一元二次方程复习导学案
- 格式:doc
- 大小:48.47 KB
- 文档页数:4
第二十一章一元二次方程——一元二次方程的相关概念一、新课导入1.导入课题:情景:要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比等于下部与全部(全身)的高度比,则雕像的下部应设计多少米高?问题1:列方程解应用题的一般步骤是什么?(导出审题的关键是寻找等量关系)问题2:你能画出示意图表示这个问题吗?(用线段AB表示雕像的高度,雕像上部的高度表示为AC,下部的高度表示为BC,在黑板上画出示意图,把这个问题转化为数学问题)问题3:能反映问题的等量关系的是哪一句话?(根据题意导出关系式BC2=2AC)问题4:设雕像下部高BC=x m,请说出你所列的方程,并化简.这个方程是一元一次方程吗?它有什么特点?这个方程就是本节课我们将要学习的一元二次方程.(板书课题)2.学习目标:(1)会设未知数,列一元二次方程.(2)了解一元二次方程及其根的概念.(3)能熟练地把一元二次方程化成一般形式,并准确地指出各项系数.3.学习重、难点:重点:一元二次方程的一般形式及相关概念.难点:寻找等量关系.二、分层学习1.自学指导:(1)自学内容:教材第1页到第2页的问题1、问题2.(2)自学时间:5分钟.(3)自学方法:先寻找问题中的等量关系,再根据等量关系列出方程.(4)自学参考提纲:①问题1中,要制作一个无盖的方盒,四角都要剪去一个相同的正方形,我们设正方形边长为x cm,则盒底的宽为(50-2x) cm,盒底的长为(100-2x) cm,根据矩形的面积公式及方盒的底面积3600 cm2可列方程为(100-2x)(50-2x)=3600,你能把它整理为课本上的方程②吗?试说明具体经过哪几步变形得到.先去括号5000-100x-200x+4x2=3600移项合并同类项4x2-300x+1400=0系数化为1(两边同除以4) x2-75x+350=0②问题2中,本次排球比赛的总比赛场数为28场.设邀请x支队参赛,则每支队与其余(x-1) 支队都要赛一场.整个比赛中总比赛场数是多少?你是怎样算出来的?本题的等量关系是什么?你列出的方程是x(x-1)=28.你能把它整理为课本上的方程③吗?试说明具体经过哪几步变形得到.去括号x2-12x=28系数化为1(两边同乘以2) x2-x=562.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察了解学生是否会寻找等量关系,是否会化简方程.②差异指导:简要说明问题2中单循环比赛与双循环比赛的区别,对不会寻找等量关系的学生给予辅导,说明化简方程的基本要求.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)总结寻找等量关系的策略,简要指出哪些公式经常被我们作为寻找等量关系的依据.(2)练习:根据下列问题列方程①一个圆的面积是2πm2,求半径.πr2=2π②一个直角三角形的两条直角边相差3cm,面积为9cm2,求较长的直角边的长.1x(x-3)=92③4个完全相同的正方形面积之和是25,求正方形的边长x. 4x2=25④一个长方形的长比宽多2,面积是100,求长方形的长x. x(x-2)=100⑤把长为1的木条分成两段,使较短一段的长与全长的积等于较长一段的长的平方,求较短一段的长x.x=(1-x)21.自学指导:(1)自学内容:教材第3页的内容.(2)自学时间:5分钟.(3)自学方法:观察方程①②③,从方程所含的未知数的个数及其次数等方面找出它们共同的特点.(4)自学参考提纲:①结合一元一次方程的定义,请对一元二次方程进行定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.②一元二次方程的一般形式是a x2+b x+c=0(a≠0),为什么要规定a≠0?因为a=0时,未知数的最高次数小于2.③同桌之间相互说说方程①②③的二次项,二次项系数,一次项,一次项系数,常数项各是什么.方程①x2+2x-4=0 二次项:x2二次项系数:1 一次项:2x 一次项系数:2常数项:-4方程②x2-75x+350=0 二次项:x2二次项系数:1 一次项:-75x 一次项系数:-75 常数项:350方程③x2-x=56 二次项:x2二次项系数:1 一次项:-x 一次项系数:-1常数项:-56④举例说明什么是一元二次方程的根.⑤自学例题,说说把一元二次方程化为一般形式,要经过哪些变形?去括号,移项,合并同类项.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生在回答一元二次方程各项及各项系数时,是否注意了符号.②差异指导:提醒学生一元二次方程的每一项(系数)都应包括它前面的符号.(2)生助生:生生互动交流、订正错误.4.强化:(1)交流总结:确定一元二次方程各项的系数时,若方程不是一般形式,要先经过去括号、移项、合并同类项等步骤把它化成一般形式,通常习惯把二次项系数化为正数,且各项系数均为整数且互质,在指出各项系数时,一定要带上各项前面的符号.(2)练习:①将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:5x2-1=4x;4x2=81;解:原式化为5x2-4x-1=0解:原式化为4x2-81=0二次项系数:5一次项系数:-4常数项:-1二次项系数:4一次项系数:0常数项:-81 4x(x+2)=25;(3x-2)(x+1)=8x-3.解:原式化为4x2+8x-25=0解:原式化为3x2-7x+1=0二次项系数:4一次项系数:8常数项:-25二次项系数:3一次项系数:-7常数项:1②若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是m≥0且m≠1.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有什么困惑?2.