2017_2018学年高中数学第一章统计疑难规律方法学案北师大版必修3(含答案)
- 格式:doc
- 大小:265.00 KB
- 文档页数:10
2017-2018学年高中数学第1章统计3 统计图表教学案北师大版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第1章统计3 统计图表教学案北师大版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第1章统计3 统计图表教学案北师大版必修3的全部内容。
3 统计图表[核心必知]1.统计图表统计图表就是表达和分析数据的重要工具,它不仅可以帮助我们从数据中获取有用的信息,还可以帮助我们直观、准确地理解相应的结果.统计图表有:条形统计图、扇形统计图、折线统计图、茎叶图.2.茎叶图用茎叶图表示数据的优、缺点:(1)优点:一是茎叶图上没有信息的损失,所有的原始数据都可以从茎叶图中得到;二是茎叶图可以随时记录,方便表示与比较.(2)缺点:当数据量很大或有多组数据时,茎叶图就不那么直观、清晰了.[问题思考]1.茎叶图的茎和叶各表示什么?提示:一般地说,数据是两位数时,十位上数字为“茎”,个位数字为“叶”,如果是小数时,通常把整数部分作为“茎”,小数部分作为“叶”.2.茎叶图的运用范围是什么?提示:茎叶图只适用于样本数据较少的情况.讲一讲1。
据2016年4月份的《生活报》报道,某省有关部门要求各中小学要把“每天锻炼一小时"写入课程表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?[尝试解答] (1)由图1知:4+8+10+18+10=50(名).即该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人,错误!×100%=36%.即最喜欢篮球活动的人数占被调查人数的36%.(3)1-(30%+26%+24%)=20%,200÷20%=1 000(人),错误!×1 000=160(人).即估计全校学生中最喜欢跳绳活动的人数约为160人.1.条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来.其特点是便于看出和比较各种数量的多少,即条形统计图能清楚地表示出每个项目的具体数目.2.扇形统计图是用整个圆面积表示总数(100%),用圆内的扇形面积表示各部分所占总数的百分数.总之,用统计图来表示数量关系更生动形象、具体,使人一目了然.练一练1。
本章复习整体设计教学分析本节是对第一章知识和方法的归纳和总结,从总体上把握本章,使学生的基本知识系统化和网络化,基本方法条理化,本章内容是相互独立的,随机抽样是基础,在此基础上学习了用样本估计总体和变量间的相关关系,要注意它们的联系.本章介绍了从总体中抽取样本的常用方法,并通过实例,研究了如何利用样本对总体的分布规律、整体水平、稳定程度及相关关系等特性进行估计和预测.当总体容量大或检测具有一定的破坏性时,可以从总体中抽取适当的样本,通过对样本的分析、研究,得到对总体的估计,这就是统计分析的基本过程.而用样本估计总体就是统计思想的本质.要准确估计总体,必须合理地选择样本,我们学习的是最常用的三种抽样方法.获取样本数据后,将其用频率分布表、频率分布直方图、频率折线图或茎叶图表示后,蕴涵于数据之中的规律得到直观的揭示.运用样本的平均数可以对总体水平作出估计,用样本的极差、方差(标准差)可以估计总体的稳定程度.对两个变量的样本数据进行相关性分析,可发现存在于现实世界中的回归现象.用最小二乘法研究回归现象,得到的线性回归方程可用于预测和估计,为决策提供依据.总之,统计的基本思想是从样本数据中发现统计规律,实现对总体的估计.三维目标1.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;2.能通过对数据的分析,为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异.重点难点教学重点:会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.教学难点:能通过对数据的分析,为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异.课时安排1课时教学过程导入新课为了系统地掌握本章知识,我们复习本章内容,教师直接点出课题.推进新课新知探究提出问题1.随机抽样的内容包括几部分?2.用样本估计总体包括几部分?3.变量间的相关关系包括几部分?活动:学生思考或交流,回顾所学,教师指导学生复习的思路和方法,及时总结提炼.讨论结果:1.随机抽样的内容包括三部分:(1)简单随机抽样抽签法:一般地,用抽签法从个体个数为N的总体中抽取一个容量为k的样本的步骤为:将总体中的所有个体编号(号码可以从1到N);将1到N这N个号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条等制作).将号签放在同一箱中,并搅拌均匀;从箱中每次抽出1个号签,并记录其编号,连续抽取k次;从总体中将与抽到的签的编号相一致的个体取出.抽样具有公平性原则:等概率、随机性;抽签法适用于总体中个数N不大的情形.随机数表法:将总体中的N个个体编号时可以从0开始,例如当N=100时,编号可以是00,01,02, …,99.这样,总体中的所有个体均可用两位数字号码表示,便于使用随机数表.当随机地选定开始的数后,读数的方向可以向右,也可以向左、向上、向下等.由此可见,用随机数表法抽取样本的步骤是:对总体中的个体进行编号(每个号码位数一致);在随机数表中任选一个数作为开始;从选定的数开始按一定的方向读下去,得到数码.若不在编号中,则跳过;若在编号中,则取出;如果得到的号码前面已经取出,也跳过;如此继续下去,直到取满为止;根据选定的号码抽取样本.(2)系统抽样系统抽样的步骤为:采用随机的方式将总体中的个体编号;将整个的编号按一定的间隔(设为k )分段,当N n (N 为总体中的个体数,n 为样本容量)是整数时,k = N n ;当N n 不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时k = N ′n,并将剩下的总体重新编号;在第一段中用简单随机抽样确定起始的个体编号1 ;将编号为1,1+k ,1+2k ,…,1+(n -1)k 的个体抽出.(3)分层抽样例:某电视台在互联网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为应怎样进行抽样?分析:因为总体中人数较多,所以不宜采用简单随机抽样.又由于持不同态度的人数差异较大,故也不宜用系统抽样方法,而以分层抽样为妥.解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000=4872 400,应取60×4872 400≈12人; “喜爱”占4 56712 000,应取60×4 56712 000≈23人; “一般”占3 92612 000,应取60×3 92512 000≈20人; “不喜爱”占1 07212 000,应取60×1 07212 000≈5人. 因此,采用分层抽样的方法在“很喜爱”“喜爱”“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,其中所分成的各个部分称为“层”.分层抽样的步骤是:将总体按一定标准分层;计算各层的个体数与总体的个体数的比;按各层个体数占总体的个体数的比确定各层应抽取的样本容量;在每一层进行抽样(可用简单随机抽样或系统抽样).适用于总体中个体有明显的层次差异,层次分明的特点;总体中个体数 N 较大时,系统抽样、分层抽样二者选其一.2.用样本估计总体包括:(1)用样本的频率分布估计总体分布.频率分布是指一个样本数据在各个小范围内所占比例的大小;一般用频率分布直方图反映样本的频率分布.其一般步骤为:计算一组数据中最大值与最小值的差,即求极差;决定组距与组数;将数据分组;列频率分布表;画频率分布直方图.频率分布直方图的特征:通过频率分布直方图可以清楚地看出数据分布的总体趋势;通过频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.茎叶图.画茎叶图的步骤如下:①将每个数据分为茎(高位)和叶(低位)两部分;②将最小茎和最大茎之间的数按大小次序排成一列,写在左(右)侧;③将各个数据的叶按大小次序写在其茎右(左)侧.用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两组以上的数据虽然能够记录,但是没有表示两组记录那么直观、清晰.(2)用样本的数字特征估计总体的数字特征.①众数、中位数、平均数以及利用频率分布直方图来估计众数、中位数、平均数. 利用频率分布直方图估计众数、中位数、平均数:估计众数:频率分布直方图面积最大的方条的横轴中点数字(最高矩形的中点). 估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和. 总之,众数、中位数、平均数都是对数据中心位置的描述,可以作为总体相应特征的估计.样本众数易计算,但只能表达样本数据中的很少一部分信息,不一定唯一;中位数仅利用了数据中排在中间数据的信息,与数据的排列位置有关;平均数受样本中的每一个数据的影响,绝对值越大的数据,对平均数的影响也越大.三者相比,平均数代表了数据更多的信息,描述了数据的平均水平,是一组数据的“重心”.②标准差考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示. 所谓“平均距离”,其含义可作如下理解: 假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数,x i 到x 的距离是|x i -x |(i =1,2,…,n ).于是,样本数据x 1,x 2,…,x n 到x 的“平均距离”是s =|x 1-x |+|x 2-x |+…+|x n -x |n. 由于上式含有绝对值,运算不太方便,因此,通常改用如下公式来计算标准差s =1n[x 1-x 2+x 2-x 2+…+x n -x 2]. ③方差从数学的角度考虑,人们有时用标准差的平方s 2(即方差)来代替标准差,作为测量样本数据分散程度的工具:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.3.变量间的相关关系包括:(1)变量之间的相关关系相关关系的概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫作相关关系.两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系.(2)两个变量的线性相关①散点图的概念:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫作散点图.②正相关与负相关的概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)③线性相关关系:像能用直线方程y =a +bx 近似表示的相关关系叫作线性相关关系.④线性回归方程:1122n n =a +bx 为拟合这n 对数据的线性回归方程,该方程所表示的直线称为回归直线.上述式子展开后,是一个关于a ,b 的二次多项式,应用配方法,可求出使Q 为最小值时的a ,b 的值,即⎩⎪⎨⎪⎧ b =x 1y 1+x 2y 2+…+x n y n -n x y x 21+x 22+…+x 2n -n x 2,a =y -b x .其中,x =x 1+x 2+…+x n n ,y =y 1+y 2+…+y n n. 应用示例思路11 为了了解高一(1)班50名学生的视力状况,从中抽取10名学生进行检查.如何抽取呢?解法一:通常使用抽签法,方法是:将50名学生从1到50进行编号,再制作1到50的50个号签,把50个号签集中在一起并充分搅匀,最后随机地从中抽10个号签.对编号与抽中的号签的号码相一致的学生进行视力检查.解法二:下面我们用随机数表法求解上面的问题.对50个同学进行编号,编号分别为01,02,03,…,50;在随机数表中随机地确定一个数作为开始,如从下表第3行第29列的数7开始.16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28 从数7开始向右读下去,每次读两位,凡不在01到50中的数跳过去不读,遇到已经读过的数也跳过去,便可依次得到12,07,44,39,38,33,21,34,29,42,这10个号码,就是所要抽取的10个样本个体的号码.变式训练某学校有行政人员、教学人员和教辅人员共200人,其中教学人员与教辅人员的比为10∶1,行政人员有24人.①现采取分层抽样抽取容量为50的样本,那么行政人员中应抽取的人数为( ).A .3B .4C .6D .8②教学人员和教辅人员中应抽取的人数分别为________和________.答案:①C ②40 4例2 下列问题中,采用怎样的抽样方法较为合理?(1)从10台冰箱中抽取3台进行质量检查.(2)某电影院有32排座位,每排有40个座位,座位号为1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,需留下32名听众进行座谈.(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.解:(1)总体容量比较小,用抽签法或随机数表法都很方便.(2)总体容量比较大,用抽签法或随机数表法比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样法.(3)由于学校各类人员对这一问题的看法可能差异较大,故应采用分层抽样法.