠MAC=45°,且∠AMH=∠D2AM+∠AD2M=45°,∴∠MAC=∠AD2M.∴tan∠AD2H=tan∠MAC=.在Rt△D2AH中,D2H=.∴D2(2,﹣12).综上所述:D1(2,);D2(2,﹣12).点评:本题考查了待定系数法求二次函数的解析式的运用,一次函数的解析式的运用,二次函数的顶点式的运用,等腰直角三角形的性质的运用,三角函数值的运用,解答时求出函数的解析式是关键,灵活运用等腰直角三角形的性质求解是难点.25.(14分)(2014•浦东新区二模)如图,已知在△ABC中,AB=AC,BC比AB大3,sinB=,点G是△ABC的重心,AG的延长线交边BC于点D.过点G的直线分别交边AB于点P、交射线AC于点Q.(1)求AG的长;(2)当∠APQ=90°时,直线PG与边BC相交于点M.求的值;(3)当点Q在边AC上时,设BP=x,AQ=y,求y关于x的函数解析式,并写出它的定义域.考点:相似形综合题.分析:(1)根据已知条件和重心的性质得出BD=DC=BC,AD⊥BC,再根据sinB==,求出AB、BC、AD的值,从而求出AG的长;(2)根据∠GMD+∠MGD=90°和∠GMD+∠B=90°,得出∠MGD=∠B,再根据特殊角的三角函数值求出DM、CM=CD﹣DM的值,在△ABC中,根据AA求出△QCM∽△QGA,即可求出的值;(3)过点B作BE∥AD,过点C作CF∥AD,分别交直线PQ于点E、F,则BE∥AD∥CF,得出=,求出BE的值,同理可得出CF的值,最后根据BD=CD,求出EG=FG,即可得出CE+BE=2GD,从而得出求y关于x 的函数解析式并得出它的定义域.解答:解:(1)在△ABC中,∵AB=AC,点G是△ABC的重心,∴BD=DC=BC,∴AD⊥BC.在Rt△ADB中,∵sinB==,∴=.∵BC﹣AB=3,∴AB=15,BC=18.∴AD=12.∵G是△ABC的重心,∴AG=AD=8.(2)在Rt△MDG,∵∠GMD+∠MGD=90°,同理:在Rt△MPB中,∠GMD+∠B=90°,∴∠MGD=∠B.∴sin∠MGD=sinB=,在Rt△MDG中,∵DG=AD=4,∴DM=,∴CM=CD﹣DM=,在△ABC中,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵∠QCM=∠CDA+∠DAC=90°+∠DAC,又∵∠QGA=∠APQ+∠BAD=90°+∠BAD,∴∠QCM=∠QGA,又∵∠CQM=∠GQA,∴△QCM∽△QGA.∴==.(3)过点B作BE∥AD,过点C作CF∥AD,分别交直线PQ于点E、F,则BE∥AD∥CF.∵BE∥AD,∴=,即=,∴BE=.同理可得:=,即=,∴CF=.∵BE∥AD∥CF,BD=CD,∴EG=FG.∴CE+BE=2GD,即+=8,∴y=,(0≤x≤).点评:此题考查了相似形的综合,用到的知识点是重心、特殊角的三角函数值、相似三角形的判定与性质、平行线的性质等,关键是根据题意,画出图形,做出辅助线,构造直角三角形是本题的关键.。
2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。
2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。
3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卷的整洁。
考试结束时,将试卷和答题卷一并交回。
一、选择题(本大题共10小题,每小题3分,共30分。
在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。
42246810125CBA2014届上海各区、县中考数学二模24题1、(宝山区)在平面直角坐标系xOy 中(图10),抛物线n mx mx y +-=2(m 、n 为常数)和y 轴交于)32,0(A 、和x 轴交于B 、C 两点(点C 在点B 的左侧),且tan ∠ABC=3,如果将抛物线n mx mx y +-=2沿x 轴向右平移四个单位,点B 的对应点记为E .(1)求抛物线n mx mx y +-=2的对称轴及其解析式; (2)联结AE ,记平移后的抛物线的对称轴与AE 的 交点为D ,求点D 的坐标;(3)如果点F 在x 轴上,且△ABD 与△EFD 相似, 求EF 的长.24题图CBAyxO2、(长宁区)如图,在直角坐标平面内,四边形OABC 是等腰梯形,其中OA=AB=BC =4,tan ∠BCO =3.(1) 求经过O 、B 、C 三点的二次函数解析式;(2) 若点P 在第四象限,且△POC ∽△AOB 相似,求满足条件的所有点P 的坐标; (3) 在(2)的条件下,若⊙P 与以OC 为直径的⊙D 相切,请直接写出⊙P 的半径.3、(奉贤区)已知:如图,在平面直角坐标系xoy 中,抛物线c bx x y ++-=243交x 轴于A (4,0)、B (1,0)-两点,交y 轴于点C .(1)求抛物线的表达式和它的对称轴;(2)若点P 是线段OA 上一点(点P 不与点O 和点A 重合),点Q 是射线AC 上一点,且PQ PA =,在x 轴上是否存在一点D ,使得ACD ∆与APQ ∆相似,如果存在,请求出点D 的坐标;如不存在,请说明理由. 11yxO第24题4、(虹口区)已知:如图,在平面直角坐标系xoy 中,直线m mx y 432-=与x 轴、y 轴分别交于点A 、B ,点C 在线段AB 上,且AOC AOB S S ∆∆=2。
