初一数学下能力测试题(六)
- 格式:doc
- 大小:369.50 KB
- 文档页数:4
人教版七年级初一数学下学期第六章 实数单元测试综合卷学能测试试卷一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个 B .2个C .3个D .4个 2.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则( )A .132B .146C .161D .666 3.表面积为12dm 2的正方体的棱长为( )A dmB .dmC .1dmD .2dm 4.下列说法错误的是( )A .a 2与(﹣a )2相等B 互为相反数C D .|a|与|﹣a|互为相反数5.下列各数-(-3),0,221(-)--2--42π,,,中,负数有( ) A .1个 B .2个 C .3个 D .4个 6.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,……,根据这个规律,则21+22+23+24+…+22019的末位数字是( )A .0B .2C .4D .6 7.下列各数中,比-2小的数是( )A .-1B .C .0D .18. ) A .2和3之间 B .3和4之间 C .4和5之间D .5和6之间 9.下列各式中,正确的是( )A 34B 34;C 38D 34 10.下列各数中,介于6和7之间的数是( )A B C D 二、填空题11.一个数的平方为16,这个数是 .12.a 的整数部分,b 的立方根为-2,则a+b 的值为________.13.m 的平方根是n +1和n ﹣5;那么m +n =_____.14.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数.例如:[]2.32=,[]1.52-=-.则下列结论: ①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2. 其中正确的结论有_____(写出所有正确结论的序号).15.若23(2)0y x -+-=,则y x -的平方根_________.16.一个数的立方等于它本身,这个数是__.17.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a ,则2x y +的值为______.19.若x <0,则323x x +等于____________.20.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.三、解答题21.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得: 1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ . (2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ;( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值.22.对于实数a ,我们规定:用符号为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.23.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = . (2)直接写出下列各式的计算结果: ①1111 (12233420152016)++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯. 24.定义☆运算:观察下列运算:☆两数进行☆运算时,同号 ,异号 .特别地,0和任何数进行☆运算,或任何数和0进行☆运算, .(2)计算:(﹣11)☆ [0☆(﹣12)]= .(3)若2×(﹣2☆a )﹣1=8,求a 的值.25.观察下列各式,回答问题21131222-=⨯, 21241333-=⨯ 21351444-=⨯ ….按上述规律填空:(1)211100-= × ,2112005-= × , (2)计算:21(1)2-⨯21(1)...3-⨯21(1)2004-⨯21(1)2005-= . 26.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将2,24,27,n 分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可.【详解】解:∵2=1×2,∴F (2)=12,故①正确; ∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小 ∴F (24)=42=63,故②是错误的; ∵27=1×27=3×9,且3和9的绝对值差最小∴F(27)=31=93,故③错误;∵n是一个完全平方数,∴n能分解成两个相等的数的积,则F(n)=1,故④是正确的.正确的共有2个.故答案为B.【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义.2.B解析:B【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.详解:1.52=2.25,可得出有2个1;2.52=6.25,可得出有4个2;3.52=12.25,可得出有6个3;4.52=20.25,可得出有8个4;5.52=30.25,可得出有10个5;则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146.故选:B.点睛本题考查了估算无理数的大小.3.A解析:A【分析】根据正方体的表面积公式:S=6a2,解答即可.【详解】解:根据正方体的表面积公式:S=6a2,可得:6a2=12,解得:a.dm.故选:A.【点睛】此题主要考查正方体的表面积公式的灵活运用,解题的关键是根据公式进行计算.4.D解析:D【分析】利用平方运算,立方根的化简和绝对值的意义,逐项判断得结论.【详解】∵(﹣a )2=a 2,∴选项A 说法正确;a =a ,互为相反数,故选项B 说法正确;互为相反数,故选项C 说法正确;∵|a|=|﹣a|,∴选项D 说法错误.故选:D .【点睛】此题主要考查了绝对值的意义,平方运算及立方根的化简.掌握立方根的化简和绝对值的意义是解决本题的关键.5.C解析:C【分析】根据相反数的定义,有理数的乘方,绝对值的性质分别化简,再根据正负数的定义进行判断即可得解【详解】解:-(-3)=3;211()24-=;224-=-;44--=-; 所以2-2-4π--,,是负数,共3个。
七年级初一数学下学期第六章 实数单元 期末复习综合模拟测评学能测试试卷一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( ) A .M N < B .M N > C .M N D .M N ≥2.在下面各数中无理数的个数有( )-3.14,23,227,0.1010010001...,+1.99,-3π A .1个 B .2个 C .3个 D .4个3.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣5 4.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a + 5.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 6.下列计算正确的是( ) A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C .42=± D .()515-=- 7.若m 、n 满足()21150m n -+-=,则m n +的平方根是( ) A .4± B .2± C .4 D .28.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 229.下列各数中,属于无理数的是( )A .227B 2C 9D .0.1010010001 10.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间二、填空题11.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).12.若x +1是125的立方根,则x 的平方根是_________.13.如果一个有理数a 的平方等于9,那么a 的立方等于_____.14.2(2)0x -=,则y x -的平方根_________.15.已知2m =,则m 的相反数是________.16. 1.105≈ 5.130≈≈________.17.设a ,b 都是有理数,规定 *=a b ()()48964***-⎡⎤⎣⎦=__________.18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 的值为______.19.已知a 、b 为两个连续的整数,且a b ,则a +b =_____.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,=2,现对72进行如下操作:72821→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.探究与应用:观察下列各式:1+3= 21+3+5= 21+3+5+7= 21+3+5+7+9= 2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)22.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题.(1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.23.已知32x y --的算术平方根是3,26x y +-的立方根是的整数部分是z ,求42x y z ++的平方根.24.已知:b 是立方根等于本身的负整数,且a 、b 满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a 、b 、c 的值:a=_______,b=_______,c=_______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简|m+12|=________. (3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒1个单位的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离表示为AC ,点A 与点B 之间的距离表示为AB ,请问:AB−AC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.25.阅读下列材料: 问题:如何计算1111122334910++++⨯⨯⨯⨯呢? 小明带领的数学活动小组通过探索完成了这道题的计算.他们的解法如下:解:原式1111111(1)()()()22334910=-+-+-++- 1110=-910= 请根据阅读材料,完成下列问题: (1)计算:111112233420192020++++⨯⨯⨯⨯; (2)计算:111126129900++++; (3)利用上述方法,求式子111115599131317+++⨯⨯⨯⨯的值. 26.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences ).这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q = ;如果a n (n 为正整数)表示这个等比数列的第n 项,那么a 18= ,a n = ;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S =1+2+4+8+16+…+230…①等式两边同时乘以2,得2S =2+4+8+16++32+…+231…②由② ﹣ ①式,得2S ﹣S =231﹣1即(2﹣1)S =231﹣1所以 3131212121S -==-- 请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a 1,a 2,a 3,…,a n ,从第二项开始每一项与前一项之比的常数为q ,请用含a 1,q ,n 的代数式表示a n ;如果这个常数q ≠1,请用含a 1,q ,n 的代数式表示a 1+a 2+a 3+…+a n .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可.【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++, ∴1p q x -=,∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•; ∴20192019()M N pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>;∴M N >;故选:B.