密度泛函理论的离散变分方法在化学和材料物理学中的应用(肖慎修等著)思维导图
- 格式:xmin
- 大小:5.46 KB
- 文档页数:1
计算物理王延颋 2016年2月17日6. 密度泛函理论(Density Functional Theory ,DFT )一个用电子的空间密度代替电子坐标作为自变量求解多体薛定谔方程。
6.1. Hohenberg-Kohn Theorems定理一:对于处于基态的系统,其所有物理性质都由电子密度唯一决定,能量与电子密度二者之间为一一映射关系。
证明:运用反证法,假设两个不同外场(例如来自核子对电子的吸引力)的势能ext ˆV 和ext ˆV ¢对应于同一电子密度分布()r r v,哈密顿量ee ext ˆˆˆˆH T V V =++和ee extˆˆˆˆH T V V ¢¢=++相应的优化波函数分别为Y 和¢Y 。
把¢Y 作为ˆH的近似波函数并应用变分原理:()()000ext ext 00ext ext 0ˆˆˆˆˆˆˆˆH E H H H E E V V E E r V V dr E r ¢¢¢¢¢¢¢¢Y Y >ÞY Y +Y -Y >¢¢¢¢Þ+Y -Y >¢¢Þ+->òv v (6.1)类似可以得到()()()()0ext ext00ext ext 0ˆˆˆˆE r V V dr E E r V V dr E r r ¢¢+->¢¢Þ-->òòv v v v(6.2)两式相加,得0000E E E E ¢¢+>+,矛盾。
所以,能量是电子密度的唯一泛函[]E r 。
定理二:对应于电子密度的变分原理,即任意的近似电子密度r ¢所对应的能量值W 都大于等于基态对应的真正密度r 决定的能量值0E :[][]0W E r r ¢³。
一、 计算方法密度泛函理论(DFT )、含时密度泛函理论(TDDFT )二、 计算方法原理1. 计算方法出处及原理本计算方法设计来源于量子化学理论中的Born –Oppenheimer 近似,给近似下认为原子核不动, 这样电子就相当于在一个由核产生的外部的静态势场 V 中运动。
那么一个固定的电子态可以用波函数 Ψ(1r , · · · ,N r ), 并且满足多 N 电子体系薛定谔方程:()()22ˆˆˆˆ,2N N N i i j i i i i j H T V U V r U r r E m <⎡⎤⎡⎤ψ=++ψ=-∇++ψ=ψ⎢⎥⎣⎦⎣⎦∑∑∑ (2-3) 其中,● Ĥ, 哈密顿算符;● E , 体系总能量;● ˆT, 动能项; ● ˆV, 由带正电的原子核引起的外场势能项; ● Û, 电子电子相互作用能。
通常把 ˆT和 Û 叫做通用算符, 因为对于任何一个 N 电子体系, 表达式都相同.而势能函数 ˆV与体系密切相关。
由于电子相互作用项 Û 的存在, 复杂的多体系的薛定谔方程公式 2-3并不能拆分为简单的单电子体系的薛定谔方程。
根据 DFT 的核心理念, 对于一个归一化的波函数 Ψ, 电子的密度 n(r ) 可以定义为:333*231212()(,,)(,,)N N N n r N d r d r d r r r r r r r =⋅⋅⋅ψ⋅⋅⋅ψ⋅⋅⋅⎰⎰⎰ (2-4)更重要的是, DFT 的核心理念告诉我们, 对于一个给定的基态, 如果基态的电子密度0()n r 是知道的话, 那么基态的波函数012(,,)N r r r ψ⋅⋅⋅就唯一确定。
也就是说, 基态的波函数0ψ是基态电子密度0n 的泛函[11], 表达为:[]00n ψ=ψ (2-5)既然有以上的假定, 那么对于基态的任何一个观测量ˆO, 它的数学期望就应该是0n 的泛函:[][][]000ˆO n n O n =ψψ (2-6) 特别的, 基态的能量也是0n 的泛函:[][][]0000ˆˆˆE E n n T V U n ==ψ++ψ (2-7) 这里外部势能的贡献[][]00ˆn V n ψψ可以通过基态的电子密度0n 来精确表达:300[]()()V n V r n r d r =⎰ (2-8)或者外部势能ˆVψψ可以用电子密度 n 来表达: 30[]()()V n V r n r d r =⎰ (2-9)泛函 T [n ] 和 U [n ] 被称作通用泛函, 而势能泛函 V [n ] 被称做非通用泛函, 因为它与当前研究的系统息息相关。
密度泛函理论是固体物理学和计算化学领域中的重要理论工具,它主要用于研究原子尺度和分子尺度的物质性质。
本文将介绍密度泛函理论的基本原理、发展历程和应用领域,并对其在材料科学、生物物理学和环境科学等领域的重要性进行分析和探讨。
一、密度泛函理论的基本原理密度泛函理论是量子力学和统计力学的一个结合体,它的基本原理可以概括为以下几点:1. 电子态的描述:密度泛函理论基于电子态的描述,通过电子密度的变化来描绘分子和固体的性质。
在这一理论框架下,原子核被看作是固定的点电荷,而电子的运动状态和相互作用则由电子密度函数来描述。
2. 能量泛函形式:密度泛函理论通过最小化系统的总能量来确定系统的基态结构和性质。
这里的能量泛函是关于电子密度的泛函,包括动能泛函、外势泛函和交换相关泛函等部分。
3. 交换相关能的近似:由于真实系统中的交换相关能泛函难以确定,因此密度泛函理论通常采用近似的交换相关能泛函来描述系统的性质。
这些近似方法包括局域密度近似、广义梯度近似和元素间相互作用近似等。
4. Kohn-Sham方程:密度泛函理论通过Kohn-Sham方程来描述系统的基态波函数和基态能量,进而确定系统的电子结构和物理性质。
