【中小学资料】七年级数学上册 2.2《数轴》测试题(含解析)(新版)北师大版
- 格式:doc
- 大小:1.46 MB
- 文档页数:9
2数轴1.下边所画数轴正确的选项是()图 12. 如图 2,在数轴上点M表示的数可能是()图 2A.1.5 B.-C.-D.3.指出如图 3 所示的A,B,C,D,E各点分别表示什么数,并用“<”将它们连结起来.图 34.如图 4 所示,数轴上四点M,N, P, Q中表示负整数的点是()图4A.M B.N C.P D.Q5.在数轴上,原点及原点左侧的点表示的数是(A.正数B.负数C.非正数D.非负数.6. 以下说法中正确的选项是())A.在数轴上的点所表示的数,不是正数就是负数B.数轴的长度是有限的C.一个有理数总能够在数轴上找到一个表示它的点D.全部整数都能够用数轴上的点来表示,但分数就不必定能够找到表示它的点7.小明写作业时不慎将墨水滴在数轴上,墨迹遮住部分的整数共有________个.图 58.点 A, B, C,D分别表示-3,-11,0,4.请解答以下问题:2(1)在如图 6 所示的数轴上描出A,B,C,D四个点;(2)此刻把数轴的原点取在点 B 处,其他均不变,那么点 A,B,C,D分别表示什么数?图69.数轴上表示整数的点称为整点,某数轴的单位长度是 1 cm,若在这个数轴上任意画出一条长2018 cm 的线段AB,它覆盖的整点有__________个.10.在同一数轴上表示数- 0.5 , 0.2 ,-2,+2,此中表示0.2 的点的左侧的点有() A.1个B.2个C.3个D.4个11.有理数a,b在数轴上对应的点的地点如图7 所示,试用“>”“=”或“<”填空:a________0, b________0, a________b.图 712.把以下各数按大小次序用“>”连结起来.11-2,3.5 ,-1 ,2.75 ,2 ,- 3.2313.如图 8,数轴上有A, B, C,D四个点,此中到原点距离相等的两个点是()图8A.点B与点D B.点A与点C C.点A与点D D.点B与点C方法点拨⑧数轴上表示数 a 的点与表示数- a 的点到原点的距离相等.14. 若数轴上表示-1和3的两点分别是A和 B,则点 A 和点 B 之间的距离是() A.-4B.-2C.2D.415.在数轴上与原点的距离不大于 4 的整数点表示的数有 ____________.16.B10如图9,数轴上有三个点A, B, C,请回答以下问题:图 9将点 C向左挪动6个单位长度后,这时点 B 所表示的数比点C所表示的数大多少?(4)如何挪动 A, B, C中的两个点,才能使三个点表示的数同样?有几种挪动方法?1.D3.解:点A表示的数是 3;点B表示的数是- 1;点C表示的数是- 1.5 ;点D表示的数是1.5 ;点E表示的数是 0.5. 用“ <”将它们连结起来为- 1.5< -1<0.5<1.5<3.4.A5.C6.C7.78.解: (1) 如下图:(2)点 A 表示-11,点 B 表示 0,点 C 表示 11,点 D表示 51. 2229.2018 或 201910.B11.<> <12.解:如图:11因此 3.5>2.75>2 >-1 >-2>-3.3213.C14.D15.- 4,- 3,- 2,- 1,0,1,2,3,416.解: (1) 点 B 向左挪动 3 个单位长度后表示- 5,点 A 表示- 4,点 C 表示 3.-5<-4<3,因此点B表示的数最小,是-5.(2)点 A 向右挪动 4个单位长度后表示 0,点 B 表示- 2,点 C表示 3.-2<0<3, 因此点 B 表示的数最小,是- 2.(3)点 C 向左挪动 6个单位长度后表示- 3,点 B 表示- 2, 因此点 B表示的数比点 C 表示的数大 1.(4)有三种挪动方法.方法一:点 A 不动,点 B 向左挪动 2 个单位长度,点 C 向左挪动 7 个单位长度,三个点表示的数均为- 4.方法二:点 B 不动,点 A 向右挪动 2 个单位长度,点 C 向左挪动 5 个单位长度,三个点表示的数均为- 2.方法三:点 C 不动,点 A 向右挪动 7 个单位长度,点 B 向右挪动 5 个单位长度,三个点表示的数均为 3.① 原点,正方向,单位长度.② 数轴上的点不是都表示有理数;有理数都能够用数轴上的点来表示.③ 在数轴上分别表示出两个有理数,数轴上右侧的数大于左侧的数.。
北师大版数学七年级上册第二章有理数及其运算 2.2 数轴同步练习题1.下列表示数轴的是()2.如图所示的图形为四位同学画的数轴,其中正确的是()3. 在数轴上,原点及原点右边所表示的数是()A.正数 B.负数 C.非负数 D.非正数4. 如图,数轴上的A,B,C,D四点中,与数-1.7表示的点最接近的是()A.点A B.点B C.点C D.点D5. 已知数a,b,c,d在数轴上的位置如图所示,则a,b,c,d中负数的个数为()A.1个 B.2个 C.3个 D.4个6. 如图,数轴上所标出的点中,相邻两点间的距离相等,则点A表示的数是()A.30 B.50 C.60 D.807. 在数轴上,下列说法正确的是()A.1在-1的右边 B.-100在100的右边C.0.1在0的左边 D.-3在-4的左边8. 在-1,-2,0,1四个数中最小的数是()A.-1 B.-2 C.0 D.19. 在数-3,-2,0,3中,大小在-1和2之间的数是()A.-3 B.-2 C.0 D.310. 如图所示,下列式子中正确的是()A.a>b>0>c B.a>c>b>0C.c>b>a>0 D.c>0>b>a11. 如图,数轴上A,B两点分别对应有理数a,b,则下列结论正确的是()A.a<b B.a=b C.a>b D.a<012. 如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C,若点C表示的数为1,则点A表示的数为()A.7 B.3 C.-3 D.-213. 在数轴上到原点距离等于2的点所表示的数是()A.-2 B.2 C.±2 D.不能确定14. 5个城市的国际标准时间(单位:时)在数轴上表示如图所示,则北京时间2021年4月30日20时应是()A .伦敦时间2021年4月30日11时B .巴黎时间2021年4月30日13时C .纽约时间2021年4月30日5时D .首尔时间2021年4月30日19时15. 在数轴上A 点表示-13,B 点表示12,则离原点较近的点是____. 16. 如图所示,数轴的一部分被墨水污染,其含有的整数有.17. 如图所示,指出数轴上A ,B ,C ,D ,E 各点分别表示什么数,并用“>”将它们连接起来.18. 如图,若已知点A 表示-1.(1)标出数轴上的原点0;(2)若B 点也在数轴上且距A 点2个单位长度,则B 点表示的数是多少?参考答案:1---14 DDCBC CABCD CDCB15. A16. -1,0,1,217. 解:A :0 B :-32C :52D :-3 E :4 4>52>0>-32>-3 18. 解:(1)如图(2)1或-3。
北师大版七年级数学上册期末数轴有关压轴题专题复习练习题1、有理数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,若a =-2,b =-3,c =,(1)填空:A ,B 之间的距离为,之间的距离为 ,A ,C 之间的距离为 ; (2)问在数轴上是否存在一点P ,使P 与A 的距离是P 与C 的距离的3倍,若存在,请求出P 点对应的有理数;若不存在,请说明理由.2、操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题: ①5表示的点与数________表示的点重合;②若数轴上A 、B 两点之间距离为11(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少.3、结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 5 ;一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ﹣n |.如果表示数a 和﹣2的两点之间的距离是3,那么a = ;(2)若数轴上表示数a 的点位于﹣4与2之间,求|a +4|+|a ﹣2|的值;(3)当a 取何值时,|a +5|+|a ﹣1|+|a ﹣4|的值最小,最小值是多少?请说明理由.4、数轴上从左到右的三个点A,B,C所对应的数分别为a,b,c.其中AB=2017,BC=1000,如图所示.(1)若以B为原点,写出点A,C所对应的数,并计算a+b+c的值.(2)若原点O在A,B两点之间,求|a|+|b|+|b﹣c|的值.(3)若O是原点,且OB=17,求a+b﹣c的值.5、如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.6、如图所示,点A、B在数轴上分别表示有理数a、b,A、B两点之间距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)若x表示一个有理数,|x﹣2019|+|x﹣2020|有最小值吗?若有,请求出最小值,若没有,写出理由.(2)求|x﹣1|+2|x﹣3|+3|x﹣4|的最小值.(3)已知(|x+1|+|x﹣2|)(|y﹣2|+|y+1|)(|z﹣3|+|z+1|)=36,求x+2y+3z的最大值和最小值.7、已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0;(1)求a、b、c的值;(2)动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)动点P从A出发向右运动,速度为每秒1个单位长度,同时动点Q从C出发向左运动,速度为每秒2个单位的速度.