【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.2.C解析:C根据无理数的三种形式求解.【详解】-3.14,,227,0.1010010001...,+1.99,-3π无理数的有:,0.1010010001...,-3π共3个 故选:C【点睛】 本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行.初中范围内学习的无理数有三类:①π类,如2π,3π等;②③虽有规律但是无限不循环的数,如0.1010010001…,等.3.B解析:B【分析】根据a ★b=a 2-ab 可得(x+2)★(x -3)=(x+2)2-(x+2)(x -3),进而可得方程:(x+2)2-(x+2)(x -3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x -3)=5,x 2+4x+4-(x 2-x -6)=5,x 2+4x+4-x 2+x+6=5,5x=-5,解得:x=-1,故选:B .【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a ★b=a 2-ab 所表示的意义.4.D解析:D【分析】任何数的绝对值都是一个非负数.非负数(正数和0)的绝对值是它本身,非正数(负数和0)的绝对值是它的相反数.任何数的平方都是大于等于0的.【详解】选项A 中,当a=0,则a =0;选项B 中,当a=0,则a²=0;选项C 中,当a=100,则(a-100)²=0;选项D 中,无论a 取何值,a²+0.01始终大于0.故选:D.此题考查绝对值的非负性,算术平方根的非负性,解题关键在于掌握其性质. 5.A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】91516<<,<<34<<,3,3a b∴==,)336a b∴-=-=,故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.6.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.7.B解析:B【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,故选B .【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.8.D解析:D【分析】设点C 的坐标是x ,根据题意列得12x =-,求解即可. 【详解】解:∵点A 是B ,C 的中点.∴设点C 的坐标是x ,则12x =-,则2x =-+∴点C 表示的数是2-+故选:D .【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.9.B解析:B【分析】无限不循环小数是无理数,根据定义解答即可.【详解】A 、227是小数,不是无理数;B 是无理数;C 是整数,不是无理数;D 、0.1010010001是有限小数,不是无理数,故选:B .【点睛】此题考查无理数的定义,熟记定义并运用解题是关键.10.C解析:C【解析】试题分析:∵16<20<25,∴∴4<5.故选C.考点:估算无理数的大小.二、填空题11.③,④【分析】①[x) 示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x) 示小于x的最大整数,由定义得[x)<x≤[x)+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x1-≤[x)<x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.12.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.13.±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则.14.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:,且,∴y-3=0,x-2=0,..的平方根是.故答案为:.【点睛】此题考查算术平解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1.【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.15.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:. 【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.-=,解:m的相反数是2)2故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.16.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】=中,m的小数点每移动3位,n的小数点相应地移动1位.n【详解】≈5.130≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.17.1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵,∴=()()=(2+2)(3-4)=4(-1)==2-1故答案为:1 【点睛】 本题考查平方解析:1 【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案. 【详解】∵*=a b∴()()48964***-⎡⎤⎣⎦=*) =(2+2)*(3-4) =4*(-1)==2-1 =1. 故答案为:1 【点睛】本题考查平方根与立方根,正确理解规定,熟练掌握平方根和立方根的定义是解题关键.18.3 【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值. 【详解】解:根据题意的2a+1+3-4a=0, 解得a=2, ∴, ,故答案为:3. 【点睛】本题考查了平方根和立方根,熟解析:3 【分析】利用平方根、立方根的定义求出x 与y 的值. 【详解】解:根据题意的2a+1+3-4a=0, 解得a=2,∴25,8x y ==-,∴=,故答案为:3. 【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.19.9 【分析】首先根据的值确定a 、b 的值,然后可得a+b 的值. 【详解】 ∵<, ∴4<<5, ∵a<<b , ∴a=4,b =5, ∴a+b=9, 故答案为:9. 【点睛】本题主要考查了估算无理数的解析:9 【分析】a 、b 的值,然后可得a +b 的值. 【详解】<∴45,∵a b , ∴a =4,b =5, ∴a +b =9, 故答案为:9. 【点睛】本题主要考查了估算无理数的大小,关键是正确确定a 、b 的值.20.255 【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可. 【详解】解:∵,,, ∴只解析:255 【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可. 【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255, 故答案为:255. 【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力.三、解答题21.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2; (3)﹣1.008016×106. 【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到. (2) 根据规律写出即可. (3) 先提取符号,再用规律解题. 【详解】 解:(1)1+3=22 1+3+5=32 1+3+5+7=42 1+3+5+7+9=52 ……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+…+2019) =﹣10102 =﹣1.0201×106. 【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可. 22.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可. 【详解】.(1)1×2+2×3+3×4+…+10×11=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯. (2)1×2+2×3+3×4+……+n×(n+1)=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++. 【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.23.6±【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题. 【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩,解得54x y =⎧⎨=⎩,36<<67∴<<,6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±. 【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义.24.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12-)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.25.(1)原式=20192020(2)原式=99100(3)原式=417【分析】(1)类比题目中的拆项方法,类比得出答案即可;(2)先把原式拆分成题(1)原式的样子,再根据(1)的拆项方法,类比得出答案即可;(3)分母是相差4的两个自然数的乘积,类比拆成以两个自然数为分母,分子为1的两个自然数差的14即可.【详解】解:(1)原式=(1-12)+(12-13)+(13-14)+……+(12019-12020)=1-1 2020=2019 2020;(2)原式=1111 12233499100 ++++⨯⨯⨯⨯=(1-12)+(12-13)+(13-14)+……+(199-1100)=1-1 100=99 100(3)原式=14×(4444155********+++⨯⨯⨯⨯)=14×(1-15+15-19+19-113+113-117)=14×(1-117)=14×1617=4 17【点睛】本题考查算式的规律,注意分子、分母的特点,解题的关键是根据规律灵活拆项,并进一步用规律解决问题.26.(1)12,1712,n-112;(2)24332-;(3)()11111na aa--【分析】(1)12÷1即可求出q,根据已知数的特点求出a18和a n即可;(2)根据已知先求出3S,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)12÷1=12,a18=1×(12)17=1712,a n=1×(12)n﹣1=112n-,故答案为:12,1712,112n-;(2)设S=3+32+33+ (323)则3S=32+33+…+323+324,∴2S=324﹣3,∴S=2433 2-(3)a n=a1•q n﹣1,a1+a2+a3+…+a n=() 11111na aa--.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.。