教师对学生的评价:(1)表现性评价:点评学生参与学习的情况,回答问题,小组互动情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.(2)教师创设情境,给出实例,学生积极主动探究,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.(3)增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.(4)对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)一元二次方程3x2=5x的二次项系数和一次项系数分别是(C)A. 3,5B. 3,0C. 3,-5D. 5,02.(10分)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3, 4.解:-4,33.(20分)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.(1)3x2+1=6x;(2)4x2=81-5x;解:原式化为3x2-6x+1=0 解:原式化为4x2+5x-81=0二次项系数:3 二次项系数:4一次项系数:-6 一次项系数:5常数项:1 常数项:-81(3)x(x+5)=5x-10; (4)(3x-2)(x+1)=x(2x-1).解:原式化为x2+10=0 解:原式化为x2+2x-2=0二次项系数:1 二次项系数:1一次项系数:0 一次项系数:2常数项:10 常数项:-24.(30分)根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?解:设长方形的长为x cm,则宽为(x-1)cm,根据题意,得x(x-1)=132,整理,得x2-x-132=0.2的平方的长方形?解:设长方形的长为xx)m.根据题意,得xx)=0.06,整理,得50x2-25x+3=0.(3)参加一次聚会的每两人都握了一次手,所有人共握手10次.有多少人参加这次聚会?解:设有x人参加了这次聚会,根据题意,得x(x-1)=10整理,得x2-x-20=0二、综合应用(20分)5.(20分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,则x满足的方程是(B)A. x2+130x-1400=0B. x2+65x-350=0C. x2-130x-1400=0D. x2-65x-350=0三、拓展延伸(10分)6.(10分)如果2是方程x2-c=0的一个根,求常数c及方程的另一个根.解:将2代入原方程中,得22-c=0,得c=4.将c=4代入原方程,得x2x=±2.即方程的另一个根为-2.角的平分线的性质(一)教学目标(一)教学知识点角平分线的画法、角平分线的性质1.(二)能力训练要求1.掌握角平分线的性质1 2.会用尺规作一个已知角的平分线.(三)情感与价值观要求在利用尺规作图的过程中,培养学生动手操作能力与探索精神.教学重点利用尺规作已知角的平分线.角平分线的性质1.教学难点角的平分线的性质1教学方法引导发现、讲练结合法.教具准备多媒体课件教学过程一.提出问题,创设情境问题:图中哪条线段的长可以表示点P 到直线l 的距离 ?导入新课,明确学习目标如果老师手里只有直尺和圆规,你能帮忙设计一个作角的平分线的操作方案吗?二.合作交流 探究新知探究1想一想:下图是一个平分角的仪器,其中AB=AD ,BC=DC .将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是角平分线.你能说明它的道理吗? 教师活动:播放多媒体课件,演示角平分仪器的操作过程,使学生直观了解得到射线AC 的方法.学生活动:观看多媒体课件,讨论操作原理.[生1]要说明AC 是∠DAC 的平分线,其实就是证明∠CAD=∠CAB .[生2]∠CAD 和∠CAB 分别在△CAD 和△CAB 中,那么证明这两个三角形全等就可以了.[生3]我们看看条件够不够.AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩所以△ABC ≌△ADC (SSS ).所以∠CAD=∠CAB .即射线AC 就是∠DAB 的平分线.[生4]原来用三角形全等,就可以解决角相等.线段相等的一些问题.看来温故是可以知新的.试一试:老师再提出问题:通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示:作已知角的平分线的方法:已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以O 为圆心,适当长为半径作弧,分别交OA 、OB 于M 、N .(2)分别以M、N为圆心,大于12MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.(教师根据学生的叙述,作多媒体课件演示,使学生能更直观地理解画法,提高学习数学的兴趣).点拨:1.在上面作法的第二步中,去掉“大于12MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?(设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯)学生讨论结果总结:1.去掉“大于12MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于12MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.探究2:做一做1[师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?[生]我发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对. [师]你的叙述太精彩了.