设移动时间为t秒.求t为何值时,P、Q两点之间的距离为8?8、已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.(1)填空:abc0,a+b0,ab﹣ac0;(填“>”,“=”或“<”)(2)若|a|=2且点B到点A,C的距离相等,①当b2=16时,求c的值;②P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值.9、如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条使数轴上表示﹣1的点与表示5的点重合,则折痕与数轴的交点表示的数是;(2)如果数轴上两点之间的距离为6+m2(m为常数),这两点经过(1)的折叠方式后折痕与数轴的交点与(1)中的交点相同,求左边这个点表示的数;(用含m的代数式表示)(3)如图2,若将此纸条沿A,B处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,求最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)10、数轴上两个质点A .B 所对应的数为﹣8、4,A .B 两点各自以一定的速度在数轴上运动,且A 点的运动速度为2个单位/秒.(1)点A .B 两点同时出发相向而行,在4秒后相遇,求B 点的运动速度;(2)A 、B 两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A 、B 两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发作同方向的运动,且在运动过程中,始终有CA =2CB ,若干秒钟后,C 停留在﹣10处,求此时B 点的位置?11、如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB的中点,且a 、b 满足|a+3|+(b+3a )2=0. (1)求点C 表示的数;(2)点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP+BQ=2PQ ,求时间t ;(3)若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:①的值不变;②2BM ﹣BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值.12、已知:a 是最大的负整数,且a 、b 、c 满足()052=++-b a c .(1)请求出a 、b 、c 的值; (2)所对应的点分别为A 、B 、C ,点P 为动点,其对应的数为x ,当点P 在B 到C之间运动时,化简:31--+x x ;(写出化简过程)(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC-AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.13、如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.14、已知,A,B在数轴上对应的数分别用a,b表示,且.(1)数轴上点A表示的数是,点B表示的数是(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,当C点在数轴上且满足AC=3BC时,求C点对应的数.15、阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点.又如,表示0的点D到点A的距离是1,到点B的距离是2.那么点D就不是【A,B】的好点,但点D是【B,A】的好点:知识运用:51-b5a2=++)((1)如图1,点B是【D,C】的好点吗?是(填是或不是);(2)如图2,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止当t为何值时,P、A和B中恰有一个点为其余两点的好点?16、如图,数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,a、c满足|a+3|+(c﹣8)2=0,AB表示点A、B之间的距离,且AB=|a﹣b|.(1)a=,b=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B.、C在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AC=,BC=.(用含t的代数式表示)(4)在(3)的条件下,请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.17、已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有55个、44个、11个整数点,请直接写出t 1,t 2的值.参考答案:1、有理数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,若a =-2,b =-3,c =, (1)填空:A ,B 之间的距离为,之间的距离为 ,A ,C 之间的距离为 ; (2)问在数轴上是否存在一点P ,使P 与A 的距离是P 与C 的距离的3倍,若存在,请求出P 点对应的有理数;若不存在,请说明理由.解:(1)1 ,311,38(2)存在.设P 点对应的有理数为x. ①当点P 在点A 的左边时,有-2-x=3(32-x ) 解之得:x=2 (不合条件,舍去) ②当点P 在点A 和点C 之间时,有x -(-2)= 3 (32-x) 解之得:x=0③当点P 在点C 的右边时,有x -(-2)= 3 (x -32) 解之得:x=2综上所述,满足条件的P 点对应的有理数为0或2.2、操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题: ①5表示的点与数________表示的点重合;②若数轴上A 、B 两点之间距离为11(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少.解:(1)3 (2)①-3 ②由题意可得,A 、B 两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.、323、结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 3 ;表示﹣3和2两点之间的距离是 5 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a=1或﹣5 ;(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.【解答】解:(1)3,5,1或﹣5;(2)因为|a+4|+|a﹣2|表示数轴上数a和﹣4,2之间距离的和.又因为数a位于﹣4与2之间,所以|a+4|+|a﹣2|=6;(3)根据|a+5|+|a﹣1|+|a﹣4|表示一点到﹣5,1,4三点的距离的和.所以当a=1时,式子的值最小,此时|a+5|+|a﹣1|+|a﹣4|的最小值是9.4、数轴上从左到右的三个点A,B,C所对应的数分别为a,b,c.其中AB=2017,BC=1000,如图所示.(1)若以B为原点,写出点A,C所对应的数,并计算a+b+c的值.(2)若原点O在A,B两点之间,求|a|+|b|+|b﹣c|的值.(3)若O是原点,且OB=17,求a+b﹣c的值.【答案】解:(1)∵点B为原点,AB=2017,BC=1000,∴点A表示的数为a=﹣2017,点C表示的数是c=1000,∴a+b+c=﹣2017+0+1000=﹣1017.(2)∵原点在A,B两点之间,∴|a|+|b|+|b﹣c|=AB+BC=2017+1000=3017.答:|a|+|b|+|b﹣c|的值为3017.(3)若原点O在点B的左边,则点A,B,C所对应数分别是a=﹣2000,b=17,c=1017,则a+b﹣c=﹣2000+17﹣1017=﹣3000;若原点O在点B的右边,则点A,B,C所对应数分别是a=﹣2034,b=﹣17,c=983,则a+b﹣c=﹣2034﹣17﹣983=﹣3034.5、如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为﹣3 ,﹣1 ,m的值为﹣4 ;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.【答案】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40综上所述m=8或﹣40.6、如图所示,点A、B在数轴上分别表示有理数a、b,A、B两点之间距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)若x表示一个有理数,|x﹣2019|+|x﹣2020|有最小值吗?若有,请求出最小值,若没有,写出理由.(2)求|x﹣1|+2|x﹣3|+3|x﹣4|的最小值.(3)已知(|x+1|+|x﹣2|)(|y﹣2|+|y+1|)(|z﹣3|+|z+1|)=36,求x+2y+3z的最大值和最小值.解:(1)|x﹣2019|+|x﹣2020|表示数轴上表示x的点到表示2019、2020点的距离之和,要使距离之和最小,则2019≤x≤2020,∴|x﹣2019|+|x﹣2020|的最小值为2020﹣2019=1,答:|x﹣2019|+|x﹣2020|的最小值为1;(2)由(1)得,当x=3时,|x﹣1|+2|x﹣3|+3|x﹣4|的值最小,最小值为5.