人教版七年级初一数学下学期第六章 实数单元测试综合卷学能测试 一、选择题 1.已知4a ++(b ﹣3)2=0,则(a +b )2019等于( )A .1B .﹣1C .﹣2019D .20192.下列说法错误的是( )A .a 2与(﹣a )2相等B .33()a -与33a 互为相反数C .3a 与3a -互为相反数D .|a|与|﹣a|互为相反数 3.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则7×6!的值为( )A .42!B .7!C .6!D .6×7!4.有理数a ,b 在数轴上对应的位置如图所示,则下列结论成立的是( )A .a+b> 0B .a -b> 0C .ab>0D .0a b> 5.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①② B .①③ C .②③ D .①②③ 6.若320,a b -++=则+a b 的值是( )A .2B 、1C 、0D 、1-7.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在( )A .线段AB 上 B .线段BC 上 C .线段CD 上 D .线段DE 上8.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上9.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根.其中正确的有( )A .0个B .1个C .2个D .3个10.下列运算正确的是( ) A 42=± B 222()-=- C 382-=-D .|2|2--= 二、填空题11.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___12.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.13.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 15.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.16.49的平方根是________,算术平方根是______,-8的立方根是_____.17.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.1846________.19.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.20.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题21.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(I )解方程:log x 4=2;(Ⅱ)log 28=(Ⅲ)计算:(lg 2)2+lg 2•1g 5+1g 5﹣2018= (直接写答案) 22.观察下列各式: 111122-⨯=-+; 11112323-⨯=-+; 11113434-⨯=-+; … (1)你发现的规律是_________________.(用含n 的式子表示;(2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯ ⎪ ⎪⎝⎭⎝⎭23.阅读下面的文字,解答问题:大家知道2是无理数,而无理是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用21-来表示2的小数部分,事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵()232273<<,即273<<,∴7的整数部分为2,小数部分为()72-。
第六章测评(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题5分,共40分.下列各题给出的四个选项中,只有一项符合题意)1.四个实数1,0,√3,-3中,最大的数是( )A.1B.0C.√3D.-32.下列计算正确的是( )A.√(-3)2=-3B.√-53=√53C.√36=±6D.-√0.36=-0.63.√83的算术平方根是( )A .2B .±2C .√2D .±√2 4.满足-√2<x<√3的整数共有( )A.4个B.3个C.2个D.1个 5.实数2 √10介于( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间6.若|x-2y|+√y +2=0,则xy 的值为( )A .8B .2C .5D .-6 7.若√a 3+√b 3=0,则下列等式成立的是( )A.a=b=0B.a=bC.a+b=0D.ab=08.如图,数轴上表示1,√3的对应点分别为点A ,B ,若AB=AC ,则点C 所表示的实数为( )A .√3-1B .1-√3C .2-√3D .√3-2二、填空题(每小题5分,共20分)9.已知非零整数x ,y 满足√x +√y 3=0,请写出一对符合条件的x ,y 的值: .10.以下判断:①数轴上任一点都表示一个有理数;②√23是分数;③任何非负实数都可以进行开平方运算;④因为√2,√3,√5都是无理数,所以无理数都是有根号的数.其中说法正确的是 .(填序号)11.比较大小:√5-3 √5-22.(填“>”“<”或“=”)12.若x ,y 都是实数,且√x +y +|x+√2|=0,则y 的相反数是 .三、解答题(共40分)13.(10分)计算:(1)√49+√9+16−√144;(2)√2163−√-3-383×√400.14.(10分)求下列各式中x 的值:(1)x 3+827=0;(2)(x-1)2-1=8.15.(10分)如图所示,在这个漂亮的螺旋图中,所有的三角形都是直角三角形.已知直角三角形有如下性质:直角三角形两直角边的平方和等于斜边的平方,如图中有结论OA 2+AB 2=OB 2,OB 2+BC 2=OC 2等.根据图中所标数据,试求出x ,y ,z ,w 的值,并指出其中的无理数.16.(10分)阅读下列解题过程.若5+√11的小数部分为a ,5-√11的小数部分为b ,求a+b 的值.解 ∵3<√11<4,∴5+√11的整数部分为8,5-√11的整数部分为1.∴5+√11的小数部分a=5+√11-8=√11-3,5-√11的小数部分b=5-√11-1=4-√11.∴a+b=√11-3+4-√11=1.阅读后,请解答下列问题:若6+√10的整数部分为a ,小数部分为b ,求2a-(√10+1)+b+2 019的值.答案:一、选择题1.C2.D3.C4.B5.C6.A7.C8.C 由题意,得AB=√3-1.∵AB=AC ,∴点C 表示的实数为1-(√3-1)=2-√3.二、填空题9.答案不唯一,如x=1,y=-1 10.③11.< ∵4<5<9,∴√4<√5<√9,即2<√5<3,∴√5-3<0,√5-22>0,即√5-3<√5-22. 12.-√2三、解答题13.解 (1)原式=7+5-12=0.(2)原式=6-√-2783×√400 =6-(-32)×20=6+30=36.14.解 (1)x=√-8273=-23.(2)因为(x-1)2=9,x-1=±3,所以x=4或x=-2.15.解 根据题意,得x 2=12+12=2,y 2=x 2+12=3,z 2=y 2+12=4,w 2=z 2+12=5, 由算术平方根的意义,得x=√2,y=√3,z=√4=2,w=√5,其中√2,√3,√5是无理数.16.解 ∵3<√10<4, ∴6+√10的整数部分a=9,6+√10的小数部分b=6+√10-9=√10-3.∴2a-(√10+1)+b+2 019=2×9-√10-1+√10-3+2 019=2 033.。
初一数学能力测试题(六)班级 _________姓名 ________一.填空题1.边长为 a 的正方形的周长为 ________,面积为 __________2.一辆汽车以 a 千米 / 的速度行驶 b 千米,若速度加速 10 千米 /时,则能够少用 __________ 小时3.某人上山的速度为 4 千米 /时,下山的速度为 6 千米 /时,则这人上山下山的整个行程的均匀速度是 ____________千米 /时4.某商品收益是 a 元,收益率是 20%,此商品进价是 _______(收益率 =收益 /成本) 5.设甲数为 x ,且甲数比乙数的2 倍大 5,则乙数为 _________(用含 x 的代数式表示)6.若 a=— 2、 b=— 3,则代数式 (a+b) 2— (a — b)2=___________ 7.当 x — y=3 时,代数式 2(x — y)2+3x —3y+1=___________8.若代数式 3x 2+4x+5 的值为 6,则代数式 6x 2+8x+11 的值为 ____________9.某商铺购进一种商品,销售时要在进价基础上加必定的收益,销售量x 与售价 C 间的关系以下表:销 售 数 量 x 1 234 (千克)价钱 C (元) 2.5+0.2 5+0.4 7.5+0.610+0.8( 1)用数目 x 表示售价 C 的公式, C=______________( 2)当销售数目为 12 千克时,售价 C 为 ____________10.某校为适应电化教课的需要,新建阶梯教室,教室的第一排有 a 个座位,后边每一排都比前一排多一个座位, 若第 n 排有 m 个座位,教室共有 p 个座位,则 a 、n 和 m 之间的关系为 ______________a 、n 和 p 之间的关系为 ___________ 二.选择题1.下边判断语句中正确的选项是( )A 、 2+5 不是代数式B 、 (a+b)2 的意义是 a 的平方与 b 的平方的和C 、 a 与 b 的平方差是 (a — b)2D 、 a 、 b 两数的倒数和为1 1ab2.若数 2、 5、 7、 x 的均匀数为 8,则 x 的值为( )A 、 8B 、 12C 、14D 、183.一个三位数,个位数字是 c ,十位数字是 b ,百位数字是 a ,这个三位数是( )A 、 abcB 、1000abcC 、a+b+cD 、 100a+10b+c4.甲、乙两人同时同地相背而行,甲每小时行 a 千米,乙每小时行b 千米, x 小时后,二人相距( )x x ab C 、 ax+bxD 、 ax — bxA 、bB 、xax5.代数式 (a — b)2 的值是( )A 、大于零B 、小于零C 、等于零D 、大于或等于零6.已知 x 2+xy=3 , xy+y 2=2,则代数式 x 2+2xy+y 2 的值为(A 、 3B、 4C、 5D、 67.已知 a=b— 2, b=3,则代数式8b— 3a 的值为()A、21B、 7C、8 D 、 18.跟着计算机技术的迅猛发展,电脑价钱不停降低,某品牌的电脑按原价降低m 元后又降20%,现售价为 n 元,那么该电脑的原售价为()A 、 4 n m 元B、 5 n m 元C、( 5m+n) D 、( 5n+m)549.一项工程,甲独做需 m 天,乙独做需n 天,则甲、乙合做需()A 、1 1 天B、mn天C、mn 天 D 、以上都不对m n m n mn10.当 x=1 时,代数式 px3+qx+1 的值是2001,则当 x= — 1 时,代数式 px3+qx+1 的值是()A 、— 1999B、— 2000C、— 2001D、 199911.以下各组中,是同类项是()(1)— 2p2t 与 tp2(2)— a2bcd 与 3b2acd(3)— a m b n与 a m b n(4)2b2a 与2ab 223A 、( 1)( 2)( 3)B、( 2)( 3)( 4)C、( 1)( 3)( 4)D、( 1)( 2)( 4)12.在以下各组中,是同类项的共有()(1)9a2x 和 9ax2(2)xy 2和— xy2(3)2a2b 和 3a2b(4)a2和 2a(5)ax 2y 和 axy 2(6)4x 2y 和— yx2A、2 组B、3 组C、4 组D、5 组三.计算题1. 2x+3x —5x+6x2、 3x — (3x— 5)— (x— 3)3.— 2(x — 3)— 3(2x— 5)4、1( x 4)1( 2x 6) x 3 245、已知 x= 1,求代数式2x2— (x2— 5x) — (3x 2+2) 的值2122 x36、已知x 2y0 ,求代数式1x32x2 y3x 2 y 5xy 27 5xy 2的值。