这说明角的平分线除了有平分角的性质,还有其他性质,今天我们就来研究这个问题.做一做2角平分线的性质即已知角的平分线,能推出什么样的结论.操作:1.折出如图所示的折痕PD、PE.2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画:按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?拿出两名同学的画图,请大家评一评,以达明确概念的目的.[生]同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点画两边的垂线段,所以同学甲的画法不符合要求.[生甲]噢,对,我知道了.[师]同学甲,你再做一遍加深一下印象.教师提出问题:你能叙述所画图形的性质吗?生回答后,教师进一步引导:观察操作得到的结论有时并不可靠,你能否用推理的方法验证你的结论呢?证一证:引导学生证明角平分线的性质 1,分清题设、结论,将文字变成符号并加以证明(一生板演)说一说: 引导学生结合图形从文字和符号的角度分别叙述问题1:你能用文字语言叙述所画图形的性质吗?[生]角平分线上的点到角的两边的距离相等.问题2:(出示)能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.学生通过讨论作出下列概括:∵ OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.三、用一用:1、如图,△ABC的角平分线BM、CN相交于点P.此例放到第二课时讲求证:点P到三边AB、BC、CA的距离相等.[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,•也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.因为BM是△ABC的角平分线,点P在BM上.所以PD=PE.同理PE=PF.所以PD=PE=PF.即点P到三边AB、BC、CA的距离相等.巩固所学及时点拨四.丰收乐园学生充分交流、各抒己见教后反思:本节知识的应用主要存在以下问题:1、对距离把握不到位,点到直线的垂线段长才叫距离2、不会直接使用角平分线的性质,而是使用全等将性质再证一3、采用角平分线性质解题强调三个条件。
一元二次方程期末复习教学案一、基本知识回顾1. 的方程叫做关于x 的一元二次方程。
1.下列关于x 的方程:其中是一元二次方程的有( )A.4个 B.3个 C.2个 D.1个5、写出一个以—1、2为根的一元二次方程_____________________________.6、两个连续奇数的积是323,求这两个数.1)4(,02)3(,53)2(,032)1(223222=+=+-=+=--y x x x x x x x二、根的判别式(1)关于x 的一元二次方程x 2-4x+2m=0无实数根,求m 的取值范围.(2)关于x 的一元二次方程mx 2-4x+2=0有实数根,求m 的取值范围.(3)关于x 的方程mx 2-4x+2=0有实数根,求m 的取值范围.三、一元二次方程根与系数的关系 :如果关于想的一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,ac x x =21。
1.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( )A .-3,2 B.3,-2 C.2,-3 D.2,32.一元二次方程x 2-5x+6=0 的两根分别是x 1,x 2,则x 1+x 2=________,x 1x 2=_______四、解应用题1、传播问题例1、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?2、循环问题又可分为单循环问题,双循环问题和复杂循环问题例2、参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?例3、某小组同学元旦互赠贺年卡一张,全组共赠贺年卡90张,这个小组有几位同学?3、平均率问题最后产值、基数、平均增长率或降低率、增长或降低次数的基本关系:M=a(1±x)n 其中n 为增长或降低次数,M 为最后产量,a 为基数,x 为平均增长率 或降低率。
初三数学 班级 姓名一元二次方程(复习课导学案)复习目标1.了解一元二次方程的有关概念。
2.能灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程。
3.会根据根的判别式判断一元二次方程的根的情况。
4.掌握一元二次方程根与系数的关系式,并会运用它解决有关问题。
5. 通过复习深入理解方程思想、转化思想、分类讨论思想、整体思想,并会应用;进一步培养分析问题、解决问题的能力。
重点:能灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程。
难点:1、会根据根的判别式判断一元二次方程的根的情况。
2、掌握一元二次方程根与系数的关系式,并会运用它解决有关问题。