(3)当﹣1≤x≤2时,|x+1|+|x﹣2|的最小值为3,当﹣1≤y≤2时,|y﹣2|+|y+1|的最小值为3,当﹣1≤z≤3时,|z﹣3|+|z+1|的最小值为4,∵(|x+1|+|x﹣2|)(|y﹣2|+|y+1|)(|z﹣3|+|z+1|)=36,∴各自均取最小值,当x=﹣1、y=﹣1、z=﹣1时,x+2y+3z的值最小,x+2y+3z=﹣6,当x=2、y=2、z=3时,x+2y+3z的值最小,x+2y+3z=15,答:x+2y+3z的最大值为15,最小值为﹣6.7、已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0;(1)求a、b、c的值;(2)动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)动点P从A出发向右运动,速度为每秒1个单位长度,同时动点Q从C出发向左运动,速度为每秒2个单位的速度.设移动时间为t秒.求t为何值时,P、Q两点之间的距离为8?解:(1)∵|a+24|+|b+10|+(c﹣10)2=0,∴a+24=0,b+10=0,c﹣10=0,解得:a=﹣24,b=﹣10,c=10.(2)AB=﹣10﹣(﹣24)=14.①当点P在线段AB上时,t=2(14﹣t),解得:t=,∴点P的对应的数是﹣24+=﹣;②当点P在线段AB的延长线上时,t=2(t﹣14),解得:t=28,∴点P的对应的数是﹣24+28=4.综上所述,点P所对应的数是﹣或4.(3)点P、Q相遇前,t+2t+8=34,解得:t=;点P、Q相遇后,t+2t﹣8=34,解得:t=14.综上所述:当Q点开始运动后第秒或14秒时,P、Q两点之间的距离为8.8、已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.(1)填空:abc<0,a+b>0,ab﹣ac>0;(填“>”,“=”或“<”)(2)若|a|=2且点B到点A,C的距离相等,①当b2=16时,求c的值;②P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值.【解答】解:(1)∵a<0<b<c,∴abc<0,a+b>0,ab﹣ac>0,故答案为:<,>,>;(2)①∵|a|=2 且a<0,∴a=﹣2,∵b2=16 且b>0,∴b=4,∵点B到点A,C的距离相等,∴|4﹣(﹣2)|=|c﹣4|,∴c=10;②依题意,得bx+cx+|x﹣c|﹣10|x+a|=bx+cx+c﹣x﹣10x﹣10a=(b+c﹣11)x﹣10a+c,∴原式=(b+c﹣11)x﹣10a+c∵当P点在运动过程中,原式的值保持不变,即原式的值与x无关,∴b+c﹣11=0,∵b+2=c﹣b,∴b=3.9、如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条使数轴上表示﹣1的点与表示5的点重合,则折痕与数轴的交点表示的数是 2 ;(2)如果数轴上两点之间的距离为6+m2(m为常数),这两点经过(1)的折叠方式后折痕与数轴的交点与(1)中的交点相同,求左边这个点表示的数;(用含m的代数式表示)(3)如图2,若将此纸条沿A,B处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,求最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)【解答】解:(1)由折叠时,点﹣1与5是对称的,∴﹣1和5的中点为折痕与数轴的交点,∴交点为2,故答案为2;(2)设两个点左边的为x,右边的为y,∵两点之间的距离为6+m2,∴y﹣x=6+m2,由(1)知交点为2,∴x+y=4,∴x=﹣1﹣,∴左边的这个点表示的数是﹣1﹣.(3)对折n次后,每两条相邻折痕间的距离=,∴最右端的折痕与数轴的交点表示的数为4﹣.10、数轴上两个质点A.B所对应的数为﹣8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒.(1)点A.B两点同时出发相向而行,在4秒后相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CA=2CB,若干秒钟后,C停留在﹣10处,求此时B点的位置?解(1)设B点的运动速度为x个单位/秒,A.B两点同时出发相向而行,他们的时间均为4秒,则有:(2+x)×4=12.解得x=1,所以B点的运动速度为1个单位/秒;(2)设经过时间为t.则B在A的前方,B点经过的路程﹣A点经过的路程=6,则2t﹣t=6,解得t=6.A在B的前方,A点经过的路程﹣B点经过的路程=6,则2t﹣t=12+6,解得t=18.(3)设点C的速度为y个单位/秒,运动时间为t,始终有CA=2CB,即:8+(2﹣y)t=2×[4+(y﹣1)t].解得y=.当C停留在﹣10处,所用时间为:秒.B的位置为.11、如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a 、b满足|a+3|+(b+3a)2=0.(1)求点C表示的数;(2)点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,若AP+BQ=2PQ,求时间t;(3)若点P从A向右运动,点M为AP中点,在P点到达点B之前:①的值不变;②2BM﹣BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.【解答】解:(1)∵|a+3|+(b+3a)2=0,∴a+3=0,b+3a=0,解得a=﹣3,b=9,∴=3,∴点C表示的数是3;(2)∵AB=9+3=12,点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,∴AP=3t,BQ=2t,PQ=12﹣5t.∵AP+BQ=2PQ,∴3t+2t=24﹣10t,解得t=;还有一种情况,当P运动到Q的左边时,PQ=5t﹣12,方程变为2t+3t=2(5t﹣12),求得t=24/5(6分)(3)∵PA+PB=AB为定值,PC先变小后变大,∴的值是变化的,∴①错误,②正确;∵BM=PB+,∴2BM=2PB+AP,∴2BM﹣BP=PB+AP=AB=12.12、已知:a 是最大的负整数,且a 、b 、c 满足()052=++-b a c . (1)请求出a 、b 、c 的值;(2)所对应的点分别为A 、B 、C ,点P 为动点,其对应的数为x ,当点P 在B 到C 之间运动时,化简:31--+x x ;(写出化简过程)(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC-AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.解答:(1)依题意得,a=-1,c-5=0,a+b=0解得a=-1,b=1,c=5(2)当点P 在B 到C 之间运动时,1<x<5因此,当1<x ≤3时,x+1>0,x-3≤0,原式=x+1+x-3=2x-2;当3<x<5时, x+1>0,x-3>0,原式=x+1-(x-3)=4.(3)不变。
专题01数轴的三种常见考法【知识点精讲】1.数轴的概念1)数轴:用一条直线上的点表示数,这条直线叫作数轴2)三要素:①原点—参考点,正负数分界点;②方向—一般选取向右为正方向;③单位长度—同一条数轴上的单位长度应当一致2.数轴的读数与画法1)数轴的读数:在原点的左边,则为正数,在数轴的右边,则为负数。
2)画数轴步骤:a .直线b .确定原点c .选正方向(通常从原点向右或向上定位正方向)d .选取单位长度(选取适当长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似方法依次表示-1,-2,-3,…)e .标数(用实心点标数).3.数轴上的点与有理数之间的关系(数形结合)1)数轴上的点并不是都是有理数2)正方向可以不按照常规方向选取3)a >0,与原点的距离是a ,在数轴上可以是±a (存在多解的情况)注:要确定在数轴上的具体位置,必须要距离+方向4.数轴与数的大小1)正方向上,离原点越远,数越大2)负方向上,离原点越近,数越大(负数数字越大,结果反而越小)注:数轴从负方向向正方向,数值逐渐增大。
类型一、利用数轴比较大小例.已知有理数a ,b 在数轴上的位置如图所示,则下列结论中正确的是()A .0a b +>B .0a b ->C .10a ->D .10+>b 【答案】B 【详解】解:根据图示知:101b a <-<<<,10b ∴+<,0a b +<,0a b ->,10a -<.故选:B .【点睛】本题考查了数轴的知识以及不等式的基本性质,解题的关键是利用数形结合的思想得出a ,b 与1,1-的大小关系.个结论:)个A .4B .3【答案】B A .0ab >B .0a b ->A .a b b a a b -<<<+【详解】(1)OA=__________cm,OB=__________cm(2)A点表示的数是4、B点表示的数是6、C点表示的数是(3)∵C点坐标是4-,【变式训练2】如图,在数轴上点A 表示的有理数为4-,点B 表示的有理数为6,点P 从点A 出发以每秒2个单位长度的速度在数轴上沿由A 到B 方向运动,当点P 到达点B 后立即返回,仍然以每秒2个单位长度的速度运动至点A 停止运动.设运动时间为t (单位:秒).(1)2t =时点P 表示的有理数为___________;(2)求点P 是AB 的中点时t 的值;(3)请直接写出点P 到点A 的距离(用含t 的代数式表示);(4)请直接写出点P 表示的有理数(用含t 的代数式表示).