七年级初一数学下学期第六章 实数单元综合模拟测评学能测试一、选择题1.下列计算正确的是( )A 2=±B .13= C .2(5= D 2=±2.2,估计它的值( ) A .小于1 B .大于1 C .等于1 D .小于0 3.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a +4.下列各式正确的是( )A 4=±B 143= C 4=- D 4=5.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9 -17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-1336.规定用符号[]n 表示一个实数的小数部分,例如:[]3.50.5, 1.==按照此规定, 1⎤⎦的值为( )A 1B 3C 4D 1+7.若30,a -=则+a b 的值是( ) A .2 B 、1 C 、0 D 、1- 8.下列命题是假命题的是( ) A .0的平方根是0B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣19.估计2+的值在( ) A .1到2之间B .2到3之间C .3到4之间D .4到5之间 10.下列运算中,正确的是( )A 3=±B 2=C 2=-D 8=-二、填空题11.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________. 12.写出一个大于3且小于4的无理数:___________. 13.116的算术平方根为_______. 14.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____. 15.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________. 1646________. 17.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________ 18.2x -﹣x|=x+3,则x 的立方根为_____.19.若一个正数的平方根是21a +和2a +,则这个正数是____________.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.阅读下面文字: 对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦1014⎛⎫=+- ⎪⎝⎭114=-上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,计算: (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭ 22.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =. 例如:因为328=,所以()3(8)23g g ==,因为1021024=, 所以()10(1024)210g g ==.(1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题: ①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值. 23.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n aa a a a ÷÷÷⋯÷个 (a≠0)记作a ⓝ,读作“a 的圈 n 次方”.(初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___; (2)关于除方,下列说法错误的是___ A .任何非零数的圈2次方都等于1; B .对于任何正整数n ,1ⓝ=1; C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式. (-3)④=___; 5⑥=___;(-12)⑩=___.(2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___; (3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷33 24.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式 1a b ab -=+成立的一对有理数,a b 为“共生有理数对”,记为(),a b ,如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫⎪⎝⎭,都是“共生有理数对”. (1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).(2,1)- ,(13,2) .(2)若 5,2a ⎛⎫-⎪⎝⎭是“共生有理数对”,求a 的值; (3)若(),m n 是“共生有理数对”,则(),n m --必是“共生有理数对”.请说明理由; (4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).25.已知:b 是立方根等于本身的负整数,且a 、b 满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a 、b 、c 的值:a=_______,b=_______,c=_______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简|m+12|=________. (3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒1个单位的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离表示为AC ,点A 与点B 之间的距离表示为AB ,请问:AB−A C 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.26.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】A 、根据算术平方根的定义即可判定;B 、根据平方根的定义即可判定;C 、根据平方根的性质计算即可判定;D 、根据立方根的定义即可判定. 【详解】A 2=,故选项错误;B 、13=±,故选项错误;C 、2(=5,故选项正确;D 2,故选项错误. 故选:C . 【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则.2.A解析:A 【分析】首先根据479<<可以得出23<<2的范围即可.【详解】∵23<<,∴22232-<<-,∴021<<,-的值大于0,小于1.2所以答案为A选项.【点睛】本题主要考查了无理数的估算,熟练找出无理数的整数范围是解题关键.3.D解析:D【分析】任何数的绝对值都是一个非负数.非负数(正数和0)的绝对值是它本身,非正数(负数和0)的绝对值是它的相反数.任何数的平方都是大于等于0的.【详解】选项A中,当a=0,则a=0;选项B中,当a=0,则a²=0;选项C中,当a=100,则(a-100)²=0;选项D中,无论a取何值,a²+0.01始终大于0.故选:D.【点睛】此题考查绝对值的非负性,算术平方根的非负性,解题关键在于掌握其性质.4.D解析:D【分析】根据算术平方根的定义逐一判断即可得解.【详解】=,故原选项错误;4=,故原选项错误;D. 4=,计算正确,故此选项正确.故选D.【点睛】此题主要考查了算术平方根,解题的关键是掌握算术平方根的定义.5.C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;=;第三行:239=;第四行:2416……第n行:2n;∴第11行:2=.11121∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132.故选:C.【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.6.B解析:B【分析】根据3<4的小数部分,根据用符号[n]表示一个实数的小数部分,可得答案.【详解】解:由34,得4+1<5.3,故选:B.【点睛】本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.7.B解析:B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B.考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.8.B解析:B【分析】分别根据平方根的定义、无理数的定义、算术平方根的定义、负整数逐一判断即可.【详解】解:A、0的平方根为0,所以A选项为真命题;B、无限不循环小数是无理数,所以B选项为假命题;C、算术平方根最小的数是0,所以C选项为真命题;D、最大的负整数是﹣1,所以D选项为真命题.故选:B.【点睛】本题考查平方根的定义、无理数的定义、算术平方根和负整数,掌握无理数指的是无限不循环小数是解题的关键.9.D解析:D【分析】2与3之间,所以2在4与5之间.【详解】解:∵22=4,32=9,∴23,∴2+2<3+2,则4<2+<5,故选:D.【点睛】键.10.B解析:B【分析】根据平方根及立方根的定义逐一判断即可得答案.【详解】,故该选项运算错误,=,故该选项运算正确,2=,故该选项运算错误,2=,故该选项运算错误,8故选:B.【点睛】本题考查平方根、算术平方根及立方根,一个正数的平方根有两个,它们互为相反数;其中正的平方根叫做这个数的算术平方根;一个数的立方根只有一个.二、填空题11.131或26或5.【解析】试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5.解析:131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5.12.如等,答案不唯一. 【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一. 【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.13.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可.. 【详解】 ∵,,∴的算术平方根为; 故答案为:. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可..【详解】14=12=,的算术平方根为12;故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.14.【分析】根据公式代入计算即可得到答案. 【详解】 ∵a ⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17. 故答案为:17. 【点睛】此题考查新定义计算公式,正解析:【分析】根据公式代入计算即可得到答案. 【详解】 ∵a ⊗b =a 2﹣2b +1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17. 故答案为:17. 【点睛】此题考查新定义计算公式,正确理解公式并正确计算是解题的关键.15.255 【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案. 【详解】 解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255 【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.16.6【分析】求出在哪两个整数之间,从而判断的整数部分. 【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解 解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.17.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】=,故①错误;①10②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数.18.3【分析】直接利用二次根式有意义的条件得出x的取值范围进而得出x的值,求出答案.【详解】解:∵有意义,∴x﹣2≥0,解得:x≥2,∴+x﹣2=x+3,则=5,故x﹣2=25,解得解析:3【分析】直接利用二次根式有意义的条件得出x的取值范围进而得出x的值,求出答案.∴x ﹣2≥0,解得:x≥2,﹣2=x+3,5,故x ﹣2=25,解得:x =27,故x 的立方根为:3.故答案为:3.【点睛】此题主要考查了二次根式有意义的条件,正确掌握二次根式的性质是解题关键. 19.1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1解析:1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1,∴这个正数是22(2)11a +==,故答案为:1.【点睛】此题考查平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根. 20.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案【详解】解:∵,,,∴只解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力.三、解答题21.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】 (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭ 104⎛⎫=+- ⎪⎝⎭ 14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭ 124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.22.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.23.