复习流程考点呈现考点1:一元二次方程的概念例1 下列方程中,是关于x 的一元二次方程的是( )A.3(x+1)2=2(x+1)B.02112=-+x xC.ax 2+bx+c=0D.x 2+2x=x 2-1 解析:构成一元二次方程(一般形式)必须同时满足以下条件:①整式方程;②二次项系数不为0;③只含有一个未知数;④未知数的最高次数是2.选项B 不满足①,C 不满足②,D 不满足④.故选A.考点2:一元二次方程的根例2已知x=-1是一元二次方程02=++n mx x 的一个根,则222-n mn m +的值为 .解析:把x =-1代入一元二次方程,得m-n =1, 则m 2-2mn+n 2=(m-n) 2=1.考点3:一元二次方程的解法例3 方程x(x -1)=2的解是( )A .x =-1B .x =-2C .x 1=1,x 2=-2D .x 1=-1,x 2=2解析:将原方程化为一般形式为x 2-x-2=0,用公式法解得x 1=-1,x 2=2. 故选D.例4方程(x ﹣1)(x + 2)= 2(x + 2)的根是 .解析:方法一:去括号,整理得 x 2-x -6=0.用公式法解得x 1=-2,x 2=3.方法二:移项,提取公因式x +2,得 (x +2)(x -3)=0.解得x 1=-2,x 2=3.点评:解一元二次方程要根据方程的特点灵活选用,讲究解法技巧,准确、迅速.考点4:一元二次方程根的判别式例5已知关于x 的一元二次方程01)12=++-x x m (有实数根,则m 的取值范围是 .解析:一元二次方程有实数根,即满足b 2-4ac ≥0且a ≠0.由题意,得1-4(m-1)≥0且m-1≠0.解得m ≤54且m ≠1. 例6若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数值.解析:∵关于x 的一元二次方程2420x x k ++=有两个实数根,∴b 2-4ac=244121680k k -⨯⨯=-≥.解得2k ≤.∴k 的非负整数值为0,1,2.考点5: 一元二次方程的应用问题例7 20XX 年5月,中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重要战略决策部署.为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施维护和建设,以后逐年增加,计划到20XX 年当年用于城市基础设施维护与建设资金达到8.45亿元.(1)求从20XX 年至20XX 年我市每年投入城市基础设施维护和建设资金的年平均增长率.(2)若20XX 年至20XX 年我市每年投入城市基础设施维护和建设资金的年平均增长率相同,预计我市这三年用于城市基础设施维护和建设资金共多少亿元.解析:(1)设从2010至20XX 年我市每年投入城市基础设施维护和建设资金的年平均增长率为x ,由题意,得 ()2518.45x +=.解得x 1=0.3=30%,x 2=-2.3(不合题意,舍去).答略.(2)这三年共投资()5518.45x +++=5+5×(1+0.3)+8.45=19.95(亿元). 答略.误区点拨一、概念理解不清致错例1 关于x 的方程(m +2)22m x -+2(m -1)x-1=0,当m= 时,该方程是一元二次方程.错解:当m ²-2=2, 即m=±2时,原方程是一元二次方程.剖析:错解忽视了一元二次方程定义中二次项系数不等于0这一条件.正解:m=2.二、解方程出错例2用公式法解方程4722=+x x .错解:∵a=2,b=7,c=4,b 2-4ac=72-4×2×4=17,∴x=22177⨯±-. 4177,417721--=+-=∴x x .剖析:用公式法解方程时应先将方程化为一般形式,错解忽视了这一点,出现常数项c 错误.正解:原方程化为.04-722=+x x∵a=2,b=7,c=-4,b 2-4ac=72-4×2×(-4)=81,∴x=22817⨯±-. ∴12142x x =-=,. 三、思维定势例3若关于x 的方程(m 2-1)x 2-2(m+2)x+1=0有实数根,求m 的取值范围.错解:由 m 2-1≠0 , 解得 m ≠±1,b 2-4ac =[-2(m+2)]2-4(m 2-1)≥0 , m ≥ 54-. 所以m 的取值范围是m ≥54-且m ≠±1. 剖析:题设中的方程没有明确指出是一元二次方程,因此方程也有可能为一元一次方程,此时有 m 2-1=0且-2(m+2)≠0, 解得m=±1 .正解:m ≥54- 时,原方程有实数根. 四、忽视检验根是否符合题意致错例4 新华中学八年级同学参加“手拉手”活动,甲班同学(人数不超过60人)全体都参加此项活动,共捐书300本;乙班同学有30人参加此项活动,共捐书260本,这两个班参加此活动的同学人均捐书比甲班人均捐书多1本,甲班有多少名同学?错解:设甲班有x 名同学.依题意,得300300260130x x +=-+.化简整理,得 223090000x x -+=.解得 1250180x x ==,.所以,甲班有50名或180名同学.剖析:方程的根没有检验是否符合题意,忽视了“甲班同学(人数不超过60人)”这个已知条件.正解:在错解的基础上,求得x 1=50,x 2=180.由于甲班同学人数不超过60人,所以50=x ,即甲班有50名同学.跟踪训练1.方程(k+2)x |k|+3kx+1=0是关于x 的一元二次方程,那么k 的值是( )A .k=±2 B.k=2 C .k=-2 D .k≠±22.用配方法解下列方程时,配方错误的是 ( )A. x 2-2x-99=0化为(x-1)2=100B. x 2+8x+9=0化为(x+4)2=25C. 2t 2-7t-4=0化为1681)47(2=-t D. 3y 2-4y-2=0化为910)32(2=-y3.如果方程x 2+mx +12=0的一个根是4,则另一个根和m 的值分别是( )A .3 -7B .3 7C .-3 7D .-3 -74.用公式法解方程x 2-3x -1=0,正确的解为( )A .x 1=2133+-,x 2=2133--B .x 1= 253+-,x 2= 253-- C .x 1= 253+ ,x 2= 253- D .x 1=2133+,x 2=2133- 5.如果关于x 的方程220x x a -+=有两个相等的实数根,那么a= .6.定义新运算“*”,规则:()()a ab a b b a b ≥⎧*=⎨<⎩,如122*=,(=若x 2+2x-3=0 的两根为12,x x ,则12x x *= .7.参加一次足球联赛的每两队之间都进行两次比赛,共要比赛90场.设共有x•个队参加比赛,则可列方程为__________.8.等腰△ABC 中,BC=8,AB ,AC 的长是关于x 的方程x 2-10x+m=0的两根,求m 的值.