【答案】(1)0(2)2.5或7.5(3)2t 或(202)t -(4)162t-【分析】(1)当2t =时,点P 的路程与4-的和即为点表示的有理数;(2)求出AB 的长,分两种情况:由A 到B 方向运动时点P 是AB 的中点;由B 到A 方向运动时点P 是AB 的中点;(3)分两种情况:点P 由点A 到点B 的运动过程中,点P 到点A 的距离即点P 的运动路程;点P 由点B 到点A 的运动过程中,点P 到点A 的距离为2AB 与点P 运动路程的差;(4)分两种情况:点P 由点A 到点B 的运动过程中;点P 由点B 到点A 的运动过程中;由(3)的结果及两点间的距离即可求得点P 表示的有理数.【详解】(1)解:点P 表示的有理数为4220-+⨯=;故答案为:0;(2)解:6(4)10AB =--=,1025AP BP ∴==÷=,当由A 到B 方向运动时,52 2.5t =÷=,当由B 到A 方向运动时,(105)27.5t =+÷=.综上,点P 是AB 的中点时 2.5t =或7.5;(3)解:当点P 由点A 到点B 的运动过程中,点P 与点A 的距离AP 的长度为2t ;当点P 由点B 到点A 的运动过程中,点P 与点A 的距离为(202)t -;(4)解:在点P 由点A 到点B 的运动过程中,点P 表示的有理数是42t -+;在点P 由点B 到点A 的返回过程中,点P 表示的有理数是4(202)162t t -+-=-.【点睛】本题考查了数轴上动点问题,两点间距离,数轴上的点表示有理数等知识,注意数形结合.个单位长度,第依此规律跳下去,1.如图,有理数a ,b ,c ,d 在数轴上的对应点分别是A ,B ,C ,D ,若6b d +=,则a c +()A .b d+B .小于6C .等于6D .大于6【答案】D 【分析】由6b d +=,A 在D 的右边,C 在B 的右边,利用加数与和的关系可知a c +与6的大小关系.【详解】解:∵A 在D 的右边,C 在B 的右边,∴a d >,c b >,A .1-B .1A .向东行驶5个单位长度B .向西行驶单位长度D .向西行驶1个单位长度【答案】C A .a b >-B .0ab <,即可分析得出答案.A.1个B.2个【答案】<>【答案】2π1-【分析】由圆的周长为2π,再结合数轴上两点之间的距离可得答案.【答案】4或5或6【分析】由线段总长度及三条线段的长度之比,可得三条线段的长度,再分情况讨论即可.【详解】解:∵线段长为8,这三条线段的长度之比为1:1:。
(七年级)初一数学上册北师大,人教版等通用数轴专项练习试题及答案2一、单选题1.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >0 2.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:(1)b ﹣a <0;(2)|a|<|b|;(3)a+b >0;(4)b a>0.其中正确的是( )A .(1)(2)B .(2)(3)C .(3)(4)D .(1)(4) 3.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m 、n 、p 、q ,如图2,先让圆周上表示m 的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示-2019的点与圆周上重合的点对应的字母是( )A .mB .nC .pD .q 4.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动。
设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数。
给出下列结论:①33x =;②51x =;③108104x x <;④20182019x x >。
其中,正确的结论的序号是( )A .①③B .②③C .①②③D .①②④ 5.实数a 、b 在数轴上的位置如图所示,下列各式成立的是()A .0ab < B .a-b >0 C .ab >0 D .a+b >0 6.如图,点A 、B 表示的数分别是a 、b ,点A 在0和1对应的两点(不包括这两点)之间移动,点B 在-3,-2对应的两点之间移动,下列四个代数式的值可能比2019大的是( )A .11a b -B .b a -C .2()a b -D .1b a-二、填空题7.一个点从数轴上的原点开始,先向右移动1个单位长度,再向左移动2个单位长度,再向右移动3个单位长度,再向左移动4个单位长度,……,移动2019次后,该点所对应的数是_____.8.在数轴上表示有理数a ,b ,c 的三点如图所示,若ac<0,b+a<0,则①a b >;②b+c<0,③abc<0,其中正确的是________(只填序号).9.数轴上A 、B 、C 、D 四点对应的数都是整数,若点A 对应的数为a ,点B 对应的数为b ,且b -2a =7,则数轴上的原点应是点_____________.10.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是( )A .(3)(2)5+++=+B .(3)(2)1++-=+C .(3)(2)5--+=-D .(3)(2)1-++=-②一机器人从原点O 开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是_____.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示_______的点重合.②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示_____B点表示______.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为____.(用含有a,b 的式子表示)三、解答题11.已知:c=10,且a,b满足(a+26)2+|b+c|=0,请回答问题:(1)请直接写出a,b,c的值:a=,b=;(2)在数轴上a、b、c所对应的点分别为A、B、C,记A、B两点间的距离为AB,则AB=,AC=;(3)在(1)(2)的条件下,若点M从点A出发,以每秒1个单位长度的速度向右运动,当点M到达点C时,点M停止;当点M运动到点B时,点N从点A出发,以每秒3个单位长度向右运动,点N到达点C后,再立即以同样的速度返回,当点N到达点A时,点N停止.从点M开始运动时起,至点M、N均停止运动为止,设时间为t 秒,请用含t的代数式表示M,N两点间的距离.12.如图,相距5km的A、B两地间有一条笔直的马路,C地位于AB两地之间且距A 地2km,小明同学骑自行车从A地出发沿马路以每小时5km的速度向B地匀速运动,当到达B地后立即以原来的速度返回。
数轴练习一、选择题1.在数轴上,原点及原点右边的点所表示的数是()A. 负数B. 非负数C. 非正数D. 正数2.点A、B、C、D在数轴上的位置如图所示,其中表示−2的点是()A. AB. BC. CD. D3.在数轴上表示−5,0,3,1的点中,在原点右边的点有()2A. 1个B. 2个C. 3个D. 4个4.下列说法:①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数;③有理数−1在数轴上无法表示出来;1000④任何一个有理数都可以在数轴上找到与它对应的唯一点其中正确的是()A. ①②③④B. ②②③④C. ③④D. ④5.一只蚂蚁沿数轴从点A向右爬了15个单位长度到达点B,点B表示的数为−2,则点A表示的数为().A. 15B. 13C. −13D. −176.如图,数轴上蚂蚁所在点表示的数可能为()A. 3B. 0C. −1D. −27.把数轴上表示4的点移动2个单位后表示的数为()A. 3B. 2C. 3或5D. 2或68.一只蚂蚁从数轴上的点A出发爬了6个单位长度到了原点,则点A表示()A. 6B. −6C. ±6D. ±99.有理数a,b,c在数轴上对应的点的位置如图所示,则下列关系正确的是()A. a>b>cB. b>a>cC. c>b>aD. b>c>a10.数轴上A,B,C三点表示的有理数分别为a,b,c,若ab<0,a+b>0,a+b+c<0,则下列数轴符合题意的是()A. B.C. D.11.数轴上到点−2的距离为5的点表示的数为()A. −3B. −7C. 3或−7D. 5或−312.a,b两数在数轴上的位置如图所示,下列结论中正确的是()A. a<0,b>0B. a+b<0C. ab>0D. a−b<013.如图,点A、B、C、D四个点在数轴上表示的数分别为a、b、c、d,则下列结论中,错误的是()<0A. a+b<0B. c−b>0C. ac>0D. bd14.在数轴上距−2有3个单位长度的点所表示的数是()A. −5B. 1C. −1D. −5或1二、填空题15.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右移动3个单位长度,得到点C,若CO=BO,则a的值为______.16.如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是______.(用含π的式子表示)17.如图,数轴上A、B两点所表示的数分别是−4和2,点C是线段AB的中点,则点C所表示的数是______.18.一只电子跳蚤从数轴原点出发,第一次向右跳一格,第二次向左跳两格,第三次向右跳三格,第四次向左跳四格,…,按这样的规律跳2019次,跳蚤所在的点为______.19.数轴上表示−5和−14的两点之间的距离是________.三、解答题20.点A,B在数轴上的位置如图所示:(1)点A表示的数是________,点B表示的数是________.(2)在原图中分别标出表示+3的点C、表示−1.5的点D.(3)在上述条件下,B,C两点间的距离是________,A,C两点间的距离是________.21.某市交警大队一辆警车每天在一段东西方向的公路上巡逻执法.一天上午从A地出发,中午到达B地,规定向东行驶的里程为正,向西行驶的里程为负,这天行驶的里程数记录如下(单位:km);−25,+10,+15,−10,+16,−18,+10,−21.(1)问B地在A地的东面还是西面?A,B两地相距多少千米?(2)若该警车每千米耗油0.2升,警车出发时,油箱中有油10升,请问中途有没有给警车加过油?若有,至少加了多少升油?请说明理由.22.已知有理数a、b、c在数轴上的对应点分别是A、B、C.其位置如图所示,化简|a|+2|b+c|−3|a−c|−4|a+b|.。