初步探究:(1)12,8;(2)C ;深入思考:(1)213,415,82;(2)21n a-;(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n 次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2③=2÷2÷2=12 (12)⑤=11111822222÷÷÷÷= (2)A :任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A 错误; B :因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1,故选项B 错误; C :3④=3÷3÷3÷3=19,4③=4÷4÷4=14,3④≠4③,故选项C 正确; D :负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D 错误;故答案选择:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)=213 5⑥=5÷5÷5÷5÷5÷5=415 (-12)⑩=8111111111122222222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷-÷-÷-÷-÷-÷-÷-÷-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)a ⓝ=a÷a÷a…÷a=21n a -(3)原式=()4252621111442711233---÷⨯-÷-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ =1144981278⎛⎫÷⨯--÷ ⎪⎝⎭=23--=-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.24.(1)不是;是;(2)a=37-;(3)见解析;(4)(4,35)或(6,57)【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义即可解决问题;【详解】解:(1)-2-1=-3,-2×1+1=1,∴-2-1≠-2×1+1,∴(-2,1)不是“共生有理数对”,∵3-12=52,3×12+1=52,∴3-12=3×12+1,∴(3,12)是“共生有理数对”;故答案为:不是;是;(2)由题意得:a-5()2- =512a-+,解得a=37 -.(3)是.理由:-n-(-m)=-n+m,-n•(-m)+1=mn+1∵(m,n)是“共生有理数对”∴m-n=mn+1∴-n+m=mn+1∴(-n,-m)是“共生有理数对”,(4)3344155-=⨯+;5566177-=⨯+∴(4,35)或(6,57)等.故答案为:是,(4,35)或(6,57)【点睛】本题考查有理数的混合运算、“共生有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.25.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12 -)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.26.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由见解析.【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即可;(3)由∠AOC=90°,y轴平分∠GOD证得OG∥AC,过点H作HF∥OG交x轴于F,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.。
2022-2023学年新人教版初中七年级数学下册第六单元综合能力提升测试卷时间:90分钟 满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数是无理数的为( )A .0.105B .0.1010010001C .2π D2.(3分)下列各式化简后的结果为( )A B C D3.(3分)在实数| 3.14|-,3-,π-中,最小的数是( )A .B .3-C .| 3.14|-D .π-4.(3分)若1m n <,且m ,n 是两个连续整数,则m n +的值是( )A .1B .2C .3D .45.(3分)下列结论正确的是( )A .64的立方根是4±B .1的平方根是1C .算术平方根等于它本身的数只有0D =6.(3分)a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,a -,b ,b -按照从小到大的顺序排列,正确的是( )A .a b b a -<-<<B .b a b a -<-<<C .a b b a -<<-<D .a a b b -<<-< 7.(3分)已知x 没有平方根,且||64x =,则x 的立方根为( )A .8B .8-C .4±D .4-8.(3分)有下列说法:①3-②7-是2(7)-的算术平方根;③25的平方根是5±;④9-的平方根是3±;⑤0没有算术平方根;;⑦平方根等于本身的数有0,1.其中,正确的有( )A .1个B .2个C .3个D .4个9.(3|1|0b -=,则ab 的值是( )A .1B .2-C .1-D .1±10.(3,则两数之和的最小值是() A .6 B .7 C .8 D .9二.填空题(共5小题,满分15分,每小题3分)11.(3= .12.(3 .13.(3分)已知x ,y 为两个连续的整数,且x y <,则5x y +的平方根为 .14.(3分)比较大小:(选填“>”、“ =”、“ <” ).15.(3分)如图,点A 表示的实数是 .三.解答题(共8小题,满分75分)16.(9分)已知21x -的平方根是7±,51x y +-的立方根是5,求2x y 的平方根.17.(9分)计算:.18.(9分)已知一组数据:|4|-,0,123-,(3)--,|5|--,0.5-(1)在数轴上表示出这组数据:(2)将这些数填入相应的大括号内:正整数集:{ }⋯;负分数集:{ }⋯;(3)用“<”号将这些数连接起来.19.(9分)有理数a ,b ,c 在数轴上的位置如图所示,且||||a b =.(1)用“>”“ <”或“=”填空:b 0,a b + 0,ac - 0,b c - 0;(2)化简:||||||a c b c b a ---+-.20.(9分)如果a M =3a b ++的算术平方根,2a b N -=是2a b +的立方根,求2(2)3N M +的平方根.21.(10分)已知x y 1(x y -的平方根.22.(101+在两个连续的自然数a 和1a +之间,1是b 的一个平方根.(1)求a ,b 的值;(2)比较a b +的算术平方根与3的大小.23.(10分)如图,一只蜗牛从点C 沿数轴向右直爬2个单位到达点B ,再直爬到A 点停止,已知点C 表示A 表示2,设点B 所表示的数为m .(1)求m 的值;(2)求AB 的长.参考答案1.C ; 2.A ; 3.D ; 4.C ; 5.D ; 6.C ; 7.D ; 8.C ; 9.B ; 10.C ; 11.1;12.12; 13.±5;14.>;15.5;16.21x -的平方根为7±,51x y +-的立方根是5,2149x ∴-=,51125x y +-=.解得:25x =,1y =.22251625x y ∴=⨯=,2x y ∴的平方根25±.17.原式6=-==- 18.(1)如图所示:(2)正整数集:{|4|-,(3)}--⋯;负分数集:1{23-,0.5}-⋯; 故答案为:|4|-,(3)--;123-,0.5-; (3)1|5|20.50(3)|4|3--<-<-<<--<-. 19.(1)0b <;0a >,0b <,||||a b =,0a b ∴+=;a c >,0a c ∴->;b c <,0b c ∴-<;故答案为:<;=;>;<;(2)0a c ->,0b c -<,0b a -<, ∴原式a c b c a b =-+-+- 22a c =-.20.由已知得2233a b a b -=⎧⎨-+=⎩, 解得,42a b =⎧⎨=⎩,3M ∴=,2N =, 22(2)3(22)3325N M ∴+=⨯+⨯= 2(2)3N M ∴+的平方根是5和5-.21.由题意得:3x =,3y =,1(x y -∴-313-=2(3)=-9=.1(x y -∴-的平方根为3±.22.(1)91116<<,34∴<.1在两个连续的自然数a 和1a +之间,1是b 的一个平方根, 4a ∴=,1b =;(2)由(1)知,4a =,1b =, a b ∴+=,415+=,∴+.a b<,59∴3.23.(1)从点C沿数轴向右直爬2个单位到达点B,∴=;2m(2)2(2)AB=-+22=+=.。
人教版数学七下第六章实数能力水平检测卷一.选择题(共10小题)1.下列选项中的数,小于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-123.若实数a,b是同一个数的两个不同的平方根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.用计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x2=2,有x=±当x3=3时,有x想一想,从下列各式中,能得出x=±的是()A.2x=±20 B.20x=20 D.3x=±20x=2 C.±206.下列选项中正确的是()A.27的立方根是±3B的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.在四个实数、3、-1.4中,大小在-1和2之间的数是()A.B.3 C D.-1.481-的相反数是()A.1-B1+-D1-C.19a,小数部分为b,则a-b的值为()A.- 13 B.6-C.8-D6-10.下列说法:①-1是1的平方根;②如果两条直线都垂直于同一直线,那么这两条直线平行;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;⑤无理数就是开放开不尽的数;正确的个数为( )A .1个B .2个C .3个D .4个二.填空题(共6小题)11.已知a 的平方根是±8,则它的立方根是 ;36的算术平方根是 .122(3)b ++=0= .13A 的算术平方根为B ,则A+B= .14.若45,<<则满足条件的整数a 有 个.15.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是 (M 、N 、P 、R 中选).16.=5,付老师又用计算器求得:=55=555, =5555,个3,2016个4)= .三.解答题(共7小题)17.求出下列x 的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小马说:“我们不可能围成满足要求的长方形场地”小牛说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.21.如果一个正数的两个平方根是a+1和2a-22,求出这个正数的立方根.22-的小数部分,此1事实上,小明的表示方法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,人教版七年级数学下册第六章实数单元综合能力提升测试卷一、选择题(每小题3分,共30分)1.下列选项中正确的是( )A .27的立方根是±3B .16 的平方根是±4C .9的算术平方根是3D .立方根等于平方根的数是1 2.在实数﹣0.8,2015,﹣,四个数中,是无理数的是( ) A .﹣0.8 B .2015 C .﹣D . 3.(-)2的平方根是( ) A . B .- C . D .± 4.下列四个数中的负数是( )A .﹣22B .C .(﹣2)2D . |﹣2|5.|的值为( )A.5 B .5-2 C .1D .2-16.在下列各式中正确的是()A .=-2B .=3C .=8D .=2 7.一个自然数a 的算术平方根为x ,则a+1的立方根是( )A B C D8.下列结论中正确的个数为( )(1)零是绝对值最小的实数; (2)数轴上所有的点都表示实数;(3)无理数就是带根号的数; (4)-的立方根为±; A .1个 B .2个 C .3个 D .4个9=3,则(x+3)2的值是( )A .81B .27C .9D .310.若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则-︱a -b ︱等于( ) 72233722331512512515152)1(-662)2(-1622127132bA .aB .-aC .2b +aD .2b -a二、填空题(每小题3分,共30分)11.在下列各数 中无理数有 个。