(1)求点C 的坐标(用含m 的代数式表示);(2)将ΔAOC 沿x 轴翻折,当点C 的对应点C '恰好落在抛物线m mx x y ++=321832上时,求该抛物线的表达式;(3)设点M 为(2)中所求抛物线上一点,当以A 、O 、C 、M 为顶点的四边形是平行四边形时,请直接写出所有满足条件的点M 的坐标。
2013年奉贤区调研测试九年级数学 (满分150分,考试时间100分钟)2014.4一、选择题:(本大题共6题,每题4分,满分24分) 1.下列各数中,属于无理数的是( )A. 0)2(π;B. 33 ; C.4; D. 38-; 2.下列根式中,属于最简二次根式的是( ) A .28; B .22b a +; C.ba; D.4.0; 3.不等式062>+x 的解集在数轴上表示正确的是( )4. 右图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周体育锻炼时间的众数、中位数分别是( ) A.16、10.5; B.8、9; C.16、8.5; D.8、8.5;5.在数学活动课上,老师要同学们判断一个四边形门框是否为矩形, 下面是某学习小组的4位同学拟定的方案,其中正确的是( )A .测量对角线是否相互平分;B .测量两组对边是否分别相等;C .测量一组对角是否都为直角;D .测量其中三个角是否都为直角; 6.如图,直线1l ∥2l ,3l ⊥4l .下列命题中真命题是( ) A .︒=∠+∠9031; B .︒=∠+∠9032; C .42∠=∠; D .31∠=∠;二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:52)(m -= ;8.分解因式:282-a = ;9.二次函数32+=x y 图象的顶点坐标是 ;A .B .C .D .(小时)(第5题图)第4题第6题10.已知函数2)(-=x x f ,若3)(=x f ,那么 x = ;11.随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2013年海外学习汉语的学生人数已达1500000000人,将1500000000用科学记数法表示为 人; 12.若点A (1,y 1)和点B (2,y 2)都在正比例函数kx y =()0>k 图像上,则y 1 y 2(选择“>”、“<”、“=”填空);13.从-1,-2,3这三个数中任取两个不同的数作为点的坐标,该点在第三象限的概率是 ; 14.某校为鼓励学生课外阅读,制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形统计图。
若该校有1000名学生,则赞成该方案的学生约有 人; 15.如图,在ABC △中,D 是边BC 上的点,21=DC BD ,设向量=,=,如果用向量,的线性组合来表示向量,那么= ;16.如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF =2,BC =5,CD =3, 则tan C= ;17.在⊙O 中,弦AB 的长为6,它所对应的弦心距为4,那么半径OA = ; 18.如图,在Rt △ABC 中,∠C =90°,BC =9,AC =12,点D 在边AC 上,且CD =31AC ,过点D 作DE ∥AB ,交边BC 于点E ,将△DCE 绕点E 旋转,使得点D 落在AB 边上的D ’处,则Sin ∠DED ’= ;三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简求值:xx x x 1)1111(2-∙+--,其中x =12-. 20.(本题满分10分,每小题5分)第14题ADCB第15题第16题第18题解方程组:⎩⎨⎧=-+-=+0125222y xy x y x .21.(本题满分10分,第(1)小题4分,第(2)小题6分) 已知:如图,在Rt ∆ACB 中,∠A =300,∠B =450,AC =8,点P 在线段AB 上,联结CP ,且43cot =∠APC , (1)求CP 的长; (2)求∠BCP 的正弦值;CABP第21题22.(本题满分10分,每小题5分)在奉贤创建文明城区的活动中,有两段长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度y (米)与施工时间x (时)之间关系的部分图象.请解答下列问题:(1)求乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; (2)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.求甲队从开始施工到 完工所铺设的彩色道砖的长度为多少米?23.(本题满分12分,每小题满分各6分)已知:如图,点E 是四边形ABCD 的对角线BD 上一点,且∠BAC =∠BDC =∠DAE .⑴求证:△ABE ∽△ACD ; ⑵求证:AC DE AD BC ⋅=⋅;E A第23题D ACBA时)第22题24.(本题满分12分,每小题6分)已知:如图,在平面直角坐标系xoy 中,抛物线y =交x 轴于A (4,0)、B (1,0)-两点,交y 轴于点C . (1)求抛物线的表达式和它的对称轴;(2)若点P 是线段OA 上一点(点P 不与点O 和点A重合),点Q 是射线AC 上一点,且PQ PA =, 在x 轴上是否存在一点D ,使得ACD ∆与APQ ∆ 相似,如果存在,请求出点D 的坐标;如不存在,请说明理由.