变式训练要从已编号(1~60)的60枚最新研制的某种导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( ).A.5,10,15,20,25,30 B.3,13,23,33,43,53C.1,2,3,4,5,6 D.2,8,14,20,26,32答案:B例3 某单位在岗职工共624人,为了调查职工用于上班途中的时间,决定抽取10%的职工进行调查.如何采用系统抽样方法完成这一抽样?解:第一步:将624名职工用随机方式进行编号;第二步:从总体中剔除4人(剔除方法可用随机数表法),将剩下的620名职工重新编号(分别为000,001,002,…,619),并分成62段;第三步:在第一段000,001,002,…,009这十个编号中用简单随机抽样确定起始号码i0;第四步:将编号为i0,i0+10,i0+20, …,i0+610的个体抽出,组成样本.变式训练现有以下两项调查:①某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其装订质量状况;②某市有大型、中型与小型的商店共1 500家,三者数量之比为1∶5∶9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①②这两项调查宜采用的抽样方法依次是( ).A.简单随机抽样法,分层抽样法B.分层抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法答案:D思路2例1 为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如图1),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.图1(1)求第四小组的频率和参加这次测试的学生人数.(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?(3)若参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?解:(1)由于各小组频率的和是1,因此第四小组的频率为1-0.1-0.3-0.4=0.2;由于第一小组的频数是5,频率为0.1,因此总人数为5÷0.1=50.(2)由于第三小组的频率最大,因此学生跳绳次数的中位数落在第三小组内.(3)由第三小组的频率和第四小组的频率和为0.6,可知该校此年级跳绳成绩的优秀率是0.6.例2 下面是关于世界20个地区受教育的人口的百分比与人均收入的散点图.图2(1)图中两个变量有什么样的相关关系?(2)若利用散点图中的数据建立的回归方程为y =3.193x +88.193,且受教育的人口的百分比相差10%,其人均收入相差多少?解:(1)散点图中的样本点基本集中在一个条型区域中,因此两个变量呈线性相关关系.(2)回归方程的自变量系数为3.193,因此当受教育的人口的百分比相差10%时,其人均收入相差3.193×10=31.93.变式训练1.数据70,71,72,73的标准差是( ).A .2B .54C . 2D .52答案:D2.已知k 1,k 2,…,k 8的方差为3,则2(k 1-3),2(k 2-3),…,2(k 8-3)的方差为________. 答案:123.已知回归方程y =0.5x -0.81,则x =25时,y 的估计值为________.答案:11.69知能训练答案:乙品种 甲品种2.在一次文艺比赛中,12名专业人员和12名观众代表各组成一个评判小组,给参赛选手打分,下面是两个评判组对同一名选手的打分:小组A :42,45,48,46,52,47,49,55,42,51,47,45;小组B :55,36,70,66,75,49,46,68,42,62,58,47.通过计算说明小组A ,B 哪个更像是由专业人士组成的评判小组?答案:小组A .解:作出的茎叶图如图3.图3从这个茎叶图中可以看出乙班的数学成绩更好一些.拓展提升1.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从下面随机数表第2行第18列的数开始向右读,请你依次写出最先检测的5袋牛奶的编号.84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 62 58 7973 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 06 13 42 99 66 02 79 54…解:从第2行第18列的数7开始向右读,每次读三位,凡是小于或等于799的数就为1个,即719,050,717,512,358是最先检测的5袋牛奶的编号.2.想象一下一个人从出生到死亡,在每个生日都测量其身高,并作出这些数据的散点图.这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分(2)求出这些数据的回归方程.(3)对于这个例子,你如何解释回归系数的含义?(4)用下一年的身高减去当年的身高,计算他每年身高的增长数,并计算他从3~16岁身高的年均增长数.(5)解释一下回归系数与每年平均增长的身高之间的联系.解:(1)作出的数据的散点图如图4.图4(2)用y表示身高,x表示年龄,则数据的回归方程为y=6.317x+71.984.(3)在该例中,回归系数6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略.3~16岁的身高年均增长约为6.323 cm.(5)回归系数与每年平均增长的身高之间近似相等.课堂小结本节介绍了从总体中抽取样本的常用方法,并通过实例,研究了如何利用样本对总体的分布规律、整体水平、稳定程度及相关关系等特性进行估计和预测.作业复习题一任选3题.设计感想本节复习了最常用的三种抽样方法.获取样本数据后,将其用频率分布表、频率分布直方图、频率折线图或茎叶图表示后,蕴涵于数据之中的规律得到直观的揭示.运用样本的平均数可以对总体水平作出估计,用样本的极差、方差(标准差)可以估计总体的稳定程度.对两个变量的样本数据进行相关性分析,可发现存在于现实世界中的回归现象.用最小二乘法研究回归现象,得到的线性回归方程可用于预测和估计,为决策提供依据.本节对第一章知识和方法进行了归纳和总结,使学生的基本知识系统化和网络化,基本方法条理化,有利于学生更好地用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.备课资料备选习题1.为了了解所加工的一批零件的长度,抽测了200个零件的长度,在这个问题中,200个零件的长度是 ( ).A.总体B.个体C.总体的一个样本D.样本容量答案:C2.用简单随机抽样方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a“第一次被抽到的概率”“第二次被抽到的概率”“在整个抽样过程中被抽到的概率”分别是( ).A.16,16,16B.16,15,16C.16,16,13D.16,13,13答案:C3.在一个个体数目为1 003的总体中,要利用系统抽样抽取一个容量为50的样本,那么总体中每个个体被抽到的概率是( ).A.120B.150C.25D.501 003答案:D4.为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为( ).A.40 B.30 C.20 D.12答案:B5.一批热水器共有98台,其中甲厂生产的有56台,乙厂生产的有42台,用分层抽样法从中抽出一个容量为14的样本,那么甲、乙两厂各抽得的热水器的台数是( ).A.甲厂9台,乙厂5台B.甲厂8台,乙厂6台C.甲厂10台,乙厂4台D.甲厂7台,乙厂7台答案:B6.下列叙述中正确的是( ).A.通过频率分布表可以看出样本数据对于平均数的波动大小B.频数是指落在各个小组内的数据C.每小组的频数与样本容量之比是这个小组的频率D.组数是样本平均数除以组距答案:C7.某工厂生产产品,用传送带将产品送至下一个工序,质检人员每隔10分钟在传送带某一位置取一件检验,则这种抽样的方法为( ).A.简单随机抽样B.系统抽样C.分层抽样D.非上述情况答案:B8.频率分布直方图中,小长方形的面积等于( ).A.组距B.频率C.组数D.频数答案:B9.一组数据的方差为3,将这组数据中的每一个数据都扩大到原来的3倍,则所得到的这组新数据的方差是( ).A.1 B.27 C.9 D.3答案:B10.有两个样本,甲:5,4,3,2,1;乙:4,0,2,1,-2.那么样本甲和样本乙的波动大小情况是( ).A.甲、乙波动大小一样B.甲的波动比乙的波动大C.乙的波动比甲的波动大D.甲、乙的波动大小无法比较答案:C11.采用简单随机抽样从含10个个体的总体中抽取一个容量为4的样本,则个体a前两次未被抽到,第三次被抽到的概率为________.答案:11012.观察新生婴儿的体重,其频率分布直方图如图5:图5则新生婴儿体重在(2 700,3 000)的频率为________.答案:0.313.已知样本99,100,101,x ,y 的平均数是100,方差是2,则xy =________. 答案:9 99614.某中学高一年级有x 个学生,高二年级有900个学生,高三年级有y 个学生,现从这些学生中采用分层抽样抽取一个容量为370人的样本,若高一年级抽取120人,高三年级抽取100人,则全校高中部共有多少学生?解:由题意得x 120=y 100=900370-120-100,解得 x =720,y =600. 故该学校高中部共有学生2 220人.15.下图是某单位职工年龄(取正整数)的频数分布图,根据图形提供的信息,回答下列问题(直接写出答案).图6注:每组可含最低值,不含最高值.(1)该单位职工共有多少人?(2)不小于38岁但小于44岁的职工人数占职工总人数的百分比是多少?(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有几人?解:(1)该单位有职工50人.(2)38~44岁之间的职工人数占职工总人数的60%.(3)年龄在42岁以上的职工有15人.解:x 甲=15(60+80+70+90+70)=74,x 乙=15(80+60+70+80+75)=73, s 2甲=15(142+62+42+162+42)=104,s 2乙=15(72+132+32+72+22)=56. ∵x 甲>x 乙,s 2甲>s 2乙,∴ 甲的平均成绩较好,乙的各门功课发展较平衡.17.下面是一个病人从4月7日起的体温记录折线图,观察图形回答下列问题:图7(1)护士每隔几小时给病人量一次体温?(2)这个病人的体温最高是多少摄氏度?最低是多少摄氏度?(3)这个病人在4月8日12时的体温是多少摄氏度?(4)这个病人的体温在哪段时间里下降得最快?在哪段时间里比较稳定?(5)图7中的横虚线表示什么?(6)从体温看,这个病人的病情是在恶化还是在好转?解:(1)6小时;(2)最高温度是39.5 ℃,最低温度是36.8 ℃;(3)4月8日12时的体温是37.5 ℃;(4)在4月7日6点到12点的体温下降得最快,4月9日12点到18点体温比较稳定;(5)虚线表示标准体温;(6)好转.18.从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图8所示.观察图形,回答下列问题:图8(1)79.5~89.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格).解:(1)频率为0.025×10=0.25,频数为60×0.25=15;(2)0.015×10+0.025×10+0.03×10+0.005×10=0.75.(设计者:方诚心)。
2.1 简单随机抽样学习目标 1.体会随机抽样的必要性和重要性.2.明白得随机抽样的目的和大体要求.3.把握简单随机抽样中的抽签法、随机数法的一样步骤.知识点一简单随机抽样试探1 从含有甲、乙的9件产品中随机抽取一件,整体内的各个个体被抽到的机遇相同吗?什么缘故?甲被抽到的机遇是多少?试探2 被抽取的样本整体的个数有限定条件吗?试探3 简单随机抽样是不放回抽样,关于放回的抽样能够是简单随机抽样吗?梳理 1.一样地,从一个整体中,________地抽取一些个体,然后对抽取的对象进行调查,在抽取进程中,要保证每一个对象被抽到的____________.如此的抽样方式叫作简单随机抽样.2.简单随机抽样的四个特点(1)它要求被抽取样本的整体的个数有限,如此便于通过随机抽取的样本对整体进行分析.(2)它是从整体中逐个抽取,如此便于在抽样实践中进行操作.(3)它是一种不放回抽样,由于抽样实践中多采纳不放回抽样,使其具有较普遍的有效性,而且由于所抽取的样本中没有被重复抽取的个体,便于进行有关的分析和计算.(4)它是一种等机遇抽样,不仅每次从整体中抽取一个个体时,各个个体被抽到的机遇相等,而且在整个抽样的进程中,各个个体被抽取的机遇也相等,从而保证了这种抽样方式的公平性.知识点二抽签法和随机数法试探1 采纳抽签法抽取样本时,什么缘故将编号写在形状、大小相同的号签上,而且将号签放在同一个箱子里搅拌均匀?试探2 在什么条件下利用随机数法?梳理 1.一样地,抽签法是简单随机抽样的一种,其操作步骤是(1)给调查对象群体中的每一个对象________;(2)预备“抽签”的工具,实施“________”;(3)对样本中每一个个体进行______________.2.一样地,随机数法也是简单随机抽样的一种,把整体中的N个个体依次编上0,1,…,N-1的号码,然后利用工具(转盘或摸球、随机数表、科学计算器或运算机)产生0,1,…,N-1中的随机数,产生的随机数是几,就选几号个体,直至抽到预先规定的样本数.类型一简单随机抽样的判定例1 下面的抽样是简单随机抽样吗?什么缘故?(1)小乐从玩具箱中的10件玩具中随意拿出一件玩,玩后放回,再拿出一件,持续拿出四件;(2)某学校从300名学生中一次性抽取20名学生调查睡眠情形.