人教版七年级初一数学第二学期第六章 实数单元专项训练学能测试试卷一、选择题1.有一个数阵排列如下:1 2 4 7 11 16 22 3 5 8 12 17 23 6 9 13 18 2410 14 19 2515 20 2621 2728则第20行从左至右第10个数为( ) A .425B .426C .427D .4282.下列说法错误的是( ) A .a 2与(﹣a )2相等 B互为相反数 CD .|a|与|﹣a|互为相反数3.计算:122019(1)(1)(1)-+-++-的值是( )A .1-B .1C .2019D .2019-4.下列结论正确的是( )A .64的立方根是±4B .﹣18没有立方根 C .立方根等于本身的数是0 D=﹣3 5.在0, 3.14159, 3π,227, 无理数有几个( ) A .2B .3C .4D .56.0=,则x y +的值为( )A .10B .-10C .-6D .不能确定 7.下列各数中,比-2小的数是( )A .-1B.C .0D .18.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;……依此类推,则a 2018的值为( ) A .26B .65C .122D .1239.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16 ……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-13310.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根. A .1B .2C .3D .4二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤372-的最大整数,则M +N 的平方根为________.13.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 . 14.若()2320m n ++-=,则m n 的值为 ____.15.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________. 16.已知72m =,则m 的相反数是________.17.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.18.若x <0,则323x x +等于____________.19.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.20.若实数x ,y (2230x y ++=,则22xy --的值______.三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b 是有理数,并且满足等式253a 2b 3a 3=+,求a ,b 的值. 解:因为253a 2b 3a 3-=+所以()253a 2b a 33=-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y 是有理数,并且满足等式2x 2y 2y 1742--=-x y +的值.22.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)n n =-∑,又知13+23+33+43+53+63+73+83+93+103可表示为1031n n=∑.通过对以上材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________.(2)1+12+13+…+110用求和符号可表示为_________. (3)计算6211n n =-∑()=_________.(填写最后的计算结果)23.观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④_____:… (1)请按这个顺序仿照前面的等式写出第④个等式:_____;(2)根据你上面所发现的规律,用含字母n 的式子表示第n 个等式:_____; (3)请利用上述规律计算:20+21+22+23+ (2100)24.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则;2与2的大小∵224-=<<则45<<∴2240-=>∴22>请根据上述方法解答以下问题:比较2-与3-的大小.25.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=. (1)计算: 1.87<>= ;= ;(2)①求满足12x <->=的实数x 的取值范围, ②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围. 26.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列, 便知第20行第一个数为210,而每行的公差为等差数列, 则第20行第10个数为426, 故选B.2.D解析:D 【分析】利用平方运算,立方根的化简和绝对值的意义,逐项判断得结论. 【详解】 ∵(﹣a )2=a 2, ∴选项A 说法正确;a =a ,互为相反数,故选项B 说法正确;互为相反数,故选项C 说法正确; ∵|a|=|﹣a|, ∴选项D 说法错误. 故选:D . 【点睛】此题主要考查了绝对值的意义,平方运算及立方根的化简.掌握立方根的化简和绝对值的意义是解决本题的关键.3.A解析:A 【分析】根据题意,1-的奇数次幂等于1-,1-的偶数次幂等于1,然后两个加数作为一组和为0,即可得到答案. 【详解】解:∵1-的奇数次幂等于1-,1-的偶数次幂等于1,∴122019(1)(1)(1)-+-++-=1234201720182019[(1)(1)][(1)(1)][(1)(1)](1)-+-+-+-++-+-+-=2019(1)- =1-; 故选:A. 【点睛】本题考查了数字规律性问题,有理数的混合运算,解题的关键是熟练掌握1-的奇数次幂等于1-,1-的偶数次幂等于1.4.D解析:D 【分析】利用立方根的定义及求法分别判断后即可确定正确的选项. 【详解】解:A 、64的立方根是4,原说法错误,故这个选项不符合题意; B 、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意; C 、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D =﹣3,原说法正确,故这个选项符合题意; 故选:D . 【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.5.C解析:C 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】解:3π4个 故选C. 【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.C解析:C 【分析】根据算术平方根的非负性求出x ,y ,然后再求x+y 即可; 【详解】解:由题意得:x-2=0,y+8=0 ∴x=2,y=-8 ∴x+y=2+(-8)=-6 故答案为C. 【点睛】本题考查了算术平方根的非负性,掌握若干个非负数之和为0,则每个非负数都为0是解答本题的关键.7.B解析:B 【分析】根据正数大于零,零大于一切负数,两个负数比大小,绝对值越大负数反而小,可得答案 【详解】解:1>0>-1,|>|-2|>-1 ,∴-2<-1, 故选:B . 【点睛】本题考查了实数大小比较,利用负数的绝对值越大负数反而小是解题关键.8.B解析:B 【分析】依照题意分别求出a l =26,n 2=8,a 2=65,n 3=11,a 3=122,n 4=5,a 4=26…然后依次循环,从而求出结果. 【详解】解:∵n 1=5,a l =52+1=26, n 2=8,a 2=82+1=65, n 3=11,a 3=112+1=122, n 4=5,…,a 4=52+1=26… ∵20183=6722∴20182=65=a a . 故选:B . 【点睛】此题考查数字的变化规律,找出数字之间的联系,得出数字之间的运算规律,利用规律解决问题.9.C解析:C 【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;=;第三行:239=;第四行:2416……第n行:2n;∴第11行:2=.11121∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132.故选:C.【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.10.C解析:C【解析】=-,故(1)对;4根据算术平方根的性质,可知49的算术平方根是7,故(2)错;根据立方根的意义,可知23)对;是7的平方根.故(4)对;故选C.二、填空题11.-4【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.12.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M a<<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x∴N=2,∴M+N=±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.13..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.14.【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解. 【详解】由题意得,m+3=0,n-2=0, 解得m=-3,n=2, 所以,mn=(-3)2=9. 故答案为9. 【解析:【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解. 【详解】由题意得,m+3=0,n-2=0, 解得m=-3,n=2, 所以,m n =(-3)2=9. 故答案为9. 【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.15.403 【解析】当k=6时,x6=T (1)+1=1+1=2, 当k=2011时,=T()+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403 【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.16.【分析】根据相反数的定义即可解答. 【详解】 解:的相反数是, 故答案为:. 【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】-=,解:m的相反数是2)2故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.17.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.18.0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,∴,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x <0,0x x =-+=,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.19.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.20.【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】解:∵∴∴∴故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进解析:1-【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】(20y +=∴x 20y 0+=⎧⎪⎨+=⎪⎩∴x -2=⎧⎪⎨⎪⎩∴(2222-=-=2-3=-1y故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进行化简求值.三、解答题21.x y 9+=或x y 1+=-.【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.【详解】因为2x 2y 17--=-所以()2x 2y 17-=- 所以2x 2y 17y 4-=⎧=⎨⎩, 解得{x 5y 4==或{x 5y 4=-=,所以x y 9+=或x y 1+=-.【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.22.(1)5012nn =∑;(2)1011nn =∑;(3)50【分析】(1)根据题中的新定义得出结果即可;(2)根据题中的新定义得出结果即可;(3)利用题中的新定义将原式变形,计算即可得到结果.【详解】解:解:(1)根据题意得:2+4+6+8+10+ (100)5012nn =∑;(2)1+12+13+…+110=1011nn=∑;(3)原式=1-1+4-1+9-1+16-1+25-1+36-1=85.故答案为:(1)5012nn =∑;(2)1011nn =∑;(3)85.