2.2《数轴》典型例题例1 下列各图中,表示数轴的是( )例2 画一条数轴,并把-6,1,0,212 ,215表示在数轴上。
例3 指出数轴上A 、B 、C 、D 、E 各点分别表示什么数.例4 下面说法中错误的是( )A .数轴上原点的位置是任意取的,不一定要居中;B .数轴上单位长度的大小要根据实际需要选取.1厘米长的线段可以代表1个单位长度,也可以代表2个、5个、10个、100个、…单位长度,但一经取定,就不可改动;C .如果a <b ,那么在数轴上表示a 的点比表示b 的点距离原点更近;D .所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数. 例5 指出下面各数的相反数-5( ) 3( ) 211( ) -7.5( ) 0( ) 例6 指出下面数轴上各点表示的相反数。
例7 比较下列各组数的大小:(1)-536 ⃝ 0 (2)10003⃝ 0 (3)0.2% ⃝ -21(4)-18.4 ⃝ -18.5 (5)2713 ⃝ 5930 (6)-0.32 ⃝ -50172.2《数轴》典型例题参考答案:例1:D例2:例3:O 表示0,A 表示322 ,B 表示1,C 表示413,D 表示-4,E 表示-0.5 例4:C例5: -5的相反数是+5,3的相反数是-3;211的相反数是-211;-7.5的相反数是7.5;0的相反数是0。
例6:A 点表示的数的相反数是1;B 点表示的数的相反数是-2;C 点表示的数的相反数是0;D 点表示的数的相反数是3。
例7:(1)-536<0 (2)10003>0(3)0.2%>-21(4) -18.4>-18.5 (5)2713<5930 (6)-0.32>-5017.。
专题02数轴上的四种动点问题【知识点梳理】1.数轴上两点间的距离数轴上A、B两点表示的数为分别为a、b,则A与B间的距离AB=|a-b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.类型一、求动点表示的数例.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移3个单位长度得到点C.若CO BO=,则a的值为()A.5-B.1-C.5-或1-D.3-【答案】C【解析】∵CO=BO,B点表示2,∴点C表示的数为±2,∴a=-2-3=-5或a=2-3=-1,故选:C.【变式训练1】在数轴上,点P从某点A开始移动,先向右移动5个单位长度,再向左移动4个单位长度,-,则点A表示的数是()最后到达1A.3B.1-C.2-D.6-【答案】C【解析】由题意可得:-1+4-5=-2,故选C.【变式训练2】如图,将一个半径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A到达点A'的位置,则点A'表示的数是_______;若起点A开始时是与—1重合的,则滚动2周后点A'表示的数是______.【答案】2π或2π-41π-或41π--【解析】因为半径为1的圆的周长为2π,所以每滚动一周就相当于圆上的A 点平移了2π个单位,滚动2周就相当于平移了4π个单位;当圆向左滚动一周时,则A'表示的数为2π-,当圆向右滚动一周时,则A'表示的数为2π;当A 点开始时与1-重合时,若向右滚动两周,则A'表示的数为41π-,若向左滚动两周,则A'表示的数为41π--;故答案为:2π①或2π-;41π-②或41π--.【变式训练3】已知数轴上点A 对应的数为6-,点B 在点A 右侧,且,A B 两点间的距离为8.点P 为数轴上一动点,点C 在原点位置.(1)点B 的数为____________;(2)①若点P 到点A 的距离比到点B 的距离大2,点P 对应的数为_________;②数轴上是否存在点P ,使点P 到点A 的距离是点P 到点B 的距离的2倍?若存在,求出点P 对应的数;若不存在,请说明理由;(3)已知在数轴上存在点P ,当点P 到点A 的距离与点P 到点C 的距离之和等于点P 到点B 的距离时,点P 对应的数为___________;【答案】(1)2;(2)①-1;②23-或10;(3)-8和-4【解析】(1)∵点A 对应的数为-6,点B 在点A 右侧,A ,B 两点间的距离为8,∴-6+8=2,即点B 表示的数为2;(2)①设点P 表示的数为x ,当点P 在点A 的左侧,PA <PB ,不符合;当点P 在A 、B 之间,x -(-6)=2-x +2,解得:x =-1;当点P 在点B 右侧,PA -PB =AB =8,不符合;故答案为:-1;②当点P 在点A 的左侧,PA <PB ,不符合;当点P 在A 、B 之间,x -(-6)=2(2-x ),解得:x =23-;当点P 在点B 右侧,x -(-6)=2(x -2),解得:x =10;∴P 对应的数为23-或10;(3)当点P 在点A 左侧时,-6-x +0-x =2-x ,解得:x =-8;当点P 在A 、O 之间时,x -(-6)+0-x =2-x ,解得:x =-4;当点P 在O 、B 之间时,x -(-6)+x -0=2-x ,解得:x =43-,不符合;当点P 在点B 右侧时,x -(-6)+x -0=x -2,解得:x =-8,不符合;综上:点P 表示的数为-8和-4.类型二、求动点的速度例.已知多项式2234x xy --的常数项是a ,次数是b ,且a ,b 两个数轴上所对应的点分别为A 、B ,若点A 、点B 同时沿数轴向正方向运动,点A 的速度是点B 的2倍,且3秒后,32OA OB =,求点B 的速度为()A .34B .14或34C .14或32D .32【答案】C【解析】∵多项式x 3-3xy 2-4的常数项是a ,次数是b ,∴a=-4,b=3,设B 速度为v ,则A 的速度为2v ,3秒后点A 在数轴上表示的数为(-4+6v ),B 点在数轴上表示的数为3+3v ,且OB=3+3v当A 还在原点O 的左边时,OA=0-(-4+6v )=4-6v ,由32OA OB =可得3(46)332v v -=+,解得14v =;当A 还在原点O 的右边时,OA=(-4+6v )-0=6v-4,由32OA OB =可得3(64)332v v -=+,解得32v =.故B 的速度为14或32,选C.故答案为:C类型三、求动点运动的时间例.如图所示,A 、B 是数轴上的两点,O 是原点,AO=10,OB=15,点P 、Q 分别从A 、B 同时出发,点P 以每秒2个单位长度的速度沿数轴向左匀速运动,点Q 以每秒4个单位长度的速度沿数轴向左匀速运动,M 为线段AP 的中点,设运动的时间为t (t≥0)秒,M 、Q 两点到原点O 的距离相等时,t 的值是()A .1t s =或252t s =B .2t s =或253t s =C .1t s =或253t s =D .2t s =或252t s =【答案】C【解析】∵O是原点,AO=10,OB=15,∴点A表示的数是-10,点B表示的数是15,∵点P以每秒2个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,∴OM=|-10-t|,∵点Q以每秒4个单位长度的速度沿数轴向左匀速运动,∴OQ=|15-4t|,∵M、Q两点到原点O的距离相等,∴|-10-t|=|15-4t|,∴-10-t=15-4t或-10-t=-(15-4t),解得:t=253或t=1,故选:C.【变式训练1】如图,点A在数轴上表示的数是16-,B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动,问:当8AB=时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒【答案】C【解析】设当AB=8时,运动时间为t秒,①当点A在点B的左边时,由题意得6t+2t+8=8-(-16),解得:t=2②当点A在点B的右边时,6t+2t=8-(-16)+8,解得:t=4.故选:C.【变式训练2】如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O A O→→以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(t不超过10秒).若点P在运动过程中,当2PB=时,则运动时间t的值为()A.32秒或72秒B.32秒或72秒或132或172秒C.3秒或7秒D.3秒或132或7秒或172秒【答案】B【解析】∵数轴上的点O和点A分别表示0和10,∴OA=10∵B是线段OA的中点,∴OB=AB=15 2OA=①当点P由点O向点A运动,且未到点B时,如下图所示,2PB=此时点P 运动的路程OP=OB -PB=3,∴点P 运动的时间为3÷2=32s ;②当点P 由点O 向点A 运动,且已过点B 时,如下图所示,2PB =此时点P 运动的路程OP=OB+PB=7,∴点P 运动的时间为7÷2=72s ;③当点P 由点A 向点O 运动,且未到点B 时,如下图所示,2PB =此时点P 运动的路程为OA +AP=OA +AB -PB=13,∴点P 运动的时间为13÷2=132s ;④当点P 由点A 向点O 运动,且已过点B 时,如下图所示,2PB =此时点P 运动的路程为OA +AP=OA +AB +PB=17,∴点P 运动的时间为17÷2=172s ;综上所述:当2PB =时,则运动时间t 的值为32秒或72秒或132或172秒故选B .