反思与感悟当抽样具有:(1)整体中个体数是有限的,(2)逐个抽取,(3)不放回抽取,(4)每一个个体被抽到的机遇等可能时,为简单随机抽样,不然不是简单随机抽样.跟踪训练1 下面的抽样方式是简单随机抽样的是( )A.盒子中有80个零件,从当选出5个零件进行质量查验,在抽样操作时,从中任意拿出一个零件进行质量查验后再把它放回盒子里B.某车间包装一种产品,在自动包装传送带上,每隔5分钟抽一包产品,称其重量是不是合格C.某校别离从行政人员、教师、后勤人员中抽取2人,14人,4人了解对他们学校机构改革的意见D.从8台电脑中不放回地随机抽取2台进行质量查验(假设8台电脑已编好号,对编号随机抽取)类型二简单随机抽样等可能性应用例2 一个布袋中有10个一样质地的小球,从中不放回地依次抽取3个小球,那么某一特定小球被抽到的可能性是________,第三次抽取时,剩余每一个小球被抽到的可能性是________.反思与感悟简单随机抽样,每次抽取时,整体中各个个体被抽到的概率相同,在整个抽样进程中各个个体被抽到的机遇也都相等.跟踪训练2 从整体容量为N的一批零件中,抽取一个容量为30的样本,假设每一个零件被抽到的可能性为0.25,那么N的值为( )A.120 B.200 C.150 D.100类型三抽签法与随机数法命题角度1 抽签法例3 某卫生单位为了支援抗震救灾,要在18名志愿者当选取6人组成医疗小组去参加救治工作,请用抽签法设计抽样方案.反思与感悟一个抽样实验可否用抽签法,关键看两点:一是制签是不是方便;二是个体之间不同不明显.一样地,当样本容量和整体容量较小时,可用抽签法.跟踪训练3 从20架钢琴中抽取5架进行质量检查,请用抽签法确信这5架钢琴.命题角度2 随机数法例4 假设咱们要考察某公司生产的500克袋装牛奶的质量是不是达标,现从800袋牛奶中抽取60袋进行查验,利用随机数表抽取样本时,应如何操作?反思与感悟抽签法和随机数法对个体的编号是不同的,抽签法能够利用个体已有的编号,如学生的学籍号、产品的记数编号等,也能够从头编号,例如整体个数为100,编号能够为1,2,3,…,100.随机数法对个体的编号要看整体的个数,整体数为100,一样为00,01,…,99.整体数大于100小于1 000,从000开始编起,然后是001,002,….跟踪训练4 某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采纳简单随机抽样的方式抽取样本?1.在简单随机抽样中,某一个个体被抽中的可能性( )A.与第几回抽样有关,第1次的可能性要大些B.与第几回抽样无关,每次的可能性都相等C.与第几回抽样有关,最后1次的可能性要大些D.以上都不正确2.下面抽样方式是简单随机抽样的是( )A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个电话中逐个不放回地随机抽取2个进行质量查验(假设10个电话已编好号,对编号随机抽取) 3.一个整体中含有100个个体,以简单随机抽样方式从该整体中抽取一个容量为5的样本,那么指定的某个个体被抽到的可能性为________.4.某地有2 000人参加自学考试,为了了解他们的成绩,从中抽取一个样本,假设每一个考生被抽到的概率都是0.04,那么那个样本的容量是________.5.齐鲁风度“七乐彩”的中奖号码是从别离标有1,2,…,30的三十个小球中逐个不放回地摇出7个小球来按规那么确信中奖情形,这种从30个号码当选7个号码的抽样方式是________.1.简单随机抽样是一种简单、大体、不放回的抽样方式,经常使用的简单随机抽样方式有抽签法和随机数法.2.抽签法的优势是简单易行,缺点是当整体的容量大时,费时、费力,而且标号的签不易搅拌均匀,如此会致使抽样不公平;随机数法的优势也是简单易行,缺点是当整体容量大时,编号不方便.两种方式只适合整体容量较少的抽样类型.3.简单随机抽样每一个个体入样的可能性都相等,均为n N,但要将每一个个体入样的可能性与第n 次抽取时每一个个体入样的可能性区分开,幸免在解题中显现错误.答案精析问题导学知识点一试探1 整体内的各个个体被抽到的机遇是相同的.因为是从9件产品中随机抽取一件,这9件产品每件产品被抽到的机遇都是1/9,甲也是1/9.试探2 被抽取的样本整体的个数必需有限,便于分析.试探3 不能够.简单随机抽样是从整体中逐个抽取的是一种不放回抽样,也确实是每次从整体中掏出元素后不放回整体,假设放回,那么必然不是简单随机抽样.梳理1.随机 概率相同知识点二试探1 为了使每一个号签被抽取的可能性相等,保证抽样的公平性.试探2 在整体容量不大的情形下利用.梳理1.(1)编号 (2)抽签 (3)测量或调查题型探讨例1 解 (1)不是简单随机抽样,因为玩具被放回了,不符合“不放回抽样”这一特点.(2)不是简单随机抽样,因为一次性抽取不符合“逐个抽取”这一特点.跟踪训练1 D [依据简单随机抽样的特点知,只有D 符合.]例2 310 18解析 因为简单随机抽样进程中每一个个体被抽到的可能性均为n N ,因此第一个空填310.因为此题中的抽样是不放回抽样,因此第一次抽取时,每一个小球被抽到的可能性为110,第二次抽取时,剩余9个小球,每一个小球被抽到的可能性为19,第三次抽取时,剩余8个小球,每一个小球被抽到的可能性为18. 跟踪训练2 A [因为从含有N 个个体的整体中抽取一个容量为30的样本时,在每次抽取一个个体的进程中任意一个个体被抽到的可能性为1N ,在整个抽样进程中每一个个体被抽到的可能性为30N ,因此30N=0.25,从而有N =120.应选A.]例3 解 方案如下:第一步,将18名志愿者编号,号码为01,02,03, (18)第二步,将号码别离写在相同的纸条上,揉成团,制成号签.第三步,将取得的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次掏出6个号签,并记录上面的编号.第五步,与所得号码对应的志愿者确实是医疗小组成员.跟踪训练3 解第一步,将20架钢琴编号,号码是01,02, (20)第二步,将号码别离写在相同的纸条上,揉成团,制成号签.第三步,将取得的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号.第五步,与所得号码对应的5架钢琴确实是要进行质量检查的对象.例4 解第一步,将800袋牛奶编号为000,001, (799)第二步,在随机数表中任选一个数作为起始数(例如选出第8行第2列的数7).第三步,从选定的数7开始依次向右读(读数的方向也能够是向左、向上、向劣等),将编号范围内的数掏出,编号范围外的数去掉,直到取满60个号码为止,就取得一个容量为60的样本.跟踪训练4 解方式一(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,别离写上这100个数,将这些号签放在一路,搅拌均匀,接着持续不放回地抽取10个号签,然后测量这10个号签对应的轴的直径.方式二(随机数法)将100件轴编号为00,01,…,99,在随机数表当选定一个起始位置,如取第21行第1个数开始,向右选取10个为93,12,47,79,57,37,89,18,45,50,这10件即为所要抽取的样本.当堂训练1.B 2.D 3.1204.805.抽签法。
4.1 平均数、中位数、众数、极差、方差4.2 标准差[学习目标] 1.掌握各种基本数字特征的概念、意义以及它们各自的特点.2.要重视数据的计算,体会统计思想.知识点一 众数、中位数、平均数 1.众数、中位数、平均数定义(1)众数:一组数据中重复出现次数最多的数.(2)中位数:把一组数据按从小到大的顺序排列,处在中间位置(或中间两个数的平均数)的数称为这组数据的中位数.(3)平均数:如果n 个数x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )称为这n 个数的平均数.2.三种数字特征与频率分布直方图的关系1.标准差(1)平均距离与标准差标准差是样本数据到平均数的一种平均距离,一般用s 表示.假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.x i 到x 的距离是|x i -x |(i =1,2,…,n ),则用如下公式来计算标准差: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. (2)计算标准差的步骤 ①求样本数据的平均数x ;②求每个样本数据与样本平均数的差x i -x (i =1,2,…,n ); ③求(x i -x )2(i =1,2,…,n );④求s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2];⑤求s =s 2,即为标准差. 2.方差标准差的平方s 2叫作方差.s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中,x i (i =1,2,…,n )是样本数据,n 是样本容量,x 是样本平均数.题型一 众数、中位数、平均数的简单运用 例1 某公司的33名职工的月工资(以元为单位)如下表:(1)(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法. 解 (1)平均数是:x =1 500+4 000+3 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+591=2 091(元),中位数是1 500元,众数是1 500元. (2)新的平均数是x ′=1 500+28 500+18 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+1 788=3 288(元),新的中位数是:1 500元,新的众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.反思与感悟 1.众数、中位数及平均数都是描述一组数据集中趋势的量,当一组数据中个别数据较大时,可用中位数描述其集中趋势,当一组数据中有不少数据重复出现时,其众数往往更能反映问题.2.在求平均数时,可采用新数据法,即当所给数据在某一常数a 的左右摆动时,用简化公式:x =x ′+a .跟踪训练1 在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:解 在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表格里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是 1.70;这组数据的平均数是x =117(1.50×2+1.60×3+…+1.90×1)=28.7517≈1.69(m).答 17名运动员成绩的众数、中位数、平均数依次为1.75 m ,1.70 m,1.69 m. 题型二 平均数和方差的运用例2 甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,各从中抽取6件测量,数据为甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定. 解 (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100.s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1. (2)两台机床所加工零件的直径的平均值相同,又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定.反思与感悟 1.极差、方差与标准差的区别与联系: 数据的离散程度可以通过极差、方差或标准差来描述.(1)极差是数据的最大值与最小值的差,它反映了一组数据变化的最大幅度,它对一组数据中的极端值非常敏感.(2)方差则反映了一组数据围绕平均数波动的大小,为了得到以样本数据的单位表示的波动幅度通常用标准差,即样本方差的算术平方根,是样本数据到平均数的一种平均距离. 2.在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度,在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性越差;方差越小,数据越集中,质量越稳定.跟踪训练2 某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其质量,分别记录抽查数据如下(单位:kg): 甲:102 101 99 98 103 98 99 乙:110 115 90 85 75 115 110 (1)这种抽样方法是哪一种方法?(2)试计算甲、乙两个车间产品质量的平均数与方差,并说明哪个车间产品比较稳定. 解 (1)采用的抽样方法是:系统抽样.(2)x 甲=17(102+101+99+98+103+98+99)=100;x 乙=17(110+115+90+85+75+115+110)=100;x 2甲=17[(102-100)2+(101-100)2+(99-100)2+(98-100)2+(103-100)2+(98-100)2+(99-100)2]=17(4+1+1+4+9+4+1)≈3.43; s 2乙=17[(110-100)2+(115-100)2+(90-100)2+(85-100)2+(75-100)2+(115-100)2+(110-100)2]=17(100+225+100+225+625+225+100) ≈228.57.所以s 2甲<s 2乙,故甲车间产品较稳定.题型三 数据的数字特征的综合应用例3在一次科技知识竞赛中,两组学生的成绩如下表:次竞赛中的成绩谁优谁劣,并说明理由.解(1)甲组成绩的众数为90,乙组成绩的众数为70,从成绩的众数比较看,甲组成绩好些.