【点睛】此题考查了有理数的加法和减法运算,弄清题中的新定义是解本题的关键.23.24-23=16-8=23 24﹣23=16﹣8=23 2n﹣2(n﹣1)═2(n﹣1)【解析】试题分析:(1)根据已知规律写出④即可.(2)根据已知规律写出n个等式,利用提公因式法即可证明规律的正确性.(3)写出前101个等式,将这些等式相加,整理即可得出答案.试题解析:(1)根据已知等式:①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;得出以下:④24-23=16-8=23,(2)①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;④24-23=16-8=23;得出第n个等式:2n-2(n-1)=2(n-1);证明:2n-2(n-1),=2(n-1)×(2-1),=2(n-1);(3)根据规律:21-20=2-1=20;22-21=4-2=21;23-22=8-4=22;24-23=16-8=23;…2101-2100=2100;将这些等式相加得:20+21+22+23+ (2100)=2101-20,=2101-1.∴20+21+22+23+…+2100=2101-1.24.23>-【分析】根据例题得到2(3)5--=-5.【详解】解:2(3)5--=- ∵<,∴45<<, ∴2(3)50-=->, ∴23>-.【点睛】此题考查实数的大小比较方法,两个实数可以利用做差法比较大小.25.(1)2,3 (2)①5722x ≤<②330,,42(3)00.5a ≤< 【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值; (3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】(1) 1.87<>=2;=3;(2)①∵12x <->=∴1121222x --<+≤ 解得5722x ≤<; ②∵43x x <>= ∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =- 故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.26.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -=即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。
人教版七年级初一数学下学期第六章 实数单元综合模拟测评学能测试一、选择题1.下列说法正确的个数有( )①过一点有且只有一条直线与已知直线平行; ②垂线段最短;③坐标平面内的点与有序实数对是一一对应的; ④算术平方根和立方根都等于它本身的数是0和1; ⑤5的小数部分是51-. A .1B .2C .3D .42.有下列四种说法:①数轴上有无数多个表示无理数的点; ②带根号的数不一定是无理数; ③平方根等于它本身的数为0和1; ④没有最大的正整数,但有最小的正整数; 其中正确的个数是( ) A .1B .2C .3D .43.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±94.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.在3.14,237,2-327,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个6.下列各式中,正确的是( ) A 91634B 91634; C 91638D 916347.设n 为正整数,且n 65n+1,则n 的值为( ) A .5B .6C .7D .88.下列各式中,正确的是( ) A 4±2B 42=C 2(2)2-=-D 3644-=-9.若一个数的平方根与它的立方根完全相同.则这个数是()A .1B .1-C .0D .10±, 10.4的平方根是( )A .±16B .2C .﹣2D .±2二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.已知,x 、y 是有理数,且y =2x -+ 2x -﹣4,则2x +3y 的立方根为_____. 13.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.14.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________. 15.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数. 例如:[]2.32=,[]1.52-=-. 则下列结论:①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号). 16.写出一个大于3且小于4的无理数:___________. 17.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________.18.若2x -+|2﹣x|=x+3,则x 的立方根为_____.19.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 22.先阅读然后解答提出的问题:设a 、b 是有理数,且满足2322+=-a b ,求b a 的值. 解:由题意得(3)(2)20-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数, 由于2是无理数,所以a-3=0,b+2=0, 所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足225y 1035x y -+=+,求x+y 的值. 23.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方” (初步探究)(1)直接写出计算结果:2③,(﹣12)③. (深入思考)2④21111112222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩. (3)猜想:有理数 a (a ≠0)的圈n (n ≥3)次方写成幂的形式等于多少. (4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧ 24.阅读理解:计算1111234⎛⎫+++ ⎪⎝⎭×11112345⎛⎫+++ ⎪⎝⎭﹣111112345⎛⎫++++ ⎪⎝⎭×111234⎛⎫++ ⎪⎝⎭时,若把11112345⎛⎫+++ ⎪⎝⎭与111234⎛⎫++ ⎪⎝⎭分别各看着一个整体,再利用分配律进行运算,可以大大简化难度.过程如下: 解:设111234⎛⎫++⎪⎝⎭为A ,11112345⎛⎫+++ ⎪⎝⎭为B , 则原式=B (1+A )﹣A (1+B )=B+AB ﹣A ﹣AB=B ﹣A=15.请用上面方法计算: ①11111123456⎛⎫+++++ ⎪⎝⎭×111111234567⎛⎫+++++ ⎪⎝⎭-1111111234567⎛⎫++++++ ⎪⎝⎭×1111123456⎛⎫++++ ⎪⎝⎭②111123n ⎛⎫++++ ⎪⎝⎭111231n ⎛⎫+++⎪+⎝⎭-1111231n ⎛⎫++++⎪+⎝⎭11123n ⎛⎫+++ ⎪⎝⎭. 25.请回答下列问题:(1介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ;(2)x 2的小数部分,y 1的整数部分,求x = ,y = ;(3)求)yx -的平方根.26.已知:b 是立方根等于本身的负整数,且a 、b 满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a 、b 、c 的值:a=_______,b=_______,c=_______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简|m+12|=________. (3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒1个单位的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离表示为AC ,点A 与点B 之间的距离表示为AB ,请问:AB−AC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据平行公理的推论,垂线的性质,估算无理数的大小,算术平方根和立方根逐个判断即可. 【详解】①过直线外一点有且只有一条直线与已知直线平行,故①错误; ②垂线段最短,故②正确;③坐标平面内的点与有序实数对是一一对应的,故③正确; ④算术平方根和立方根都等于它本身的数是0和1,故④正确;2,故⑤错误; 即正确的个数是3个, 故答案为:C . 【点睛】本题考查了平行公理的推论,垂线的性质,估算无理数的大小,算术平方根和立方根等知识点,能熟记知识点的内容是解此题的关键.2.C解析:C 【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案. 【详解】①数轴上有无数多个表示无理数的点是正确的;2=; ③平方根等于它本身的数只有0,故本小题是错误的; ④没有最大的正整数,但有最小的正整数,是正确的. 综上,正确的个数有3个, 故选:C . 【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.3.C解析:C 【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解. 【详解】由题意得:23522x -=, ∴29x =, ∵2(39)±=, ∴3x =±,故选:C . 【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.4.B解析:B 【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得. 【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1; A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确. 故选B. 【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.5.B解析:B 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】3.14,237,π中无理数有:,π,共计2个. 故选B.【点睛】考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A 【解析】=±34 ,所以可知A 选项正确;故选A.7.D解析:D 【分析】n的值.【详解】∴89,∵n n+1,∴n=8,故选;D.【点睛】8.D解析:D【分析】根据平方根及立方根的定义依次计算各项后即可解答.【详解】选项A=2,选项A错误;选项B2=±,选项B错误;选项C=,选项C错误;=-,选项D正确.选项D4故选D.【点睛】本题考查了平方根及立方根的定义,熟练运用平方根及立方根的定义是解决问题的关键.9.C解析:C【详解】任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根,所以这个数是0,故选C.10.D解析:D【分析】根据平方根的定义以及性质进行计算即可.【详解】4的平方根是±2,故选:D.【点睛】本题考查了平方根的问题,掌握平方根的定义以及性质是解题的关键.二、填空题11.、、、.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为:53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12.-2.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出2x+3y的值,进而可得立方根.【详解】解:由题意得:,解得:x=2,则y=﹣4,2x+3y=2×2+3×(解析:-2.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出2x+3y的值,进而可得立方根.【详解】解:由题意得:20 20 xx-≥⎧⎨-≥⎩,解得:x=2,则y=﹣4,2x+3y=2×2+3×(﹣4)=4﹣12=﹣8.2=-.故答案是:﹣2. 【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.13.1或5. 【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果. 【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2, 则x ﹣y =1或5. 故答案为1解析:1或5. 【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果. 