【变式训练3】已知数轴上有,,A B C 三点,分别表示数24,10--,10,若两只电子蚂蚁甲、乙分别从,A C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒,(1)甲、乙两点在数轴上哪个点相遇?(2)多少秒后甲到,,A B C 三点的距离之和是40个单位长度?【答案】(1)-10.4;(2)2秒或5秒【解析】(1)设x 秒后甲与乙相遇,则4x +6x =34,解得x =3.4,4×3.4=13.6,-24+13.6=-10.4.故甲、乙在数轴上的-10.4相遇;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应位于AB或BC之间.①AB之间时:4y+(14-4y)+(14-4y+20)=40解得y=2;②BC之间时:4y+(4y-14)+(34-4y)=40,解得y=5,综上:2秒或5秒后甲到,,A B C三点的距离之和是40个单位长度.类型四、综合问题例.如图,在数轴上点A、B表示的数分别为﹣2、4.(1)若点M到点A、点B的距离相等,那么点M所对应的数是.(2)若点M从点B出发,以1个单位/秒的速度向左运动,同时点N恰好从点A出发,以2个单位/秒的速度向右运动,设M、N两点在数轴上的点E相遇,则点E对应的数是.(3)若点D是数轴上一动点,当动点D到点A的距离与到点B的距离之和等于10时,则点D对应的数是.(4)若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过多少秒后,M、N两点间的距离为24个单位长度.【答案】(1)1;(2)2;(3)﹣4或6;(4)经过30秒或103秒后,M、N两点间的距离为24个单位长度【解析】(1)∵点A、B对应的数分别为﹣2、4,∴AB=4-(-2)=6,∵点M到点A、点B的距离相等,∴MA=3,∴点M对应的数是-2+3=1;故答案为:1;(2)t秒后,点M表示4﹣t,点N表示﹣2+2t,若两点相遇则4﹣t=﹣2+2t,解得t=2,4﹣2=2,所以点E对应的数是2.故答案为:2;(3)设点D对应的数是x,∵AB=6,∴点D不可能在线段AB上.①点D在A的左边时,DA=﹣2﹣x,DB=4﹣x,(﹣2﹣x)+(4﹣x)=10,解得x=﹣4;②点D在B的右边时,DA=2+x,DB=x﹣4,(2+x)+(x﹣4)=10,解得x=6;故答案为:﹣4或6;(4)①若点N 向右运动,t 秒后,点M 对应的数是5t ﹣2,点N 对应的数是4+4t ,MN =|(5t ﹣2)﹣(4+4t )|=|t ﹣6|=24,解得t =30或﹣18(舍去);②若点N 向左运动,t 秒后,点M 对应的数是5t ﹣2,点N 对应的数是4﹣4t ,MN =|(5t ﹣2)﹣(4﹣4t )|=|9t ﹣6|=24,解得t =103或﹣2(舍去);答:经过30秒或103秒后,M 、N 两点间的距离为24个单位长度.故答案为:(1)1;(2)2;(3)﹣4或6;(4)经过30秒或103秒后,M 、N 两点间的距离为24个单位长度【变式训练1】已知若数轴上点A 、点B 表示的数分别为,a b ,则AB a b =-∣∣,线段AB 的中点表示的数为2a b+.如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.(1)填空:①,A B 两点间的距离AB =______,线段AB 的中点表示的数为_____;②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为______.(2)求当t 为何值时,,P Q 两点相遇,并写出相遇点所表示的数.(3)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.【答案】(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【解析】(1)①AB =8-(-2)=10,AB 中点为282-+=3,故答案为:10,3;②t 秒后,点P 表示的数为-2+3t ,点Q 表示的数为8-2t ,故答案为:-2+3t ,8-2t ;(2)∵当P 、Q 两点相遇时,P 、Q 表示的数相等∴-2+3t =8-2t ,解得:t =2,∴当t =2时,P 、Q 相遇,此时,-2+3t =-2+3×2=4,∴相遇点表示的数为4;(3)∵点M 表示的数为()2233222t t-+-+=-,点N 表示的数为()8233322t t+-+=+,∴MN =333222t t ⎛⎫+-- ⎪⎝⎭=5.故答案为:(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【变式训练2】如图,数轴上原点为O ,A ,B 是数轴上的两点,点A 对应的数是a ,点B 对应的数是b ,且a ,b 满足2(2)40a b -++=,动点M ,N 同时从A ,B 出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为x 秒(x >0).(1)A 、B 两点间的距离是;动点M 对应的数是(用含x 的代数式表示);动点N 对应的数是;(用含x 的代数式表示)(2)几秒后,线段OM 与线段ON 恰好满足3OM =2ON ?(3)若M ,N 开始运动的同时,R 从﹣1出发以2个单位/秒的速度沿着数轴正方向运动,当R 与M 不重合时,求MB NBRM-的值.【答案】(1)6,2x +,34x -;(2)143秒或29秒;(3)2或 2.-【解析】(1)∵a ,b 满足2(2)40a b -++=,∴a ﹣2=0,b +4=0,∴a =2,b =﹣4,∵点A 对应的数是a ,点B 对应的数是b ,AB =2﹣(﹣4)=6.当运动时间为x 秒时,动点M 对应的数是x +2,动点N 对应的数是3x ﹣4.故答案为:6;x +2;3x ﹣4.(2)由(1)中M ,N 所对的数得OM =x +2,ON =3x ﹣4,∵3OM =2ON ,∴|32|(2)34x x+=﹣,①3(2+x )=2(3x ﹣4),解得x =143;②3(2+x )=﹣2(3x ﹣4),解得x =29;综上,143或29秒后,线段OM 与线段ON 恰好满足3OM =2ON ;(3)由题意得动点R 所对的数为﹣1+2x ,|12)((|3||2)RM x x x +-+--==,(2)(4)6MB x x =+--=+,(43)(4)3NB x x =-+--=,∴MB﹣NB =6+x ﹣3x =6﹣2x ,∵2+x =﹣4+3x ,解得x =3,∴M 与N 相遇时时间为3s ,。
专题01 数轴的三种常见考法【知识点精讲】1. 数轴的概念1)数轴:用一条直线上的点表示数,这条直线叫作数轴 2)三要素:①原点—参考点,正负数分界点; ②方向—一般选取向右为正方向;③单位长度—同一条数轴上的单位长度应当一致 2. 数轴的读数与画法1)数轴的读数:在原点的左边,则为正数,在数轴的右边,则为负数。
2)画数轴步骤:a .直线 b .确定原点 c .选正方向(通常从原点向右或向上定位正方向) d .选取单位长度(选取适当长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似方法依次表示-1,-2,-3,…) e .标数(用实心点标数).3. 数轴上的点与有理数之间的关系(数形结合) 1)数轴上的点并不是都是有理数 2) 正方向可以不按照常规方向选取3)a >0,与原点的距离是a ,在数轴上可以是±a (存在多解的情况) 注:要确定在数轴上的具体位置,必须要距离+方向 4. 数轴与数的大小1)正方向上,离原点越远,数越大2)负方向上,离原点越近,数越大(负数数字越大,结果反而越小) 注:数轴从负方向向正方向,数值逐渐增大。
类型一、利用数轴比较大小例.已知有理数a ,b 在数轴上的位置如图所示,则下列结论中正确的是( )A .0a b +>B .0a b ->C .10a ->D .10+>b【变式训练1】已知a ,b ,c 三个数在数轴上的位置如图所示,有以下4个结论:①0a b -<;②c a b ->>-;③0a c +>;④0abc <;其中正确的结论的个数有( )个A .4B .3C .2D .1【变式训练2】如图,点A 、B 均在数轴上,且点,A B 所对应的实数分别为a 、b ,若0a b +>,则下列结论一定正确的是( )A .0ab >B .0a b ->C .0ab> D .0b >【变式训练3】有理数a ,b 在数轴上的位置如图所示,则下列结论正确的是( )A .a b b a a b -<<<+B .a b b a b a -<<+<C .b a b a a b <+<<-D .a b b a a b +<<<-类型二、基本动点问题例.在数轴上,把原点记作点O ,表示数1的点记作点A .对于数轴上任意一点P (不与点O ,点A 重合),将线段PA 与线段PO 的长度之比定义为点P 的特征值,记作ˆP ,即ˆPAPPO=,例如:当点P 是线段OA 的中点时,因为PO PA =,所以ˆ1P =.若数轴上的点P 满足2OP OA =,则ˆP的值是________.例2.如图,已知线段24cm AB =,点O 为线段AB 上一点,且:1:2OA OB =.动点P 以1cm/s 的速度,从点O 出发,沿OB 方向运动,运动到点B 停止;点P 出发1s 后,点Q 以4cm/s 的速度,从点O 出发,沿OA 方向运动,运动到点A 时,停留2s ,按原速沿AB 方向运动到点B 停止.