解:(1)当AB 或AC 的长为8时,64-10×8+m=0,所以m=_____;(2)当AB=AC 时,方程x 2-10x+m=0有两个相等的实数根,则b 2-4ac=0,即______,所以m=____.9.阅读下列解题过程,并解答后面的问题.用配方法解方程2x 2-5x -8=0.解:原方程化为x 2-5x -8=0. ①配方,得x 2-5x+(-52)2=8+(-52)2. ② 所以(x -52)2=574. ③解得x 1,x 2④ (1)指出每一步的解题根据:①______;②______;③_______;④_______.(2)上述解题过程有无错误,如有,错在第______步,原因是_________.(3)写出正确的解答过程.10. 一块矩形耕地大小尺寸如下图所示,要在这块地上沿东西和南北方向分别挖2条和4条水渠,如果水渠的宽相等,而且要保证余下的耕地面积为9600米2,那么水渠应挖多宽?中考零距离1.(20XX 年芜湖市)关于x 的方程(a-5)x 2-4x-1=0有实数根,则a 满足( )A.a ≥1B.a>1且a ≠5C. a ≥1且a ≠5D. a ≠52.(20XX 年毕节市)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( )A .8人B .9人C .10人D .11人3.(20XX 年眉山市)一元二次方程2260x -=的解为_______.4.(20XX 年清远市)方程2x(x-3)=0的解是 .5.(20XX 年新疆维吾尔自治区)解方程:2x 2-7x +6=0.6.(20XX 年武汉市)解方程:x 2+x-1=0.7.(20XX 年天津市)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.青山村种的水稻20XX 年平均每公顷产8 000 kg ,20XX 年平均每公顷产9 680 kg ,求该村水稻每公顷产量的年平均增长率.解题方案:设该村水稻每公顷产量的年平均增长率为x.(Ⅰ)用含x 的代数式表示:① 20XX 年种的水稻平均每公顷的产量为 ;② 20XX 年种的水稻平均每公顷的产量为 ;(Ⅱ)根据题意,列出相应方程 ;(Ⅲ)解这个方程,得 ;(Ⅳ)检验: ;(Ⅴ)答:该村水稻每公顷产量的年平均增长率为 %.8.(20XX 年安徽省)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m 2 ,下降到5月份的12600元/m 2.1)问:4、5两月平均每月降价的百分率是多少?(参考数据:95.09.0≈)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m 2?请说明理由.跟踪训练答案1.B2.B3.A4.D5.16. 1 7.x (x -1)=90 8. (1)16 (2)100-4m=0 259.(1)①二次项系数化为1 ②移项,方程的两边都加上一次项系数一半的平方 ③方程左边化为完全平方式 ④用直接开平方法解方程(2)① 常数项和一次项系数未同时除以2(3)x 1,x 2(过程略) 10. 解:设水渠应挖x 米宽.根据题意,得(162-2x)(64-4x)=9600 ,即x 2-97x+96=0.解得 x 1=1,x 2=96(不合题意,舍去) .答:水渠应挖1米宽.中考零距离答案1.A2.B3.x=4.x 1=0,x 2=35.21=x ,232=x .6.251-1+=x , 25-1-2=x . 7.解:(Ⅰ)①8000(1)x + ②28000(1)x +(Ⅱ)28000(1)9680x += (Ⅲ)10.1x =,2 2.1x =- (Ⅳ)10.1x =,2 2.1x =-都是原方程的根,但2 2.1x =-不符合题意,所以0.1x = (Ⅴ)108.解:(1)设4、5两月平均每月降价的百分率为x.根据题意,得12600)1(140002=-x . 化简,得9.0)1(2=-x . 解得95.1,05.021≈≈x x (不合题意,舍去).因此,4、5两月平均每月降价的百分率约为5%(2)如果按此降价的百分率继续回落,估计7月份的商品房成交均价为10000113409.012600)1(126002>=⨯=-x ,所以7月份该市的商品房成交均价不会跌破10000元/m 2.。
一元二次方程解法(复习课)导学案(5篇)第一篇:一元二次方程解法(复习课)导学案一元二次方程(复习课)导学案复习目标1.了解一元二次方程的有关概念。
2.能灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程。
3.会根据根的判别式判断一元二次方程的根的情况。
4.掌握一元二次方程根与系数的关系式,并会运用它解决有关问题。
5.通过复习深入理解方程思想、转化思想、分类讨论思想、整体思想,并会应用;进一步培养分析问题、解决问题的能力。
重点:能灵活运用开平方法、配方法、公式法、因式分解法解一元二次方程。
难点:1、会根据根的判别式判断一元二次方程的根的情况。
2、掌握一元二次方程根与系数的关系式,并会运用它解决有关问题。
复习流程回忆整理1.方程中只含有未知数,并且未知数的最高次数是,这样的方程叫做一元二次方程.通常可写成如下的一般形式:________________()其中二次项系数是、一次项系数是常数项。
例如:一元二次方程7x-3=2x2化成一般形式是___________________其中二次项系数是、一次项系数是常数项是。
2.解一元二次方程的一般解法有(1)_________________(2)(3)(4)求根公式法,求根公式是 ___________________3.一元二次方程ax2+bx+c=0(a≠0)的根的判别式是,当时,它有两个不相等的实数根;当时,它有两个相等的实数根;当时,它没有实数根。