【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2, 则x ﹣y =1或5. 故答案为1或5. 【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.; 【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是, 所以第个数是,第n 个数是,故答案为-82,. 点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+ 【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n-,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)nn -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.15.①③. 【分析】根据[x]表示不超过x 的最大整数,即可解答. 【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确; ②中,当x 取小数时,显然不成立,例如x 取2.6,[x]解析:①③. 【分析】根据[x]表示不超过x 的最大整数,即可解答. 【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x 取小数时,显然不成立,例如x 取2.6,[x]+[-x]=2-3=-1,故②错误; ③中,若[x+1]=3,则x+1要满足x+1≥3,且x+1<4,解得x≥2,且x<3,故③正确; ④中,当-1≤x<1时,在取值范围内验证此式的值为1,2.故④错误; 所以正确的结论是①③.16.如等,答案不唯一. 【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一. 【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.17.【分析】令,然后两边同时乘以3,接下来根据题目中的方法计算即可. 【详解】 令 则 ∴ ∴故答案为:. 【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解解析:2021312- 【分析】令23202013333S =+++++,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令23202013333S =+++++ 则23202133333S =++++∴2021331S S -=- ∴2021312S -= 故答案为:2021312-. 【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解题的关键.18.3【分析】直接利用二次根式有意义的条件得出x 的取值范围进而得出x 的值,求出答案.【详解】解:∵有意义,∴x﹣2≥0,解得:x≥2,∴+x﹣2=x+3,则=5,故x ﹣2=25,解得解析:3【分析】直接利用二次根式有意义的条件得出x 的取值范围进而得出x 的值,求出答案.【详解】∴x ﹣2≥0,解得:x≥2,﹣2=x+3,5,故x﹣2=25,解得:x=27,故x的立方根为:3.故答案为:3.【点睛】此题主要考查了二次根式有意义的条件,正确掌握二次根式的性质是解题关键.19.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A点在原点的左边,∴A为负数,从数轴可以看出,A点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数1-.2【详解】解:∵数轴的正方向向右,A点在原点的左边,∴A为负数,-之间,从数轴可以看出,A点在2-和1<=-,故不是答案;2刚好在2-和1-之间,故是答案;1->-,故不是答案;12是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.20.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵,,,∴只解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力.三、解答题21.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =,∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.22.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x 、y 的值,进而可求x+y 的值.【详解】解:∵2210x y -=+∴()22100x y --+-=,∴2210x y --=0-=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y 的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.23.(1)12,-2;(2)(15)4,(﹣2)8;(3)n-21a ⎛⎫ ⎪⎝⎭;(4)7-28. 【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为1a ,则a ⓝ=a ×(1a )n-1; (4)将第二问的规律代入计算,注意运算顺序.【详解】解:(1)2③=2÷2÷2=12,(﹣12)③=﹣12÷(﹣12)÷(﹣12)=﹣2; (2)5⑥=5×15×15×15×15×15=(15)4,同理得;(﹣12)⑩=(﹣2)8; (3)a ⓝ=a×1a ×1a ×…×n-211a a ⎛⎫= ⎪⎝⎭; (4)(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧=(-3)8×(1-3)7 -(﹣12)9×(-2)6=-3-(-1 2 )3=-3+1 8=7 -28.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.24.(1)17;(2)11n+.【解析】【分析】①根据发现的规律得出结果即可;②根据发现的规律将所求式子变形,约分即可得到结果.【详解】(1)设1111123456⎛⎫++++⎪⎝⎭为A,111111234567⎛⎫+++++⎪⎝⎭为B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=17;(2)设11123n⎛⎫+++⎪⎝⎭为A,111231n⎛⎫+++⎪+⎝⎭为B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=11 n+.【点睛】考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(1)4;b=(2−4;3(3)±8【分析】((1)由16<17<25a,b的值;(2)根据(1)的结论即可确定x与y的值;(3)把(2)的结论代入计算即可.【详解】解:(1)∵16<17<25,∴4<5,∴a=4,b=5,故答案为:4;5;(2)∵4<5,∴6+2<7,由此整数部分为6,∴x −4,∵4<5,∴3-1<4,∴y =3;;3(3)当x ,y =3时,)y x =)3=64, ∴64的平方根为±8.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法.26.(1)2;-1;12-;(2)-m-12;(3)AB−AC 的值不会随着时间t 的变化而改变,AB -AC=12【分析】 (1)根据立方根的性质即可求出b 的值,然后根据平方和绝对值的非负性即可求出a 和c 的值;(2)根据题意,先求出m 的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB 和AC ,然后结合题意即可求出运动后AB 和AC 的长,求出AB−AC 即可得出结论.【详解】解:(1)∵b 是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0 ∴a+2b=0,c+12=0 解得:a=2,c=12-故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12-)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.。
初一数学下能力测试题(六)
班级_______ 姓名____________
一、填空题
1、如果∠A =35°18′,那么∠A 的余角等于_____;
2、如图①,直线a 、b 被直线c 所截(即直线c 与直线a 、b 都相交), 且a ∥b ,若∠1=118°,则∠2的度数=_____;
3、一个角的补角比这个角的余角大___度;
4、如图③:A 、O 、B 是直线,∠EOB=∠DOF=900,OB 平分∠DOC ,则图中与∠DOE 互余的角有 ,与∠DOE 互补的角有 。
5、如图,①如果12∠=∠,那么根
据 , 可得 // ;
如果180DAB ABC ∠+∠=︒,那么根据 , 可得 // .
②当 // 时,
根据 ,
得180C ABC ∠+∠=︒;
当 // 时,
根据 ,得3C ∠=∠.
6、 已知:如图,AB ∥CD ,EF 分别交于AB 、
CD 于E 、F ,EG 平分∠AEF ,FH 平分∠EFD 。
求证: EG ∥FH
证明:∵ AB ∥CD (已知)∴ ∠AEF=∠EFD (____ __) ∵ EG 平分∠AEF ,FH 平分∠EFD (____ _ _),
图③
A B
C
D
G
H
E
F
D B C
A 1
E
2 3
∴∠____ __=
21∠AEF , ∠___ ___=2
1
∠EFD (角平分线定义)∴ ∠____ __=∠_____ ∴ EG ∥FH (____ __)
二、选择题
1、如果一个角的补角是150°,那么这个角的余角的度数是( ) A 30° B 60° C 90° D 120°
2、(1)如果直线,,c b b a ⊥⊥那么a ∥c (2)如果两个角不相等,那么这两个角不是对顶角(3)两条直线被第三条直线所截,同位角相等(4)如果直线c b a ,⊥∥b ,那么a ∥c (5)两条直线平行,同旁内角相等;(6)邻补角的角平分线所在的两条直线互相垂直 (7)两条直线相交,所成的四个角中,一定有一个是锐角
以上说法正确的有几个( )
A 、1个
B 、2个
C 、3个
D 、4个 3、下列语句中,正确的是( )
A 、相等的角一定是对顶角
B 、互为补角的两个角不相等
C 、两边互为反向延长线的两个角是对顶角
D 、交于一点的三条直线形成3对对顶角 4、下列语句中,正确的是:
A 、两条直线相交所成的角叫做对顶角
B 、有公共顶点,且有一条边公共的两个角叫邻补角
C 、同位角相等,内错角相等
D 、有公共顶点,且大小相等的两个角是对顶角 5、下列语句中,错误的是:( )
A 、一条直线有且只有一条垂线
B 、不相等的两个角一定不是对顶角
C 、直角的补角必是直角
D 、如果两个角是邻补角,那么这两个角的平分线组成的图形是直角 6、如图6,在∠1、∠2、∠3、∠4中,内错角是:( ) A 、∠1与∠4 B 、∠2与∠4 C 、∠1与∠3 D 、∠2与∠3
A
B
C
D
O
1
2
7、如图7所示的∠1~∠9这九个角中,同位角,内错角,同旁内角的对数分别是:( )
图6
图7
图8
A 、四、四、二
B 、四、四、四
C 、六、四、四
D 、六、四、二
8、如图8,115︒
∠=,90AOC ︒
∠=,点B 、O 、D 在同一直线上, 则2∠的度数为( )
A 、 75︒
B 、15︒
C 、105︒
D 、165︒
三、解答下列各题
1、 一个角的余角比它的补角
2
9
还多1︒,求这个角.
2、已知互余两角的差为20︒,求这两个角的度数.
3、如图,在四边形ABCD 中,已知∠B =60°,∠C =120°,由这些条件你能判断哪两条直线平行?说说你的理由。
4、如图,已知∠1=30°,∠B =60°,AB
⊥AC ,
⑴∠DAB +∠B =_____;
⑵AB 与CD 平行吗?AD 与BC 平行吗?为什么?
A C D
B 1
5、如图,∠1=∠2,能判断AB ∥DF 吗?为什么? 若不能判断AB ∥DF ,你认为还需要再添加的一个条件是什么呢?写出这个条件,并说明你的理由。
6、如图⑧,BC ∥DE ,小颖用圆规分别画出∠ABC 、∠ADE 的角平分线BG 、DH ,想一想,小颖所画的这两条射线BG 和DH 会平行吗?为什么? (请你先用圆规画出这两条角平分线)
7、在下图中,已知直线AB 和直线CD 被直线GH 所截,交点分别为E 、F 点,AEF EFD ∠=∠、则
(1)写出//AB CD 的根据;
(2)若ME 是AEF ∠的平分线, FN 是EFD ∠的平分线, 则EM 与FN 平行吗?若平行,试写出根据.
A
B
C D E 1 2
B A D E
C A B C
D M N
E F
H
G。