设P 的运动时间为t s .(1)OA =__________cm ,OB =__________cm ; (2)当Q 从O 向A 运动时,若2OQ OP =,求t 的值. (3)当2cm PQ =时,直接写出t 的值.【变式训练1】在数轴上,一只蚂蚁从原点出发,先向右爬行了4个单位长度到达点A,再向右爬行了2个单位长度到达点B,然后又向左爬行了10个单位长度到达点C.(1)画出数轴并标出A,B,C三点在数轴上的位置;(2)写出点A、B、C三点表示的数;(3)根据点C在数轴上的位置,点C可以看作是蚂蚁从原点出发,向哪个方向爬行了几个单位长度得到的?【变式训练2】如图,在数轴上点A表示的有理数为4-,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止运动.设运动时间为t(单位:秒).t=时点P表示的有理数为___________;(1)2(2)求点P是AB的中点时t的值;(3)请直接写出点P到点A的距离(用含t的代数式表示);(4)请直接写出点P表示的有理数(用含t的代数式表示).【变式训练3】一只跳蚤在数轴上从原点开始,第1次向右跳1个单位长度,第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度,…依此规律跳下去,当它跳第20次落下时,落点处离原点的距离是________个单位长度.类型三、两点之间的距离例1.在数轴上,到原点的距离等于5个单位长度的点所表示的数是________.【变式训练1】数轴上A 、B 两点对应的数分别为18-和3-,P 为数轴上一点,若:3:2AP PB =,则点P 表示的数是________.【变式训练2】在数轴上,点A 表示的数为15-,点M 以每秒3个单位长度的速度从点A 出发沿数轴向右运动经过________秒,点M 与原点O 的距离为6个单位长度.课后训练1.如图,有理数a ,b ,c ,d 在数轴上的对应点分别是A ,B ,C ,D ,若6b d +=,则a c +( )A .b d +B .小于6C .等于6D .大于62.如图,数轴上A ,B 两点所表示的数分别是4-和2,C 是AB 的中点,则点C 所表示的数是( )A .1-B .1C .12D .12-3.规定向东为正,向西为负,将遥控小汽车两次行驶的情况表示在如图所示的数轴上,则遥控小汽车两次运动后的结果是( )A .向东行驶5个单位长度B .向西行驶3个单位长度C .向东行驶2个单位长度D .向西行驶1个单位长度8.如图,点A 和B 表示的数分别为a 和b ,下列式子中,不正确的是( )A . a b >-B . 0ab <C . 20a ->D . 0a b +>4.有理数m 、n 在数轴上的位置如图,则下列关系式正确的个数有( ) ①0m n +<;②0n m ->;③20m n ->;④0n m -->;⑤11m n>-A .1个B .2个C .3个D .4个5.点a ,b 在数轴上的位置如图,则a b +______0,a b -+______07.如图,把半径为1的圆从数轴上表示1-的点A 开始沿数轴向右滚动一周,圆上的点A 到达点A ',则点A '表示的数为______.8.在数轴上剪下8个单位长度(从1到9)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图).若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________9.A 、B 两个动点在数轴上同时出发,分别向左、向右做匀速运动,它们的运动时间以及在数轴上的位置记录如下. 时(秒) 0 57A 点位置 191-B 点位置___ 17 27(1)根据题意,填写表格;(2)A 、B 两点能否相遇,如果能相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A 、B 两点能否相距9个单位长度,如果能,求相距9个单位长度的时刻;如不能,请说明理由.。
北师大版七年级数学上册第二章 数轴压轴题专题练习题1、已知a 、b 分别对应数轴上A 、B 两点,并且满足|a -2|+(3a +2b )2=0 ,点P 为数轴上一个动点,它对应的数是x(1) 填空:a =__________,b =__________,AB =__________(2) 若P 为线段AB 上一点,并且PA =3PB ,求x 的值(3) 若P 点从A 点出发以每秒2个单位的速度运动,那么出发几秒钟后,线段PA =4PB ?2、结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示3-和2两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|x +1|=3,那么x=__________;(3)若|a −3|=2, |b +2|=1, 且数a,b 在数轴上表示的数分别是点A ,点B ,则A 、B 之间的最大距离是_______,最小距离是___________;(4)若数轴上表示数a 的点位于-4和2之间,则|a +4|+|a −2|=_________。
3、如图,已知点O 是原点,点A 在数轴上,点A 表示的数为-6,点B 在原点的右侧,且OB =43OA , (1)点B 对应的数是_________,在数轴上标出点B 。
(2)已知点P 、点Q 是数轴上的两个动点,点P 从点A 出发,以1个单位/秒的速度向右运动,同时点Q 从点B 出发,以3个单位/秒的速度向左运动;①用含t 的式子分别表示P 、Q 两点表示的数:P 是__________;Q 是____________; ②若点P 和点Q 经过t 秒后在数轴上的点D 处相遇,求出t 的值和点D 所表示的数;B A O③求经过几秒,点P与点Q分别到原点的距离相等?4、如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.5、同学们都知道,|5−(−2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求|5−(−2)|=.(2)若25x-=,则x=(3)同理12++-表示数轴上有理数x所对应的点到-1和2所对应的两点x x距离之和,请你找出所有符合条件的整数x,使得123++-=,这样的整x x数是 (直接写答案).6、结合数轴与绝对值的知识回答下列问题:(1)表示—3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于m n-.如果32=+a,那么a= .(2)若数轴上表示数a的点位于—4与2之间,则42a a++-的值为;(3)利用数轴找出所有符合条件的整数点...x,使得25x x++-=7,这些点表示的数的和是.(4)当a= 时,314a a a++-+-的值最小,最小值是 .7、操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.8、如图,已知点O是原点,点A在数轴上,点A表示的数为-6,点B在原点的右侧,且OB=43OA,(1)点B对应的数是_________,在数轴上标出点B。
数轴测试题时间:45分钟总分: 100一、选择题(本大题共8小题,共32.0分)1.在数轴上到原点距离等于3的数是A. 3B.C. 3或D. 不知道2.有理数a,b在数轴的位置如图,则下面关系中正确的个数为.A. 1B. 2C. 3D. 43.若数轴上表示和3的两点分别是点A和点B,则点A和点B之间的距离是A. B. C. 2 D. 44.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且数a对应的点在M与N之间,数b对应的点在P与R之间,若,则原点是A. M或RB. N或PC. M或ND. P或R5.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是A. B.C. D.6.点M为数轴上表示的点,将点M沿数轴向右平移5个单位到点N,则点N表示的数是A. 3B. 5C.D. 3或7.在数轴上,与表示数的点的距离是3的点表示的数是A. 2B.C.D. 2或8.下列说法错误的有最大的负整数是;绝对值是本身的数是正数;有理数分为正有理数和负有理数;数轴上表示的点一定在原点的左边;在数轴上7与9之间的有理数是8.A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共32.0分)9.已知A,B,C是数轴上的三个点,且C在B的右侧点A,B表示的数分别是1,3,如图所示若,则点C表示的数是______ .10.在数轴上,与表示的点相距6个单位长度的点表示的数是______ .11.在数轴上,点A表示1,点C与点A间的距离为3,则点C所表示的数是______ .12.在数轴上把表示的点A沿数轴移动6个单位后得到点B,则B所表示的数为______ .13.已知数轴上的A点表示那么在数轴上与A点的距离5个长度单位的点所表示的数是______.14.如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据;则被淹没的整数点有______ 个,负整数点有______ 个,被淹没的最小的负整数点所表示的数是______ .15.在数轴上与所对应的点相距4个单位长度的点表示的数是______.16.数轴上表示与之间的所有整数之和是______.三、计算题(本大题共4小题,共24.0分)17.点A、B在数轴上的位置如图所示:点A表示的数是______ ,点B表示的数是______ ;在原图中分别标出表示的点C、表示的点D;在上述条件下,B、C两点间的距离是______ ,A、C两点间的距离是______ .18.