(2)x甲=12+5+10+13+14+6(50×2+60×5+70×10+80×13+90×14+100×6)=150×4 000=80,x乙=14+4+16+2+12+12(50×4+60×4+70×16+80×2+90×12+100×12)=150×4 000=80.s2甲=12+5+10+13+14+6[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=172,s2乙=14+4+16+2+12+12[4×(50-80)2+4×(60-80)2+16×(70-80)2+2×(80-80)2+12×(90-80)2+12×(100-80)2]=256.∵s2甲<s2乙,∴甲组成绩较乙组成绩稳定,故甲组好些.(3)甲、乙两组成绩的中位数、平均数都是80分.其中,甲组成绩在80分以上(包括80分)的有33人,乙组成绩在80分以上(包括80分)的有26人.从这一角度看,甲组的成绩较好.(4)从成绩统计表看,甲组成绩大于等于90分的有20人,乙组成绩大于等于90分的有24人,所以乙组成绩集中在高分段的人数多.同时,乙组得满分的人数比甲组得满分的人数多6人.从这一角度看,乙组的成绩较好.反思与感悟要正确处理此类问题,首先要抓住问题中的关键词语,全方位地进行必要的计算、分析,而不能习惯性地仅从样本方差的大小去决定哪一组的成绩好,像这样的实际问题还得从实际的角度去分析,如本例的“满分人数”;其次要在恰当地评估后,组织好正确的语言作出结论.跟踪训练3甲、乙两人同时生产内径为25.40 mm的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm):甲25.4625.3225.4525.3925.3625.34 25.42 25.45 25.38 25.42 25.39 25.43 25.39 25.40 25.44 25.40 25.42 25.35 25.41 25.39 乙25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.49 25.36 25.34 25.33 25.43 25.43 25.32 25.47 25.31 25.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?(结果保留小数点后3位) 解 用计算器计算可得 x 甲≈25.405,x 乙≈25.406; s 甲≈0.037,s 乙≈0.068.从样本平均数看,甲生产的零件内径比乙的更接近内径标准(25.40mm),差异很小;从样本标准差看,由于s 甲<s 乙,因此甲生产的零件内径尺寸比乙的稳定程度高得多.于是,可以作出判断,甲生产的零件的质量比乙的高一些.分类讨论思想例4 某班有四个学习小组,各小组人数分别为10,10,x,8,已知这组数据的中位数与平均数相等,求这组数据的中位数.分析 由于x 未知,因此中位数不确定,需讨论.解 该组数据的平均数为14(10+10+x +8)=14(28+x ),中位数是这4个数按从小到大的顺序排列后处在最中间两个数的平均数.(1)当x ≤8时,原数据从小到大排序为x,8,10,10,中位数是9,由14(28+x )=9,得x =8,符合题意,此时中位数是9;(2)当8<x ≤10时,原数据从小到大排序为8,x,10,10,中位数是12(x +10),由14(28+x )=12(10+x ),得x =8,与8<x ≤10矛盾,舍去;(3)当x >10时,原数据从小到大排序为8,10,10,x ,中位数是10,由14(28+x )=10,得x =12,符合题意,此时中位数是10.综上所述,这组数据的中位数是9或10.解后反思 当题目中含有参数,且参数的不同取值影响求解结果时,需对参数的取值分类讨论.1.下列选项中,能反映一组数据的离散程度的是( ) A .平均数 B .中位数 C .方差 D .众数答案 C解析 由方差的定义,知方差反映了一组数据的离散程度.2.一组样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数为22,则x 等于( ) A .21 B .22 C .20 D .23 答案 A解析 根据题意知,中位数22=x +232,则x =21.3.一次选拔运动员的测试中,测得7名选手中的身高(单位:cm)分布的茎叶图如图所示.记录的平均身高为177 cm ,有一名候选人的身高记录不清楚,其末位数记为x ,则x 等于( )A .5B .6C .7D .8答案 D解析 由题意知,10+11+0+3+x +8+9=7×7,解得x =8.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________. 答案 0.1解析 x -=4.7+4.8+5.1+5.4+5.55=5.1,则方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.5.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4 则:(1)平均命中环数为________; (2)命中环数的标准差为________. 答案 (1)7 (2)2解析 (1)x =7+8+7+9+5+4+9+10+7+410=7.(2)∵s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s =2.1.一组数据中的众数可能不止一个,中位数是唯一的,求中位数时,必须先排序. 2.利用直方图求数字特征: (1)众数是最高的矩形的底边的中点. (2)中位数左右两边直方图的面积应相等.(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.标准差的平方s 2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.。
5.1 估计总体的分布5.2 估计总体的数字特征[学习目标] 1.学会列频率分布表,会画频率分布直方图.2.会用频率分布表或频率分布直方图估计总体分布,并作出合理解释.3.在解决问题过程中,进一步体会用样本估计总体的思想,认识统计的实际作用,初步经历收集数据到统计数据的全过程.知识点一 频率分布表与频率分布直方图 1.用样本估计总体的两种情况 (1)用样本的频率分布估计总体的分布. (2)用样本的数字特征估计总体的数字特征. 2.作频率分布直方图的步骤(1)求极差:即一组数据中最大值和最小值的差;(2)决定组距与组数:将数据分组时,组数应力求合适,以使数据的分布规律能较清楚地呈现出来.这时应注意:①一般样本容量越大,所分组数越多;②为方便起见,组距的选择应力求“取整”;③当样本容量不超过120时,按照数据的多少,通常分成5~12组. (3)将数据分组:按组距将数据分组,分组时,各组均为左闭右开区间,最后一组是闭区间. (4)列频率分布表:一般分四列:分组、频数累计、频数、频率,最后一行是合计.其中频数合计应是样本容量,频率合计是1.(5)画频率分布直方图:画图时,应以横轴表示分组,纵轴表示频率/组距.其相应组距上的频率等于该组上的小长方形的面积.即每个小长方形的面积=组距×频率组距=频率.思考 为什么要对样本数据进行分组?答 不分组很难看出样本中的数字所包含的信息,分组后,计算出频率,从而估计总体的分布特征.知识点二 频率折线图在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,我们称之为频率折线图.随着样本量的增大,所划分的区间数也可以随之增多,而每个区间的长度则会相应随之减小,相应的频率折线图就会越来越接近于一条光滑曲线.题型一频率分布直方图的绘制例1 调查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm)如下:171 163 163 166 166 168 168 160 168 165171 169 167 169 151 168 170 168 160 174165 168 174 159 167 156 157 164 169 180176 157 162 161 158 164 163 163 167 161(1)作出频率分布表;(2)画出频率分布直方图.解(1)最低身高151 cm,最高身高180 cm,它们的差是180-151=29,即极差为29;确定组距为4,组数为8,列表如下:(2)反思与感悟 1.组数的决定方法是:设数据总数目为n,一般地,当n≤50,则分为5~8组;当50≤n≤120时,则分为8~12组较为合适.2.分点数的决定方法是:若数据为整数,则分点数据减去0.5;若数据是小数点后一位的数,则分点减去0.05,以此类推.3.画频率分布直方图小长方形高的方法是:假设频数为1的小长方形的高为h,则频数为k 的小长方形高为kh.跟踪训练1 美国历届总统中,就任时年纪最小的是罗斯福,他于1901年就任,当时年仅42岁;就任时年纪最大的是里根,他于1981年就任,当时69岁.下面按时间顺序(从1789年的华盛顿到2009年的奥巴马,共44任)给出了历届美国总统就任时的年龄:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51 ,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,48(1)将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图.(2)用自己的语言描述一下历届美国总统就任时年龄的分布情况.解(1)以4为组距,列表如下:(2)从频率分布表中可以看出60%左右的美国总统就任时的年龄在50岁至60岁之间,45岁以下以及65岁以上就任的总统所占的比例相对较小. 题型二 频率分布直方图的应用例2 为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率约是多少? 解 (1)频率分布直方图是以面积的形式来反映数据落在各小组内的频率大小的, 因此第二小组的频率为42+4+17+15+9+3=0.08.因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校全体高一年级学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.反思与感悟 1.频率分布直方图的性质:(1)因为小矩形的面积=组距×频率组距=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小. (2)在频率分布直方图中,各小矩形的面积之和等于1. (3)频数相应的频率=样本容量. 2.频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本在某一范围内的频率,可近似地估计总体在这一范围内的可能性.跟踪训练2 如图所示是总体的一个样本频率分布直方图,且在[15,18)内频数为8. (1)求样本在[15,18)内的频率; (2)求样本容量;(3)若在[12,15)内的小矩形面积为0.06,求在[18,33)内的频数.解 由样本频率分布直方图可知组距为3.(1)由样本频率分布直方图得样本在[15,18)内的频率等于475×3=425.(2)样本在[15,18)内频数为8, 由(1)可知,样本容量为8425=8×254=50.(3)∵在[12,15)内的小矩形面积为0.06,∴样本在[12,15)内的频率为0.06,故样本在[15,33)内的频数为50×(1-0.06)=47,又在[15,18)内频数为8,故在[18,33)内的频数为47-8=39.题型三 频率分布与数字特征的综合应用例 3 已知一组数据:125 121 123 125 127 129 125 128 130 129 126 124 125 127 126 122 124 125 126 128 (1)填写下面的频率分布表:(2)作出频率分布直方图;(3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数. 解 (1)(2)(3)在[125,127)中的数据最多,取这个区间的中点值作为众数的近似值,得众数126,事实上,众数的精确值为125.(2)图中虚线对应的数据是125+2×58=126.25,事实上中位数为125.5.使用“组中值”求平均数:x =122×0.1+124×0.15+126×0.4+128×0.2+130×0.15=126.3,平均数的精确值为x =125.75. 反思与感悟 1.利用频率分布直方图估计数字特征: (1)众数是最高的矩形的底边的中点; (2)中位数左右两侧小矩形的面积相等;(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和. 2.利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致.跟踪训练3 某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30、0.40、0.15、0.10、0.05.求:(1)高一参赛学生成绩的众数、中位数. (2)高一参赛学生的平均成绩. 解 (1)由图可知众数为65, 又∵第一个小矩形的面积为0.3, ∴设中位数为60+x ,则0.3+x ×0.04=0.5,得x =5,∴中位数为60+5=65.(2)依题意,x=55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,∴平均成绩约为67分.1.用样本频率分布估计总体频率分布的过程中,下列说法正确的是( )A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确答案 C解析由用样本估计总体的性质可得.2.频率分布直方图中,小矩形的面积等于( )A.组距B.频率C.组数D.频数答案 B解析根据小矩形的宽及高的意义,可知小矩形的面积为一组样本数据的频率.3.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56 B.60C.120 D.140答案 D解析设所求人数为N,则N=2.5×(0.16+0.08+0.04)×200=140,故选D.4.某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分).现将高一两个班参赛学生的成绩进行整理后分成5组,绘制成频率分布直方图如下图所示.已知图中从左到右的第一、三、四、五小组的频率分别为0.30、0.15、0.10、0.05,而第二小组的频数是40,则参赛的人数是________,成绩优秀的频率是________. 答案 100 0.15解析 设参赛的人数为n ,第二小组的频率为1-(0.30+0.15+0.10+0.05)=0.4, 依题意40n=0.4,∴n =100,优秀的频率是0.10+0.05=0.15.1.频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律,通常用样本的频率分布表或频率分布直方图去估计总体的分布.2.用同样的方法先后从总体中抽取两个大小相同的样本,但两次得到的样本频率分布表、样本频率分布直方图、样本的平均数和标准差仍然可能互不相同.如果抽样的方法比较合理,那么样本可以反映总体的信息,样本容量越大,越接近总体的真实情况.。