例如:不解方程,判断下列方程根的情况:(1)x(5x+21)=20(2)x2+9=6x(3)x2—3x = —54.设一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x1,x2 则x1 +x2=;x1 ·x2= ____________例如:方程2x2+3x —2=0的两个根分别为x1,x2 则x1+x2=;x1 ·x2= _________典例精析例1:已知关于x的一元二次方程(m-2)x2+3x+m2-4=0有一个解是0,求m的值.例2:解下列方程:(1)2 x2+x-6=0;(2)x2+4x=2;(3)5x2-4x-12=0;(4)4x2+4x+10=1-8x.5)(x+1)(x-1)=22x(6)(2x+1)2=2(2x+1).温馨提示:解题时应抓住各方程的特点,选择较合适的方法。
人教版九年级数学上册第二十一章《一元二次方程全章复习》学习任务单及作业设计【学习目标】对本章内容进行梳理总结并建立知识体系,综合应用本章知识解决问题. 【课前学习任务】复习《一元二次方程》一章相关知识点.【课上学习任务】学习任务一:例 1:已知关于 x 的方程是一元二次方程,则m 的值为 .学习任务二:例 2:关于 x 的一元二次方程.(1)若方程有两个不相等的实数根,求 m 的取值范围;(2)若方程的一个实数根为-1,求 m 的值及方程的另一个实数根.学习任务三:例 3:关于 x 的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一个根小于 1,求 k 的取值范围.学习任务四:例 4:随着经济建设的发展,某省正加速布局以 5G 等为代表的战略性新兴产业. 据统计,2019年全省5G基站的数量约3.6万座. 若计划到2020年底,全省5G基站的数量是2019年的5/3倍;到2022 底,全省5G基站的数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底至2022年底,全省5G基站数量的年平均增长率.【作业设计】请同学们在作业本上完成下面三道课后作业:1.若关于x的一元二次方程 (m-1)x2+x+m2-1=0 有一根为0,则m= .2. 已知关于x的一元二次方程 x2-6x+2k-1=0 有两个相等的实数根,求k的值及方程的根.3. 用一条长40cm 的绳子怎样围成一个面积为75cm2的矩形?能围成一个面积为101cm2的矩形吗?如能,说明围法;如不能,说明理由.【参考答案】1. m=-1;2. k=5;x1=x2=3;3. 能围成一个面积为75cm2的矩形,长15cm,宽5cm.不能围成一个面积为101cm2的矩形,因为方程 x2-20x+101=0 无实根.。
第二十二章 一元二次方程22.1一元二次方程 第1课时 一元二次方程的概念学习目标:1、 正确理解一元二次方程的概念,掌握一元二次方程的一般形式,能将一元二次方程化为一般形式,正确识别二次项系数、一次项系数及常数项。
2、 经历抽象出一元二次方程的过程,体会方程是刻画现实世界中数量关系的一个有效工具。
3、 培养分析问题和解决问题的能力,提高应用意识。
重点:一元二次方程的概念和一般形式难点:正确理解和掌握一般形式中的a ≠0 ,从实际问题中抽象出一元二次方程. 课前预习1:1、你还记得什么叫方程?什么是一元一次方程?它的一般形式是怎样的?2、我们知道了利用一元一次方程可以解决生活中的一些实际问题,你还记得利用一元一次方程解决实际问题的步骤吗?3、一元二次方程的概念:方程的两边都是整式,只含有 未知数(一元),并且未知数的 是2(二次)的方程,叫做一元二次方程。
4、一元二次方程必须同时满足的三个条件: (1) (2) (3) 5、一元二次方程的一般形式:02=++c bx ax,其中 是二次项, 是二次项系数; 是一次项, 是一次项系数; 是常数项。
6、下列方程中是一元二次方程的有:_________(填序号)①(x-1)(2x+1)=3 ②22=+x y ③322=-x ④21=+aa7、一元二次方程5232+=x x 的一般式为_________________,其中二次项系数为_____,一次项系数为________,常数项为________。
8、若关于X 的方程0232=+-x ax是一元二次方程,则a 的取值范围___________。
此内容为课前预习导学提供学生课前展示,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。
课前预习2:一、复习导入:我们已经学习过的方程有一元一次方程、二元一次方程(组)、分式方程,请你分别举一个例子。
解一元二次方程复习一、知识回顾1.一元二次方程的概念:形如:()002≠=++a c bx ax2.一元二次方程的解法:(1)直接开平方法:(2)配方法:(3)因式分解法:(4)公式法:求根公式:()042422≥--±-=ac b aac b b x1、按要求解下列方程:①9)12(2=-x (直接开平方法) ②0432=-+x x (用配方法)③0822=--x x (用因式分解法) (4) 3x 2+5(2x+1)=0(用公式法)3.一元二次方程的根的判别式:(1)当 时,方程有两个不相等.....的实数根; (2)当 时,方程有两个相等....的实数根; (3)当 时,方程没有实数根.....。
如果1x ,2x 是一元二次方程20ax bx c ++=的两根,那么有1212,b c x x x x a a+=-=. 这是一元二次方程根与系数的关系二、基础训练一元二次方程的概念1.下列关于x 的方程: 其中是一元二次方程的有( )A.4个B.3个C.2个D.1个2、关于x 的方程(m+3)x |m|-1-2x+4=0是一元二次方程,则m=解下列方程(1)(2x +3)2-25=0. (2) 02722=--x x .(3)()()2322+=+x x 1)4(,02)3(,53)2(,032)1(223222=+=+-=+=--y x x x x x x x(4)0)52()13(22=+--x x (5)2232)2(y y y =-+根的判别式(1)关于x 的一元二次方程x 2-4x+2m=0无实数根,求m 的取值范围(2)关于x 的一元二次方程mx 2-4x+2=0有实数根,求m 的取值范围.(3)关于x 的方程mx 2-4x+2=0有实数根,求m 的取值范围.。