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东记为正,向西记为负,当天的航行路程记录如下单位:千米:14,,,,,,,.请你帮忙确定B地相对于A地的位置;若冲锋舟每千米耗油升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?19.已知数轴上有A,B,C三个点,分别表示有理数,,10,动点P从A出发,以每秒4个单位长度的速度向终点C移动,设移动时间为t秒.用含t的代数式表示点P与A的距离:______;点P对应的数是______;动点Q从点B出发,以每秒1个单位长度的速度向终点C移动,若P、Q同时出发,求:当点P运动多少秒时,点P和点Q间的距离为8个单位长度?20.把下列各数在数轴上表示出来,并用“”把它们连接起来,3,,,0.四、解答题(本大题共2小题,共12.0分)21.已知数轴上三点A,O,B表示的数分别为6,0,,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多少时间追上点R?若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.22.在数轴上有A、B两点,所表示的数分别为n,,A点以每秒5个单位长度的速度向右运动,同时B点以每秒3个单位长度的速度也向右运动,设运动时间为t秒.当时,则 ______ ;当t为何值时,A、B两点重合;在上述运动的过程中,若P为线段AB的中点,数轴上点C所表示的数为是否存在t的值,使得线段,若存在,求t的值;若不存在,请说明理由.答案和解析【答案】1. C2. C3. D4. A5. B6. A7. D8. D9. 710. 或411. 或412. 1或13. 或214. 70;53;15. 2或16.17. ;1;;718. 解:,答:B地在A地的东边20千米;这一天走的总路程为:千米,应耗油升,故还需补充的油量为:升,答:冲锋舟当天救灾过程中至少还需补充9升油.19. 4t;20. 解:,.21. 122.【解析】1. 解:设这个数是x,则,解得或.故选:C.先设出这个数为x,再根据数轴上各点到原点的距离进行解答即可.本题考查的是数轴,熟知数轴上各点到原点的距离的定义是解答此题的关键.2. 解:由图可知:,,,,,,,所以只有、、成立.故选:C.由图可判断a、b的正负性,a、b的绝对值的大小,即可解答.此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.3. 解:.故选:D.根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.本题考查了数轴,主要利用了两点间的距离的表示,需熟记.4. 解:,,;当原点在N或P点时,,又因为,所以,原点不可能在N或P点;当原点在M、R时且时,;综上所述,此原点应是在M或R点.故选A.先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.主要考查了数轴的定义和绝对值的意义解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.5. 解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.6. 解:由M为数轴上表示的点,将点M沿数轴向右平移5个单位到点N可列:,故选A.根据在数轴上平移时,左减右加的方法计算即可求解.此题主要考查点在数轴上的移动,知道“左减右加”的方法是解题的关键.7. 解:在数轴上,与表示数的点的距离是3的点表示的数有两个:;.故选:D.此题可借助数轴用数形结合的方法求解在数轴上,与表示数的点的距离是3的点有两个,分别位于与表示数的点的左右两边.本题考查的是数轴,注意此类题应有两种情况,再根据“左减右加”的规律计算.8. 解:最大的负整数是,故正确;绝对值是它本身的数是非负数,故错误;有理数分为正有理数、0、负有理数,故错误;时,在原点的右边,故错误;在数轴上7与9之间的有理数有无数个,故错误;故选:D.根据负整数的意义,可判断;根据绝对值的意义,可判断;根据有理数的分类,可判断;根据负数的意义,可判断;根据有理数的意义,可判断.本题考查了有理数,理解概念是解题关键.9. 解:点A,B表示的数分别是1,3,,,,点C表示的数是7.故答案为7.先利用点A、B表示的数计算出AB,存在计算出BC,然后计算点C到原点的距离即可得到C点表示的数.本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数一般取右方向为正方向,数轴上的点对应任意实数,包括无理数10. 解:在数轴上,与表示的点相距6个单位长度的点表示的数是或4,故答案为:,4.根据数轴上到一点距离相等的点有两个,分别位于该点的左右,可得答案.本题考查了数轴,数轴上到一点距离相等的点有两个,以防漏掉.11. 解:若点在1的左面,则点为;若点在1的右面,则点为4.故答案为:或4.此类题注意两种情况:要求的点可以在已知点的左侧或右侧.本题考查了数轴,注意:要求的点在已知点的左侧时,用减法;要求的点在已知点的右侧时,用加法.12. 解:在数轴上把表示的点A沿数轴移动6个单位后得到点B,则B所表示的数为:,或,故答案为:1或.考虑两种情况:要求的点在已知点左移或右移6个单位长度.此题考查了数轴,要求掌握数轴上的两点间距离公式的运用在数轴上求到已知点的距离为一个定值的点有两个.13. 解:若该点在A点左边,则该点为:;若该点在A点右边,则该点为:.故答案为:2或.该点可以在数轴的左边或右边,即或.本题考查了数轴,此类题一定要考虑两种情况:左减右加.14. 解:由数轴可知,和之间的整数点有:,,,,共32个;和之间的整数点有:,,,16,共38个;故被淹没的整数点有个,负整数点有个,被淹没的最小的负整数点所表示的数是.故答案为:70,53,.根据数轴的构成可知,和之间的整数点有:,,,,共32个;和之间的整数点有:,,,16,共38个;依此即可求解.本题考查了数轴,熟悉数轴的结构是解题的关键.15. 解:当该点在的右边时,由题意可知:该点所表示的数为2,当该点在的左边时,由题意可知:该点所表示的数为,故答案为:2或由于题目没有说明该点的具体位置,故要分情况讨论.本题考查数轴,涉及有理数的加减运算、分类讨论的思想.16. 解:如图所示:,数轴上表示与之间的所有整数为:,,,,0,1,2,故符合题意的所有整数之和是:.故答案为:.根据题意画出数轴,进而得出符合题意的整式,求出答案即可.此题主要考查了数轴,根据题意得出符合题意的所有整数是解题关键.17. 解:点A表示的数是,点B表示的数是1;根据题意得:;根据题意得:,.故答案为:;1;;7根据数轴上点的位置找出A与B表示的点即可;在数轴上找出表示与的两个点C与D即可;找出B、C之间的距离,以及A,C之间的距离即可.此题考查了数轴,弄清题意是解本题的关键.18. 根据有理数的加法,可得和,再根据向东为正,和的符号,可判定方向;根据行车就耗油,可得耗油量,再根据耗油量与已有的油量,可得答案.本题考查了正数和负数,有理数的加法运算是解题关键,有理数的大小比较得出最远距离.19. 解:;点P对应的数是;故答案为:4t;;分两种情况:当点P在Q的左边:,解得:;当点P在Q的右边:,解得:,综上所述:当点P运动2秒或秒时,点P和点Q间的距离为8个单位长度.根据题意容易得出结果;需要分类讨论:当点P在Q的左边和右边列出方程解答.本题考查了数轴,一元一次方程的应用解答题,对t分类讨论是解题关键.20. 根据有理数大小比较法则先把这些数按照从小到大的顺序排列起来,再在数轴上表示出来即可.本题考查了有理数大小比较的法则以及数轴的知识,解题时牢记法则是关键,比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序在数轴上表示的两个有理数,右边的数总比左边的数大;也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.21. 解:,B表示的数分别为6,,,,点P表示的数是1,故答案为:1;设点P运动x秒时,在点C处追上点R,则:,,,,解得,,点P运动5秒时,追上点R;线段MN的长度不发生变化,理由如下分两种情况:当点P在A、B之间运动时如图:.当点P运动到点B左侧时如图,;综上所述,线段MN的长度不发生变化,其长度为5.由已知条件得到,由,于是得到结论;设点P运动x秒时,在点C处追上点R,于是得到,,根据,列方程即可得到结论;线段MN的长度不发生变化,理由如下分两种情况:当点P在A、B之间运动时当点P运动到点B左侧时,求得线段MN的长度不发生变化.此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.22. 解:当运动时间为t秒时,点A表示的数为,点B表示的数为.当时,点A表示的数为,点B表示的数为,.故答案为:.根据题意得:,解得:.当t为3时,A、B两点重合.为线段AB的中点,点P表示的数为,,,解得:或.存在t的值,使得线段,此时t的值为或.找出运动时间为t秒时,点A、B表示的数.将代入点A、B表示的数中,再根据两点间的距离公式即可得出结论;根据点A、B重合即可得出关于t的一元一次方程,解之即可得出结论;根据点A、B表示的数结合点P为线段AB的中点即可找出点P表示的数,根据即可得出关于t的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用、两点间的距离、数轴以及列代数式,解题的关键是:找出点A、B表示的数;根据两点重合列出关于t的一元一次方程;根据PC列出关于t的含绝对值符号的一元一次方程.。