2.2分层抽样与系统抽样第1课时分层抽样[学习目标] 1.理解分层抽样的概念.2.会用分层抽样从总体中抽取样本.3.能用分层抽样解决实际问题.知识点一分层抽样的概念将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样.分层抽样具有如下特点:(1)适用于总体由差异明显的几部分组成的情况;(2)按比例确定每层抽取个体的个数;(3)在每一层进行抽样时,采用简单随机抽样或系统抽样的方法;(4)分层抽样能充分利用已掌握的信息,使样本具有良好的代表性;(5)分层抽样也是等机会抽样,每个个体被抽到的可能性都是样本容量n总体容量N,而且在每层抽样时,可以根据个体情况采用不同的抽样方法.知识点二分层抽样的步骤思考分层抽样的总体具有什么特性?答分层抽样的总体由差异明显的几部分构成,也就是说当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样.题型一 对分层抽样概念的理解例1 有40件产品,其中一等品10件,二等品25件,次品5件.现从中抽出8件进行质量分析,则应采取的抽样方法是( ) A .抽签法 B .随机数法 C .系统抽样 D .分层抽样答案 D解析 总体是由差异明显的几部分组成,符合分层抽样的特点,故采用分层抽样. 反思与感悟 判断抽样方法是分层抽样,主要是依据分层抽样的特点: (1)适用于总体由差异明显的几部分组成的情况. (2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.跟踪训练1 在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.方法1:采用简单随机抽样的方法,将零件编号00,01,02,…,99,用抽签法抽取20个. 方法2:采用分层抽样的方法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下列说法正确的是( )①不论采用哪种抽样方法,这100个零件中每一个零件被抽到的可能性都是15;②采用不同的方法,这100个零件中每一个零件被抽到的可能性各不相同;③在上述两种抽样方法中,方法2抽到的样本比方法1抽到的样本更能反映总体特征; ④在上述抽样方法中,方法1抽到的样本比方法2抽到的样本更能反映总体的特征. A .①② B .①③ C .①④ D .②③答案 B解析 根据两种抽样的特点知,不论哪种抽样,总体中每个个体入样的可能性都相等,都是nN ,故①正确,②错误.由于总体中有差异较明显的三个层(一级品、二级品和三级品),故方法③抽到的样本更有代表性,③正确,④错误.故①③正确. 题型二 分层抽样的应用例2 一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人.为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?解 用分层抽样来抽取样本,步骤如下:(1)分层.按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为100500=15,则在不到35岁的职工中抽取125×15=25(人);在35岁至49岁的职工中抽取280×15=56(人);在50岁及50岁以上的职工中抽取95×15=19(人).(3)在各层分别按系统抽样或随机数法抽取样本. (4)汇总每层抽样,组成样本.反思与感悟 利用分层抽样抽取样本的操作步骤: (1)将总体按一定属性特征进行分层; (2)计算各层的个体数与总体的个体数的比;(3)按各层的个体数占总体的比确定各层应抽取的样本容量; (4)在每一层进行抽样(可用简单随机抽样); (5)最后将每一层抽取的样本汇总合成样本.跟踪训练2 一个单位有职工800人,其中具有高级职称的有160人,具有中级职称的有320人,具有初级职称的有200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是________. 答案 8,16,10,6解析 抽样比为40800=120,故各层抽取的人数依次为160×120=8,320×120=16,200×120=10,120×120=6.抽样方法例3 某单位有老年人28人、中年人54人、青年人81人,为了调查他们的身体状况,从中抽取一个容量为36的样本,则最适合抽取样本的办法是( ) A .简单随机抽样 B .抽签法 C .分层抽样D .先从老年人中剔除1人,再用分层抽样分析 根据题意结合各种抽样方法的特点进行选择.解析 因为总体由差异明显的三部分组成,所以考虑用分层抽样.因为总人数为28+54+81=163,样本容量为36,由于按36163抽样,无法得到整数解,因此考虑先剔除1人,将抽样比变为36162=29.若从老年人中随机地剔除1人,则老年人应抽取27×29=6(人),中年人应抽取54×29=12(人),青年人应抽取81×29=18(人),从而组成容量为36的样本.答案 D解后反思 本题易错选C.已知总体是由差异明显的三部分组成,因而盲目选了C ,却忽略了分层抽样过程中的取整要求.1.某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( ) A .简单随机抽样 B .抽签法 C .随机数表法 D .分层抽样答案 D解析 从男生500人中抽取25人,从女生400人中抽取20人,抽取的比例相同,因此用的是分层抽样.2.为了保证分层抽样时,每个个体等可能地被抽取,必须要求( ) A .每层的个体数必须一样多 B .每层抽取的个体数相等C .每层抽取的个体可以不一样多,但必须满足抽取n i =n ·N iN (i =1,2,…,k )个个体,其中k是层数,n 是抽取的样本容量,N i 是第i 层所包含的个体数,N 是总体容量 D .只要抽取的样本容量一定,每层抽取的个体数没有限制 答案 C 解析3.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( ) A .30人,30人,30人 B .30人,45人,15人 C .20人,30人,10人 D .30人,50人,10人答案 B解析 先求抽样比n N =903 600+5 400+1 800=1120,再各层按抽样比分别抽取,甲校抽取3 600×1120=30(人),乙校抽取5 400×1120=45(人),丙校抽取1 800×1120=15(人),故选B.4.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( ) A .8,8 B .10,6 C .9,7 D .12,4答案 C解析 抽样比为1654+42=16,则一班和二班分别被抽取的人数是54×16=9,42×16=7.5.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生. 答案 60解析 根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.1.对于分层抽样中的比值问题,常利用以下关系式解: (1)样本容量n 总体容量N =各层抽取的样本数该层的容量; (2)总体中各层容量之比=对应层抽取的样本数之比. 2.选择抽样方法的规律:(1)当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法. (2)当总体容量较大,样本容量较小时,可采用随机数法. (3)当总体是由差异明显的几部分组成时,可采用分层抽样法.。
2.2 分层抽样与系统抽样整体设计教学分析教学通过实例介绍了分层抽样与系统抽样及其步骤.分层抽样是高考的热点,其抽样过程中,在每一层常用简单随机抽样和系统抽样,因此建议改变教材的顺序,先学习系统抽样,再学习分层抽样.值得注意的是在教学过程中,教师适当介绍当nN 不是整数时,应如何实施系统抽样. 三维目标1.理解系统抽样,会用系统抽样从总体中抽取样本,了解系统抽样在实际生活中的应用,提高学生学习数学的兴趣.2.理解分层抽样,掌握其实施步骤,培养学生发现问题和解决问题的能力.3.掌握分层抽样与简单随机抽样和系统抽样的区别与联系,提高学生的总结和归纳能力,让学生领会到客观世界的普遍联系性.重点难点教学重点:实施系统抽样的步骤,分层抽样及其步骤.教学难点:当nN 不是整数,如何实施系统抽样,确定各层的入样个体数目,以及根据实际情况选择正确的抽样方法.课时安排2课时教学过程第1课时 系统抽样导入新课思路1.上一节我们学习了简单随机抽样,那么简单随机抽样的特点是什么?简单随机抽样是最简单和最基本的抽样方法,当总体中的个体较少时,常采用简单随机抽样.但是如果总体中的个体较多时,怎样抽取样本呢?教师点出课题:系统抽样.思路2.某中学有5 000名学生,打算抽取200名学生,调查他们对奥运会的看法,采用简单随机抽样时,无论是抽签法还是随机数法,实施过程很复杂,需要大量的人力和物力,那么有没有更为方便可行的抽样方法呢?这就是今天我们要学习的内容:系统抽样.推进新课新知探究提出问题(1)某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?(2)请归纳系统抽样的定义和步骤.(3)系统抽样有什么特点?讨论结果:(1)可以将这500名学生随机编号1—500,分成50组,每组10人,第1组是1—10,第二组11—20,依次分下去,然后用简单随机抽样在第1组抽取1人,比如号码是2,然后每隔10个号抽取一个,得到2,12,22, (492)这样就得到一个容量为50的样本.这种抽样方法称为系统抽样.(2)一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫作系统抽样.其步骤是:1°采用随机抽样的方法将总体中的N 个个体编号;2°将整体按编号进行分段,确定分段间隔k(k ∈N,l≤k);3°在第1段用简单随机抽样确定起始个体的编号l(l ∈N,l≤k);4°按照一定的规则抽取样本,通常是将起始编号l 加上间隔k 得到第2个个体编号(l+k),再加上k 得到第3个个体编号(l+2k),这样继续下去,直到获取整个样本.说明:从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.(3)系统抽样的特点是:1°当总体容量N 较大时,采用系统抽样.2°将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k =[nN ]. 3°预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.应用示例思路1例1 某工厂平均每天生产某种机器零件大约10 000件,要求产品检验员每天抽取50件零件,检查其质量状况.假设一天的生产时间中生产机器零件的件数是均匀的,请你设计一个调查方案.解:我们可以采用系统抽样,按照下面的步骤设计方案.第一步 按生产时间将一天分为50个时间段,也就是说,每个时间段大约生产5010000 =200件产品.这时,抽样距就是200.第二步 将一天中生产出的机器零件按生产时间进行顺序编号.比如,第一个生产出的零件就是0号,第二个生产出的零件就是1号等.第三步 从第一个时间段中按照简单随机抽样的方法,抽取一件产品,比如是k 号零件.第四步 顺序地抽取编号分别为下面数字的零件:k+200,k+400,k+600,…,k+9 800.这样总共就抽取了50个样本.点评:系统抽样与简单随机抽样一样,每个个体被抽到的概率都相等,从而说明系统抽样是等概率抽样,它是公平的.系统抽样是建立在简单随机抽样的基础之上的,将总体均分后对每一部分进行抽样时,采用的是简单随机抽样.变式训练1.下列抽样不是系统抽样的是( )A.从标有1—15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈 分析:C 中,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样,所以不是系统抽样.答案:C2.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.分析:按1∶5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号. 