第24题25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)已知:如图1,在梯形ABCD中,∠A=90°,AD∥BC, AD=2,AB=3, tan C=12,点P是AD延长线上一点,F为DC的中点,联结BP,交线段DF于点G.(1)若以AB为半径的⊙B与以PD为半径的⊙P外切,求PD的长;(2)如图2,过点F作BC的平行线交BP于点E,①若设DP=x,EF=y,求y与x的函数关系式并写出自变量x的取值范围;②联结DE和PF,若DE=PF,求PD的长.第25题图1第25题图2备用图奉贤区初三调研考数学卷参考答案 201404 一 、选择题:(本大题共8题,满分24分)1.B ; 2.B ; 3.C ; 4.B ; 5.D ; 6.A ; 二、填空题:(本大题共12题,满分48分)7.10m -; 8.)12)(12(2-+a a ; 9.(0,3); 10. 11;11.9105.1⨯; 12.<; 13.31; 14.700; 15.b a 3132+; 16.34; 17.5; 18.2524;三.(本大题共7题,满分78分) 19. (本题满分10分)解:x x x x 1)1111(2-∙+--=xx x x x x 11111122-∙+--∙-………………………2分 =xx x x x 211=--+ ……………………………………………………………4分 当12-=x 时2221222+=-=x…………………………………………4分20. (本题满分10分)解:⎩⎨⎧=-+-=+)2(012)1(5222y xy x y x由(2)得:1=-y x 或1-=-y x …………………………………………………2分原方程组可化为⎩⎨⎧=-=+152y x y x 和⎩⎨⎧-=-=+152y x y x …………………………………2分解这两个方程组得原方程组得解:⎪⎩⎪⎨⎧==343711y x ,⎩⎨⎧==2112y x …………………………6分21. (本题满分10分)(1)解:过点C 作CH ⊥AB 于点H ,………………………………………………1分 ∵∠A =300,AC =8,∴CH =4………………………………………………………1分∵在直角三角形CHP 中,43cot =∠APC ∴PH=3………………………………1分 ∴CP=5 ………………………………………………………………………………1分 (2)∵在直角三角形CHB 中,∠B =450,CH =4 ∴BH =4…………………1分∴PB =1,……………………………………………………………………………1分 过点P 作PG ⊥BC 于点G ,……………………………………………………………1分∵在直角三角形PGB 中,∠B =450,PB =1 ∴PG =22…………………………1分∴在直角三角形PGC 中BCP ∠sin =102=CP PG ………………………………………2分 22.(本题满分10分)(1)设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =kx +b ,……1分由图可知,函数图象过点(2,30)、(6,50),∴⎩⎨⎧=+=+506302b k b k 解得⎩⎨⎧==205b k ……………………………………………3分∴y =5x +20. ……………………………………………………………………1分 (2)由图可知,甲队速度是:60÷6=10(米/时). ……………………………1分设甲队从开始到完工所铺设彩色道砖的长度为z 米,依题意,得……………1分6050.1012z z --= ……………………………………………………2分解得 z =110.………………………………………………………1分 答:甲队从开始到完工所铺设彩色道砖的长度为110米.23.(本题满分12分,每小题满分各6分)证明:(1)∵∠BAC =∠DAE ∴∠BAE =∠DAC …………………………2分∵ ∠BAC =∠BDC ,∠BOA =∠DOC∴∠ABE =∠ACD …………………………………………………2分 ∴△ABE ∽△ACD ………………………………………………2分(2) ∵△ABE ∽△ACD ∴ADAEAC AB =……………………………2分 ∵∠BAC =∠DAE ∴△ABC ∽△AED ………………………1分 ∴ADACDE BC =……………………………………………………2分 ∴AC DE AD BC ⋅=⋅…………………………………………1分24.(本题满分12分,每小题6分) (1)∵抛物线c bx x y ++-=243交x 轴于A (4,0)、B (1,0)-两点 E A第23题DACBAO∴⎪⎪⎩⎪⎪⎨⎧=+--=++⨯-043041643c b c b 解得:⎪⎩⎪⎨⎧==349c b ……………………………………3分 ∴抛物线的表达式:349432++-=x x y …………………………………………1分 它的对称轴是:直线23=x …………………………………………………………2分(2)假设在x 轴上是否存在一点D ,使得ACD ∆与APQ ∆相似∵∠A =∠A则①△APQ ∽△ACD ∴CDACPQ AP = ∵PQ PA = ∴AC =CD∵A (4,0) ∴)0,4(1-D ………………………………………………………3分 ②△APQ ∽△ADC ∴CDADPQ AP = ∵C (0,3) ,PQ PA =∴AD=CD ∴)0,87(2D …………………………………………………………3分 ∴点D 的坐标)0,87(),0,4(21D D -时,△ACD 与△APQ 相似。