导学案:一元二次方程单元复习(3)第一环节:情境引入问题1:李老伯承包了一块长方形土地,长32米,宽20米,为了便于灌溉,他在土地上修筑了两条一样宽的水渠(如图1所示),为了使余下部分面积还剩540平方米,水渠的宽度应为多少?分析:第二环节:变式训练变式1 若设计了如图3所示的水渠,则水渠的宽度又为多少?(只列方程,不求解)变式2 若把水渠由直线改为斜线(如图4所示),那么水渠的宽度又为多少?(直接说出答案)变式3如图所示,利用22米长的墙为一边,用篱笆围成一个长方形养鸡场,中间用篱笆分割出两个小长方形,总共用去篱笆36米,为了使这个长方形ABCD的面积为96平方米,问AB和BC边各应是多少?变式4.如图,长方形铝皮的长40cm,宽30cm,在四角截去相同的四个小正方形后,折起来做成一个没有盖子的盒子.已知盒子的底面面积是原长方形面积的一半,求盒子的高。
问题2:李老伯在该土地上种植菜心,喜获丰收,经计算菜心成本2元/千克,若以3元/千克的价格出售,每天可售出200千克,为了促销,李老伯决定降价销售。
经调查发现,这种菜心每降价0.1元/千克,每天可多售出40千克。
另外,每天的房租等固定成本需要24元。
李老伯要想每天盈利200元,并想使菜心尽快销售出去,应将每千克菜心的售价降低多少钱?问题3:李老伯算了算2009年种植菜心共获利2160元,他记得自己2007年种植菜心时只获利1500元,若从2007年到2009年,每年获利的年增长率相同。
(1) 李老伯2008年的获利为多少?(2)若获利的年增长率继续保持不变,预计2010年李老伯将获利多少?第三环节:巩固提高练习1两个相邻偶数的积是168,若设较少的偶数为x, 列方程为数练习2 (1)市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元,若每次平均降价的百分率为x,列方程为(2)某地区开展“科技下乡”活动3年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次,设每年接受科技培训的人次的平均增长率都为x,根据题意列出的方程是练习3.2008年某地区的超级足球联赛,赛制采取主、客场的循环比赛,如果所有比赛场次共有240场,那么2008年共有x个队参加这个超级联赛?列方程为第四环节:课堂小结这节课复习了列一元二次方程解应用题的步骤:审、设、列、解、验、答,还复习了3类问题:面积问题、利润问题、增长率问题。
一元二次方程及其应用◆课前热身1.如果2是一元二次方程x 2+bx +2=0的一个根,那么常数b 的值为 .2.方程042=-x x 的解______________.3.方程240x -=的根是( )A .2x =B .2x =-C .1222x x ==-,D .4x = 4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 .【参考答案】1.-3 2.x 1=0, x 2=4 3. C 4.216(1)9x -=◆考点聚焦知识点:一元二次方程、解一元二次方程及其应用大纲要求:1.了解一元二次方程的概念,会把一元二次方程化成为一般形式。
2.会用配方法、公式法、分解因式法解一元二次方程、3.能利用一元二次方程的数学模型解决实际问题。
考查重点与常见题型:考查一元二次方程、有关习题常出现在填空题和解答题。
◆备考兵法(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.◆考点链接1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,240)2b x b ac a-±=-≥. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.◆典例精析例1(湖南长沙)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( )A .1B .1-C .2D .2-【答案】A【解析】本题考查了一元二次方程的根。
课题:一元二次方程复习(初三上数学070) 课型:期末章节复习复习前测:一、填空题(每空2分,共40分).1.下列方程①x+2y=1 ②2x(x-1)=2x2+3 ③3x+1x=5 ④x2-2=0,一元二次方程的序号为___________.2.关于x的方程(m-2)x|m|+x-1=0是一元二次方程,则m的值为______________.3.把一元二次方程3x(x-2)=4化为一般形式是_____________,二次项系数,一次项系数,常数项分别是______________.4.写出一个一根为2的一元二次方程______________.5.直接写出下列方程的解:(1)x2=4_______________;(2)x2-6x+9=0_____________;(3)x2=3x_____________.6.已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m的值为_____________. 7.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为________,所以方程的根为_________. 8.在正数范围内定义一种运算“*”,其规则为a*b=a2-b2,根据这个规则,方程(x-2)*5=0的解为__________.9.若x1,x2是一元二次方程x2-2x-1=0的两个根,则x1+x2=___________,x1·x2=__________.10.当x=_ _ 时,代数式3-x和-x2+3x的值互为相反数.11.