解:抽样过程是:(1)按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1—5的5名学生,第2组是编号为6—10的5名学生,依次下去,59组是编号为291—295的5名学生;(2)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(l≤5);(3)按照一定的规则抽取样本,抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,…,288,293.3.为了了解参加某种知识竞赛的1 000名学生的成绩,应采用什么抽样方法较恰当?简述抽样过程.解:适宜选用系统抽样,抽样过程如下:(1)随机地将这1 000名学生编号为1,2,3,…,1 000.(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.例2 某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其质量状况.请你设计一个调查方案.解:我们可以采用系统抽样,按照下面的步骤设计方案.第一步 把这些图书分成40个小组,由于40362的商是9,余数是2,所以每个组有9册书,还剩2册书.这时,抽样距就是9.第二步 先用简单随机抽样的方法从这些书中抽取2册书,不进行检验.第三步 将剩下的书进行编号,编号分别为0,1, (359)第四步 从第一组(编号分别为0,1,…,8)的书中按照简单随机抽样的方法,抽取1册书,比如说,其编号为k.第五步 顺序地抽取编号分别为下面数字的书:k+9,k+18,k+27,…,k+39×9.这样总共抽取了40个样本.点评:如果遇到nN 不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.变式训练1.某校高中三年级有1 242名学生,为了了解他们的身体状况,准备按1∶40的比例抽取一个样本,那么( )A.剔除指定的4名学生B.剔除指定的2名学生C.随机剔除4名学生D.随机剔除2名学生分析:为了保证每名学生被抽到的可能性相等,必须是随机剔除学生,由于401242的余数是2,所以要剔除2名学生.故选D.答案:D2.从2 008个编号中抽取20个号码,采用系统抽样的方法,则抽样的分段间隔为( )A.99B.99.5C.100D.100.5答案:C3.为了了解参加某种知识竞赛的1 003名学生的成绩,请用系统抽样抽取一个容量为50的样本.分析:由于501003不是整数,所以先从总体中随机剔除3个个体. 解:(1)随机地将这1 003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数1 000能被样本容量50整除,然后再重新编号为1,2,3, (1000)(3)确定分段间隔.501000=20,则将这1 000名学生分成50组,每组20人,第1组是1,2,3,...,20;第2组是21,22,23,...,40;依次下去,第50组是981,982, (1000)(4)在第1组用简单随机抽样确定第一个个体编号l(l≤20).(5)按照一定的规则抽取样本.抽取的学生编号为l+20k (k=0,1,2,...,19),得到50个个体作为样本,如当k=2时的样本编号为2,22,42, (982)思路2例1 从已编号为1—50的50枚最新研制的某种型号导弹中随机抽取5枚来进行发射试验,若采用系统抽样方法,则所选取5枚导弹的编号可能是( )A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,6,16,32分析:用系统抽样的方法抽取到的导弹编号应该为k,k+d,k+2d,k+3d,k+4d,其中d=550=10,k 是1到10中用简单随机抽样方法得到的数,因此只有选项B 满足要求.答案:B点评:利用系统抽样抽取的样本的个体编号按从小到大的顺序排起来,从第2个号码开始,每一个号码与前一个号码的差都等于同一个常数,这个常数就是分段间隔.变式训练某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的所有25名学生进行测试,这里运用的是_____________抽样方法.答案:系统知能训练1.从学号为0—50的高一某班50名学生中随机选取5名同学参加数学竞赛,采用系统抽样的方法,则所选5名学生的学号不可能是( )A.1,2,3,4,5B.5,15,25,35,45C.2,12,22,32,42D.9,19,29,39,49答案:A2.采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体入样的可能性为( ) A.8310 B.831 C.101 D.801 答案:A3.某单位的在岗工人为624人,为了调查工作上班时从家到单位的路上平均所用的时间,决定抽取10%的工人调查这一情况,如何采用系统抽样的方法完成这一抽样?答案:先随机剔除4人,再按系统抽样抽取样本.4.某学校有学生3 000人,现在要抽取100人组成夏令营,怎样抽取样本?分析:由于总体人数较多,且无差异,所以按系统抽样的步骤来进行抽样.解:按系统抽样抽取样本,其步骤是:①将3 000名学生随机编号1,2, (3000)②确定分段间隔k=1003000=30,将整体按编号进行分100组,第1组1—30,第2组31—60,依次分下去,第100组2971—3000;③在第1段用简单随机抽样确定起始个体的编号l(l ∈N ,0≤l≤30);④按照一定的规则抽取样本,通常是将起始编号l 加上间隔30得到第2个个体编号l+30,再加上30,得到第3个个体编号l+60,这样继续下去,直到获取整个样本.比如l =15,则抽取的编号为:15,45,75, (2985)这些号码对应的学生组成样本.拓展提升将参加数学竞赛的1 000名学生编号如下000,001,002,…,999,打算从中抽取一个容量为50的样本,按系统抽样方法分成50个部分,第一组编号为000,002,…,019,如果在第一组随机抽取的一个号码为015,则抽取的第40个号码为______________.分析:利用系统抽样抽取样本,在第一组抽取号码为l =015,分段间隔为k=501000 =20,则在第i 组中抽取的号码为015+20(i -1).则抽取的第40个号码为015+(40-1)×20=795. 答案:795课堂小结通过本节的学习,应明确什么是系统抽样,系统抽样的适用范围,如何用系统抽样获取样本.作业调查某班学生的身高情况,利用系统抽样的方法,样本容量为40.这个班共分5个组,每个组都是8名学生,他们的座次是按照身高高矮进行编排的.李立是这样做的,抽样距是8,按照每个小组的座次进行顺序编号.你觉得这样抽取的样本具有代表性吗?分析:假设这个班的学生是这样编号(这个编号也代表他们的身高)的:第一组 a 1<a 2<a 3<a 4<a 5<a 6<a 7<a 8;第二组 b 1<b 2<b 3<b 4<b 5<b 6<b 7<b 8;第三组 c 1<c 2<c 3<c 4<c 5<c 6<c 7<c 8;第四组 d 1<d 2<d 3<d 4<d 5<d 6<d 7<d 8;第五组 e 1<e 2<e 3<e 4<e 5<e 6<e 7<e 8.如果按照李立的抽样方法,比如在第一组抽到了8号,也就是a 8,那么所抽取的样本分别为a 8,b 8,c 8,d 8,e 8.显然,这样的样本不具有代表性,它们代表的身高偏高.。
1 从普查到抽样学习目标 1.了解普查与抽样调查的概念.2.理解随机抽样的必要性和重要性.3.明确两种调查的优缺点.知识点一统计思考我们每天都接触大量的数据:各地房价的涨幅,各种指数的变化、天气的各种数据等,这些数据是怎么来的?梳理统计是研究如何合理收集、______、______数据的学科.知识点二普查思考你对“武汉一人口普查员劳累过度以身殉职”的报道有何看法?梳理一般地,普查是指一个________或一个________专门组织的________大规模的全面调查,目的是为了详细地了解________重要的国情、国力.普查的主要特点:①所取得的资料更加全面、________;②主要调查在特定时段的社会经济现象总体的________.普查的对象________时,普查无疑是一项非常好的调查方式.知识点三抽样调查思考要了解一批牛奶的质量是否达标,能用普查吗?梳理当不宜普查时,有:(1)抽样调查:从调查对象中按照一定的方法抽取一部分,进行调查或观察,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查.(2)总体:调查对象的全体称为总体.(3)个体:组成总体的每一个考察对象叫作个体;(4)样本及样本的容量:从总体中所抽取的一部分个体叫作总体的一个样本,样本中的个体数目叫作样本的容量.(5)抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点:①迅速、及时;②节约人力、物力和财力.类型一普查与抽样调查例1 医生是如何检验人的血液中血脂的含量是否偏高的?反思与感悟设计合理的调查方案是调查的基础,是统计活动中非常重要的环节.若对大批量且有破坏性的检验问题,只能进行抽样调查,这样检验是科学、合理的.在抽样调查中应注意:抽取的样本要具有全面性、代表性、随机性.跟踪训练1 下列调查中哪些是用普查方式,哪些是用抽样方法来收集数据的?(1)为了了解我们班级的每个学生穿几号鞋,向全班同学做调查;(2)为了了解我们学校高一年级学生穿几号鞋,向我们所在班的全体同学做调查;(3)为了了解我们班的同学每天的睡眠时间,在每个小组中各选取2名学生做调查;(4)为了了解我们班的同学每天的睡眠时间,选取班级中学号为双数的所有学生做调查.类型二如何进行抽样调查例2 为了缓解城市的交通拥堵情况,某市准备出台限制私家车的政策,为此要进行民意调查.某个调查小组调查了一些拥有私家车的市民,你认为这样的调查结果会怎样?反思与感悟在统计活动中,尤其是大型的统计活动,为避免一些外界因素的干扰,通常需要确定调查的对象、调查的方法与策略,需要精心设计前期的准备工作和收集数据的方法,然后对数据进行分析,得出统计推断.跟踪训练 2 中央电视台希望在春节联欢晚会播出后一周内获得当年春节联欢晚会的收视率.下面是三名同学为电视台设计的调查方案.甲同学:我把这张《春节联欢晚会收视率调查表》放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快统计收视率了.乙同学:我给我们居民小区的每一户住户发一份是否在除夕那天晚上看过中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.丙同学:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?1.下列调查方式中,可用“普查”方式的是( )A.调查某品牌电视机的市场占有率B.调查某电视连续剧在全国的收视率C.调查某校七年级一班的男女同学的比例D.调查某型号炮弹的射程2.下列说法不正确的是( )A.普查是要对所有的对象进行调查B.样本不一定是从总体中抽取的,没抽取的个体也是样本C.当调查的对象很少时,普查是很好的调查方式,但当调查的对象很多时,则要耗费大量的人力、物力和财力D.普查不是在任何情况下都能实现的3.为了了解高一年级学生的视力情况,特别是近视率问题,抽测了其中100名同学的视力情况.在这个过程中,100名同学的视力情况(数据)是( )A.总体B.个体C.总体的一个样本D.样本容量4.下列调查中属于抽样调查的是( )①每隔5年进行一次人口普查;②某商品的质量优劣;③某报社对某个事情进行舆论调查;④高考考生的查体.A.②③ B.①④C.③④ D.①②5.“非典”期间,我国每日公布非典疫情,其中有关数据的收集所采用的调查方式是________.普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.答案精析问题导学知识点一思考由专业人员收集、整理、分析出来的.梳理整理分析知识点二思考人口普查是一个规模宏大的政府工程.普查是一项非常艰苦的工作,工作量很大,要耗费大量的人力、物力与财力,并且组织工作繁重、时间长.更值得注意的是,在很多情况下,普查工作难以实现.梳理国家地区一次性某项系统数量很少知识点三思考检验具有破坏性,故不能普查.题型探究例1 解大家都知道,医生在检验时是不可能将一个人的血液都抽出来进行普查的,因此,医生在检验人的血液中血脂含量是否偏高时,通常是抽取少量的血样进行检验,然后由此作出推断,认为这个人的血液状况基本如此.跟踪训练1 解(1)因为调查的是班级的每个学生,所以用的是普查.(2)通过我们班的全体同学穿几号鞋来了解学校高一年级学生穿几号鞋,这是抽样调查,样本是我们班的全体同学所穿的鞋号,总体是学校高一年级学生所穿的鞋号.(3)、(4)也都是抽样调查,样本分别是每小组中选取的2名学生的睡眠时间,学号为双数的所有学生的睡眠时间;总体都是我们班的同学每天的睡眠时间.例2 解一个城市的交通状况的好坏将直接影响着生活在这个城市中的每个人,关系到每个人的利益.为了调查这个问题,在抽样时应当关注到各种人群,既要抽到拥有私家车的市民,也要抽到没有私家车的市民.调查时,如果只对拥有私家车的市民进行调查,结果一定是片面的,不能代表所有市民的意愿.因此,在调查时,要对生活在该城市的所有市民进行随机地抽样调查,不要只关注到拥有私家车的市民.跟踪训练2 解综上所述,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.因为并不是每个人都有互联网可上;某一地方的居民小区代表性不强;并不是每家都拥有电话.当堂训练1.C 2.B 3.C 4.A 5.普查本文档仅供文库使用。
[核心必知]1.众数、中位数、平均数(1)众数的定义:一组数据中重复出现次数最多的数称为这组数的众数,一组数据的众数可以是一个,也可以是多个.(2)中位数的定义及求法:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数(或中间两数的平均数)称为这组数据的中位数.(3)平均数:①平均数的定义:如果有n个数x1、x2、…、x n,那么错误!=错误!,叫作这n个数的平均数.②平均数的分类:总体平均数:总体中所有个体的平均数叫总体平均数.样本平均数:样本中所有个体的平均数叫样本平均数.2.标准差、方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=错误!.(2)方差的求法:标准差的平方s2叫作方差.s2=错误![(x1-错误!)2+(x2-错误!)2+…+(x n-错误!)2].其中,x n是样本数据,n是样本容量,错误!是样本均值.(3)方差的简化计算公式:s2=错误![(x错误!+x错误!+…+x错误!)-n错误!2]=错误!(x错误!+x错误!+…+x错误!)-错误!2.3.极差一组数据的最大值与最小值的差称为这组数据的极差.4.数字特征的意义平均数、中位数和众数刻画了一组数据的集中趋势,极差、方差刻画了一组数据的离散程度.[问题思考]1.一组数据的众数一定存在吗?若存在,众数是唯一的吗?提示:不一定.若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数;不是,可以是一个,也可以是多个.2.如何确定一组数据的中位数?提示:(1)当数据个数为奇数时,中位数是按从小到大顺序排列的中间位置的那个数.(2)当数据个数为偶数时,中位数为排列在最中间的两个数的平均值.讲一讲1。
据报道,某公司的33名职工的月工资(单位:元)如下:(1)(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平,结合此问题谈一谈你的看法.[尝试解答](1)平均数是错误!=1 500+错误!≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元.(2)新的平均数是错误!′=1500+错误!≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.1.众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.2.众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.3.中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述它的某种集中趋势.练一练1.某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(1)求这15位销售人员该月销售量的平均数、中位数及众数;(2)假设销售部负责人把月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较为合理的销售定额.解:(1)平均数为错误!(1 800×1+510×1+250×3+210×5+150×3+120×2)=320(件),中位数为210件,众数为210件.(2)不合理,因为15人中有13人的销售量未达到320件,也就是说,虽然320是这一组数据的平均数,但它却不能反映全体销售人员的销售水平.销售额定为210件更合理些,这是由于210既是中位数,又是众数,是大部分人都能达到的定额。
第2课时 系统抽样[学习目标] 1.理解和掌握系统抽样.2.会用系统抽样从总体中抽取样本.3.能用系统抽样解决实际问题.知识点一 系统抽样的概念当总体容量和样本容量都很大时,无论是采用分层抽样或简单随机抽样,都是非常麻烦的.系统抽样就是为了解决这个问题.系统抽样是将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按分组的间隔(称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样或机械抽样.系统抽样具有如下特点:(1)当总体中的个体数较大时,用系统抽样更易实施,更节约成本;(2)系统抽样的效果与个体的编号有关,如果编号的特征随编号呈周期性变化,可能使样本的代表性很差知识点二 系统抽样的步骤一般地,假设要从容量为N 的总体中抽取容量为n 的样本,我们可以按下列步骤进行系统抽样:(1)编号:先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)分段:确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n;(3)确定第一个编号:在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)成样:按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.知识点三 三种抽样方法的比较简单随机抽样、分层抽样、系统抽样的比较如下表所示:题型一对系统抽样概念的理解例1 下列抽样中,最适宜用系统抽样的是( )A.某市的4个区共有2000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200名入样B.从某厂生产的2000个电子元件中随机抽取5个入样C.从某厂生产的2000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样答案 C解析根据系统抽样的定义和特点判断,A项中的总体有明显的层次,不适宜用系统抽样;B 项中样本容量很小,适合用随机数法;D项中总体容量很小,适合用抽签法.反思与感悟系统抽样适用于个体数较大的总体,判断一种抽样是否为系统抽样,首先看在抽样前是否知道总体是由什么构成的.抽样的方法能否保证将总体分成几个均衡的部分,并保证每个个体等可能入样.跟踪训练1 下列抽样方法不是系统抽样的是( )A.从标有1~15号的15个球中,任选三个作样本,按从小号到大号的顺序,随机选起点i0,以后选i0+5,i0+10(超过15则从1再数起)号入选B.工厂生产的产品用传送带将产品送入包装车间前,在一天时间内检验人员从传送带上每隔五分钟抽一件产品进行检验C .做某项市场调查,规定在商场门口随机抽一个人进行询问调查,直到达到事先规定的调查人数为止D .电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈 答案 C解析 A 编号间隔相同,B 时间间隔相同,D 相邻两排座位号的间隔相同,均满足系统抽样的特征.只有C 项无明显的系统抽样的特征.题型二 系统抽样的应用例2 为了了解某地区今年高一学生期末考试数学学科的成绩,拟从参加考试的15000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.解 (1)对全体学生的数学成绩进行编号:1,2,3, (15000)(2)分段:由于样本容量与总体容量的比是1∶100,所以我们将总体平均分为150个部分,其中每一部分包含100个个体.(3)在第一部分即1号到100号用简单随机抽样抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14956,这样就得到一个容量为150的样本.反思与感悟 当总体容量能被样本容量整除时,分段间隔k =N n ;当用系统抽样抽取样本时,通常是将起始数l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.跟踪训练2 现有60瓶牛奶,编号为1至60,若从中抽取6瓶检验,用系统抽样方法确定所抽取的编号可能为( )A .3,13,23,33,43,53B .2,14,26,38,42,56C .5,8,31,36,48,54D .5,10,15,20,25,30答案 A解析 因为60瓶牛奶分别编号为1至60,所以把它们依次分成6组,每组10瓶,要从中抽取6瓶检验,用系统抽样方法进行抽样.若在第一组抽取的编号为n (1≤n ≤10),则所抽取的编号应为n ,n +10,…,n +50.对照4个选项,只有A 项符合系统抽样.系统抽样的显著特点之一就是“等距抽样”.因此,对于本题只要求出抽样的间隔k =606=10,就可判断结果.题型三 系统抽样的设计例3 某校高中二年级有253名学生,为了了解他们的视力情况,准备按1∶5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.解(1)先把这253名学生编号000,001, (252)(2)用随机数法任取出3个号,从总体中剔除与这三个号对应的学生;(3)把余下的250名学生重新编号1,2,3, (250)(4)分段.取分段间隔k=5,将总体均分成50段,每段含5名学生;(5)从第一段即1~5号中用简单随机抽样抽取一个号作为起始号,如l;(6)从后面各段中依次取出l+5,l+10,l+15,…,l+245这49个号.这样就按1∶5的比例抽取了一个样本容量为50的样本.反思与感悟 1.当总体容量不能被样本容量整除时,要先从总体中随机剔除整除后余数个个体且必须是随机的,即每个个体被剔除的机会均等.剔除个体后使总体中剩余的总体容量能被样本容量整除.2.剔除个体后需对样本重新编号.3.起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.跟踪训练3 为了了解参加某次考试的2607名学生的成绩,决定用系统抽样的方法抽取一个容量为260的样本.请根据所学的知识写出抽样过程.解按下列步骤获取样本:(1)将每一名学生编号,由0001到2607;(2)利用随机数法从总体中剔除7人;(3)将剩下的2600名学生重新编号(分别为0001,0002,…,2600),并分成260段;(4)在第一段0001,0002,…,0010这十个编号中用简单随机抽样法抽取一个号码(如0003)作为起始号码;(5)将编号为0003,0013,0023,…,2593的个体抽出,即组成样本.题型四抽样方法的综合应用例4 为了考察某校的教学水平,抽查了这个学校高三年级部分学生的本学年考试成绩进行考察.为了全面地反映实际情况,采取以下三种方式进行(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;②每个班都抽取1人,共计14人,考察这14名学生的成绩;③把该校高三年级的学生按成绩分成优秀,良好,普通三个级别,从中抽取100名学生进行考查(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的叙述,试回答下列问题:(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方法各自抽取样本的步骤.解 (1)这三种抽取方式中,其总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第二种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第三种抽取方式中样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)上面三种抽取方式中,第一种方式采用的方法是简单随机抽样法;第二种方式采用的方法是系统抽样法和简单随机抽样法;第三种方式采用的方法是分层抽样法和简单随机抽样法.(3)第一种方式抽样的步骤如下:第一步:在这14个班中用抽签法任意抽取一个班;第二步:从这个班中按学号用随机数法或抽签法抽取14名学生,考察其考试成绩. 第二种方式抽样的步骤如下:第一步:在第一个班中,用简单随机抽样法任意抽取某一学生,记其学号为x ;第二步:在其余的13个班中,选取学号为x +50k (1≤k ≤13,k ∈Z )的学生,共计14人. 第三种方式抽样的步骤如下:第一步:分层,因为若按成绩分,其中优秀生共105人,良好生共420人,普通生共175人,所以在抽取样本中,应该把全体学生分成三个层次;第二步:确定各个层次抽取的人数,因为样本容量与总体数的比为100∶700=1∶7,所以在每层抽取的个体数依次为1057,4207,1757,即15,60,25; 第三步:按层分别抽取,在优秀生中用简单随机抽样法抽取15人,在良好生中用简单随机抽样法抽取60人,在普通生中用简单随机抽样法抽取25人.第四步:将所抽取的个体组合在一起构成样本.反思与感悟 1.简单随机抽样、系统抽样和分层抽样是三种常用的抽样方法,在实际生活中有着广泛的应用.2.三种抽样的适用范围不同,各自的特点也不同,但各种方法间又有密切联系.在应用时要根据实际情况选取合适的方法.3.三种抽样中每个个体被抽到的可能性都是相同的.跟踪训练4 下列问题中,宜采用的抽样方法依次为:(1)________;(2)________;(3)________;(4)________.(1)从10台电冰箱中抽取3台进行质量检查;(2)某社区有1200户家庭,其中高收入家庭420户,中等收入家庭470户,低收入家庭310户,为了调查该社区购买力的某项指标,要从所有家庭中抽取一个容量为120的样本;(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本;(4)已知某校高一学生的学号后三位数字从001编至805,教育部门准备抽查该校80名高一学生的体育达标情况.答案抽签法分层抽样分层抽样系统抽样解析系统抽样的应用例5 要从参加全运会某些项目比赛的1013名运动员中抽取100名进行兴奋剂检查,采用何种抽样方法较好?写出过程.错解应采用系统抽样.过程如下:先将1013名运动员随机编号为1,2,3,…,1013,将这1013个号码分成100段,其中前87段每段10人,后13段每段11人,在第一段中用简单随机抽样确定起始编号L,将会得到编号L,L+10,L+20,…,L+990的运动员抽出,从而获得整体样本.