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为__________.等腰三角形的底和腰是方程x2-6x+8=0的两根,则此三角形的周长是.12.若a为方程x2+x-1=0的解,则a2+a+2009=__________.13.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,求这两年平均每年绿地面积的增长率__________.13.设a、b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长__________.二、解答题.14.解下列方程(每小题5分,共30分).(1)4(x+3)2-16=0 (2)x2 —4x+1=0 (3) (2x-5)2-(x+4)2=0(4)x2-2x-8=0 (5)(x+1)(x+2)=2x+4 (6)3(x-2)2=x2-415.(10分)己知一元二次方程x2-3x+m-1=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(4分)(2)若方程有两个相等的实数根,求此时方程的根.(6分)班级__________姓名____________16.(12分)某居民小区要一块靠墙修建花ABCD,花靠墙,另三边总为m栅栏成(如图所示).若设AB为x(m).(1)含x代数式表示BC;(2分)(2)如果墙15m,满足条件花面积能达到200m2吗?若能,求此时x值;若不能,说明理由(5分);(3)如果墙25m,利配方法求x为何值时,ABCD面积最大,最大面积为多少?(5分)17.(8分)某旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元,阳光旅行社共支付团体票价4800元,则阳光旅行社共购买多少张团体票?.例1.如图6,A 、B 、C 、D 为矩形的四个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向点B 移动,点Q 以2 cm/s 的速度向点D 移动.当点P 运动到点B 停止时,点Q 也随之停止运动。
一元二次方程导学案
【复习目标】
1. 熟练掌握一元二次方程的一般形式。
2. 熟练并灵活运用配方法、公式法和因式分解法解一元二次方程。
3. 培养应用意识和分析问题、解决问题的能力,会列一元二次方程解决实际问题。
【重点、难点】
重点:熟练并运用合适的方法解一元二次方程。
难点:列一元二次方程解简单的实际问题。
【知识要点】
(一)、一元二次方程定义
思考:以下哪些是一元二次方程?
(1)x 2 +7y-36=0 (2)-3x-54=0 (3)3x 2+5x-2=0
(4)x 2 = (x+1)(x-1) (5)x 2 + (x+7) 2=112 (6)21109000x x
--= 概念:
一元二次方程:方程的两边是 ,只含有一个 且整
理后未知数的最高次数是 。
一般形式:一般地,关于x 的一元二次方程都可以化为a x 2 + b x + c = 0
的形式,我们把a x 2 + b x + c = 0 (a,b,c 为常数,a ≠0)称为一元二次方程的一
般形式。
其中a x 2 分别叫做方程的 ,b x 叫做方程的 ,c 叫
做 ,a ,b 分别叫 和 。
自我检测1
1、(苏州)若0322=-+-p p x px 是关于x 的一元二次方程,则( )
A 、p 为任意实数
B 、p=0
C 、p≠0
D 、p=0或1
2、(南京)7)2若方程(22=+--mx x m m 是关于x 的一元二次方程,
则m 的值为 。
(二)一元二次方程三种解法
1、配方法:当二次项的系数为 时,可先把 移到方程的右边,然后在方程的两边加上 ,从而可以由平方根的意义求解方程。
(1)x 2+12x+ =(x+6)2 (2)x 2-6x+ =(x-3)2
(3)x 2-4x+ =(x - )2 (4)x 2+8x+ =(x + )
2、公式法:对于一元二次方程
a x 2 +
b x +
c = 0,当b 2-4ac ≥0时,
方程的求根公式 。
用求根公式解一元二次方程的方法叫做公式法。
例x2+5x-6=0
3、因式分解法:当一元二次方程的一边是0,另一边可以分解成两个一次因式的乘积,令两个一次因式为0,这两个一元一次方程的根都是原方程的根。
1)提公因式法2)平方差公式法3)十字相乘法15x2+6x=0 (x+1)2-25=0 x2+6x-7=0
自我检测2
用适当的方法解方程:
(1)、(y+2)2=(3y-1)2(2)、2x2-2错误!未找到引用源。
+3=0(公式法)
(3)、3(x-2)2=x(x-2)
(三)一元二次方程的应用
1、增长率问题:
如果记a=原来的基数,A=变化后的目标数,n=变化的次数,x=平均变化率,则
a(1+x)n=A
例、某养殖场2010年的产值为500万元,2012年的产值为605万元。
求2010~2012年该养殖场产值的年平均增长率
2、营销、利润问题:
利润=件数*利润/件数
例、某市百货大楼服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元。
为了迎接十一国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。
经市场调查发现:如果每件童装降价一元,那么平均每天就可多售出2件。
要想使这种童装平均每天盈利1200元,那么每件童装应降价多少元。
【课堂练习】
1、关于x的方程(m2-1)x2+(m-1)x+2m-1=0是一元二次方程的条件是
2、方程0.5x(x-3)=5(x-3)的根
3、用适当的方法解方程
(1)2(x+2)2—8=0 (2)(x+4)2=5(x+4)
4、某企业五月份的利润是25万元,预计七月份的利润将达到36万元,设平均月增长率为x,根据题意,所列方程是。
【知识梳理】。