错解分析错误的根本原因在于前87段的个体中,每个个体被抽取的可能性为110,而在后13段中,每个个体被抽取的可能性为111,这是不公平的.自我矫正应采用系统抽样.过程如下:第一步,将1013名运动员随机编号为0001,0002,0003, (1013)第二步,随机地从总体中抽取13个号码,并将编号相对应的运动员剔除;第三步,将剩下的1000名运动员重新编号为1,2,3,…,1000,分成100段,每段10个号码,在第一段十个编号中用简单随机抽样确定第一个个体编号为L,则将编号为L,L+10,L +20,…,L+990的运动员抽出,组成样本.1.为了解1200名学生对学校食堂饭菜的意见,打算从中抽取一个样本容量为40的样本,考虑采用系统抽样,则分段间隔k 为( )A .10B .20C .30D .40答案 C解析 分段间隔k =120040=30. 2.为了了解参加某次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为( )A .2B .3C .4D .5 答案 A解析 因为1252=50×25+2,所以应随机剔除2个个体,故选A.3.要从160名学生中抽取容量为20的样本,用系统抽样法将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按抽签方法确定的号码是( )A .7B .5C .4D .3 答案 B解析 由系统抽样知第一组确定的号码是125-15×8=5.4.某公司有52名员工,要从中抽取10名员工参加国庆联欢活动,若采用系统抽样,则该公司每个员工被抽到的机会是________.答案 526 解析 采用系统抽样,需先剔除2名员工,确定间隔k =5,但每名员工被剔除的机会相等,即每名员工被抽到的机会也相等,故虽然剔除了2名员工,但这52名员工中每名员工被抽到的机会仍相等,且均为1052=526. 5.在1000个有机会中奖的号码(编号为000~999)中,公证部门用随机抽样的方法确定后两位数为88的号码为中奖号码,这种抽样方法是________,这10个中奖号码为__________________________________.答案 系统抽样088,188,288,388,488,588,688,788,888,988解析 这里运用了系统抽样的方法来确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.1.系统抽样的实质是“分组”抽样,适用于总体中的个体数较大的情况.2.解决系统抽样问题的两个关键步骤为(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)用系统抽样法抽取样本,当N n 不为整数时,取k =⎣⎢⎡⎦⎥⎤N n ,即先从总体中用简单随机抽样的方法剔除(N -nk )个个体,且剔除多余的个体不影响抽样的公平性.。
第一章统计1 例析简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.适用于总体中的个体数较少且抽取的样本容量较小时.抽样中选取个体的方法有两种:放回和不放回.简单随机抽样中用的是不放回抽取.下面让我们一同来看如下的例题:例1 判断下面的抽样方法是不是简单随机抽样?(1)从不确定个体数的总体中抽取20个个体作为样本.(2)从30瓶果汁中一次性随机抽取3瓶进行质量检查.(3)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛.(4)从装有编号为1~36的大小、形状都相同的号签的盒子中逐个不放回地抽出6个号签.分析简单随机抽样的定义,抓住以下特点来理解:①它要求被抽取的样本所在总体的容量确定且有限;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④每个个体被抽到的可能性是相同的,是等可能抽样.解(1)不是简单随机抽样.因为总体的个体数是不确定的,从而不能保证每个个体等可能入样.(2)不是简单随机抽样.因为简单随机抽样的定义要求的是逐个抽取.(3)不是简单随机抽样.因为该例是指定个子最高的5名同学参加比赛,每个个体被抽到的可能性是不同的,不是等可能抽样.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回地、等可能地进行抽样.点评要判断所给的抽样方法是不是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的上述四个特点.例2 若将例1(2)中的字眼“一次性”改为“逐个”,则该例便为简单随机抽样.即从30瓶果汁中逐个随机抽取3瓶进行质量检查.请选用合适的抽样方法,写出抽样过程.分析简单随机抽样分为两种:抽签法和随机数法.当总体容量和样本容量都较小时,可采用抽签法进行抽样.解(1)将30瓶果汁进行编号,号码为1,2,3, (30)(2)将1~30这30个编号写到大小、形状都相同的号签上;(3)将写好的号签放入一个不透明的容器中,并搅拌均匀;(4)从容器中每次抽取一个号签,连续不放回地抽取3次,并记录下上面的编号;(5)所得号码对应的3瓶果汁就是要抽取的样本.点评抽签法(也叫抓阄法)是简单随机抽样的一种方法,一个抽样试验是否能用抽签法,关键看两点:一是制作号签是否方便;二是号签是否容易被“搅拌均匀”.本题中,总体中个体数(30)较少,制作号签比较方便,并且容易被“搅拌均匀”,所以可以采用抽签法.将例2中的总体容量增大,我们该如何解决呢?比如例3.例3 现在要考察某公司生产的2.5 L的果汁质量是否达标,欲从400瓶果汁中抽取6瓶进行质量检查.请选用合适的方法抽样,并写出抽样过程.分析当总体容量较大,而样本容量较小时,因制签麻烦,故不宜用抽签法,可采用随机数法.解选用随机数法.步骤如下:第一步,先将400瓶果汁编号,可以编为001,002, (400)第二步,在随机数表中任选一个数作为开始,比如第6行第1个数,取出072作为抽取的6瓶果汁中的第一个代号(见课本后的附表随机数表);第三步,继续向右读,每次读取三位,凡不在001~400中的数或重复的数跳过去不读,取到末尾时转到下一行从左到右继续读数,如此下去直到得出在001到400之间的6个三位数,分别为072,170,133,199,291,105;第四步,找出与072,170,133,199,291,105对应的果汁作为样本.点评当总体中的个体较多,制作号签比较复杂,并且把号签搅拌均匀比较困难时,可以选择使用随机数法,本题将个体编号的位数统一为3位.使用随机数法应注意以下两点:(1)随机数法要求对个体编号且每个个体的号码位数必须相同.如对100个个体编号时应从00编到99(或者从001编到100),而不能用1,2,…,100.可见在总体中的个体进行编号时要视总体中个体的数目而定,但必须保证所编号码的位数一致,不允许出现不同位数的号码.(2)选定开始读的数后,读数的方向可左、可右、可上、可下,即任意方向均可.读数的方向不同可能导致不同的结果,但这一点不影响样本的公平性和合理性.2 系统抽样题型全析在三种随机抽样中,系统抽样是较为重要的一种.当总体中的个体数较多时,可将总体分成均匀的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样方法叫做系统抽样,又称等距抽样.在抽样调查中,由于系统抽样简便易行,所以应用普遍.下面举例说明系统抽样的常见题型.一、系统抽样的选取问题例1 某商场想通过检查部分发票及销售记录来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张,如15号,然后按顺序将65号,115号,165号,…发票上的销售金额组成一个调查样本.这种抽取样本的方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样分析 上述抽样方法是将发票平均分成若干组,每组50张,从第一组抽出了15号,以后各组抽15+50n (n ∈N +)号,符合系统抽样的特点.答案 C点评 将总体分成均匀的几部分,按照预先定出的规则在各部分中抽取是系统抽样的常用步骤.二、间隔问题例2 为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为________.分析 要抽取n 个个体入样,需将N 个编号均分成n 组.(1)若N n 为整数,则抽样间隔为N n ;(2)若N n 不是整数,则先剔除多余个体,再均分成n 组,此时抽样间隔为[N n].解析 根据样本容量为30,将1 200名学生分为30段,每段人数即间隔k =1 20030=40. 答案 40点评 将总体号码平均分组时,应先考虑总体容量N 是否能被样本容量n 整除.三、抽取的个数问题例3 为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是( )A .2B .4C .5D .6分析 因为1 252=50×25+2,所以应随机剔除2个个体.答案 A点评 (1)用系统抽样法抽取多少个个体就需将总体均分成多少组;(2)当总体中的个体数不能被样本容量整除时,需要剔除个体.需要注意的是,即使是被剔除的个体,被抽到的机会和其他个体也是一样的.四、综合问题例4 一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9.要用系统抽样法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x ,那么依次错位地得到后面各组的号码(即在第k 组中抽取的号码的后两位数为x +33k 的后两位数).(1)当x =24时,写出所抽取样本的10个号码;(2)若所抽取的10个号码中某个数的后两位数是87,求x 的取值范围.分析 按系统抽样的规则计算求解.解(1)所分组为0~99,100~199,…,900~999共10组,从每组中抽一个,第0组取24,则第1组取100+(24+33×1)=157,依次错位地从每组中取出,所取的号码为24,157,290,323,456,589,622,755,888,921.(2)①若抽取的样本为两位数,当k=0,取得号码为87时,x=87;②若抽取的样本为三位数,则87为x+33k(k=1,2,…,9)的后两位数.如当k=5时,x+33×5=□87,可以求出x=22,这样令k取不同的值可以求得x的值分别为:21,22,23,54,55,56,87,88,89,90.综上:x∈{21,22,23,54,55,56,87,88,89,90}.点评本题是系统抽样法的逆向综合问题,体现了知识间的联系和数学思想的运用.3 辨析分层抽样的解题方法若总体由差异明显的几部分组成,抽样时,先将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,再将各层取出的个体合在一起作为样本.这种抽样方法就是分层抽样.分层抽样尽量利用事先掌握的信息,并充分考虑了保持样本结构和总体结构的一致性,这对提高样本的代表性是很重要的.一、应用分层抽样应遵循以下要求:(1)将相似的个体归入一类,即为一层,分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异要小,层面之间的样本差异要大,且互不重叠.即遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.即所有层应采用同一抽样比等可能抽样.(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.二、一般地,分层抽样的操作步骤:第一步,计算样本容量与总体的个体数之比.第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数.第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体.第四步,将各层抽取的个体合在一起,就得到所取样本.样本容量与总体的个体数之比是分层抽样的比例常数,按这个比例可以确定各层应抽取的个体数,如果各层应抽取的个体数不都是整数应当调节样本容量,剔除个体.三、分层抽样的优点使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法.下面举例解析分层抽样的方法.例1 某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.解析由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20.答案37 20点评简单随机抽样是基础,系统抽样与分层抽样是补充和发展,三者相辅相成,对立统一.保证每个个体等可能入样是简单随机抽样、系统抽样、分层抽样共同的特征,为了保证这一点,分层时用同一抽样比是必不可少的.例2 某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为( )A.9 B.18 C.27 D.36解析设老年职工人数为x,则2x+x+160=430,所以x=90,因此,该单位老年职工共有90人,样本中老年职工人数为90×32160=18,所以用分层抽样的比例应抽取该样本中的老年职工人数为18.答案 B点评分层抽样要正确计算各层在总体中所占的比例,每层采用简单随机抽样法.分层抽样利用了调查者对调查对象事先掌握的各种信息,考虑了保持样本结构与总体结构的一致性,从而使样本更具代表性,在实际调查中被广泛应用.4 浅析3种抽样方法的合理选取一、简单随机宜少量例1 据报道,2009年7月22日的“日全食”较为理想的观测地点有上海、重庆、苏州、杭州、合肥、武汉、宜昌、成都、乐山、嘉兴这10个城市.某天文小组从这10个城市中随机抽取4个城市进行观测,宜采用的抽样方法是______________,每个城市被选中的可能性是。