Kohn-Sham方程包括一个单电子薛定谔方程和外势的贡献,通过自洽迭代求解来获得系统的基态信息。
二、密度泛函理论的发展历程密度泛函理论的发展可以追溯到20世纪60年代之前的几个重要里程碑:1. 第一个泛函:1964年,Hohenberg和Kohn提出了系统的基态电子密度可以唯一确定系统的外势能的定理,并引入了密度泛函的概念,为后来的密度泛函理论奠定了基础。
2. Kohn-Sham理论:1965年,Kohn和Sham提出了Kohn-Sham 方程来描述系统的基态波函数和基态能量,这一理论成果极大地推动了密度泛函理论的发展,并成为今天研究密度泛函理论的基本框架。
3. 交换相关能的近似:1970年代,Vosko、Wilk和Nus本人r提出了局域密度近似方法,为密度泛函理论中交换相关能的近似处理提供了新的思路。
密度泛函理论, Density functional theory (DFT)是一种研究多电子体系电子结构的量子力学方法。
密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。
理论概述电子结构理论的经典方法,特别是Hartree-Fock方法和后Hartree-Fock方法,是基于复杂的多电子波函数的。
密度泛函理论的主要目标就是用电子密度取代波函数做为研究的基本量。
因为多电子波函数有个变量(为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。
虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。
Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。
Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。
最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。
最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。
正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。
密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。
在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。
这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。
处理交换相关作用是KS DFT中的难点。
目前并没有精确求解交换相关能的方法。
最简单的近似求解方法为局域密度近似(LDA)。
LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。
密度泛函理论-定理介绍点击查看大图Density functional theory (DFT)密度泛函理论是一种研究多电子体系电子结构的量子力学方法。
密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。
电子结构理论的经典方法,特别是Hartree-Fock方法和后Hartree-Fock 方法,是基于复杂的多电子波函数的。
密度泛函理论的主要目标就是用电子密度取代波函数做为研究的基本量。
因为多电子波函数有 3N 个变量(N 为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。
虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。
Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。
Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。
最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。
最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。
正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。
密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。
在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。
这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。
处理交换相关作用是KS DFT中的难点。
目前并没有精确求解交换相关能 EXC 的方法。
最简单的近似求解方法为局域密度近似(LDA)。
LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。
物理化学专业博士研究生课程教学大纲课程名称:量子化学计算( Computational Quantum Chemistry)课程编号:B07030411学分:3总学时数:72开课学期:第2 学期考核方式:学习论文课程说明:(课程性质、地位及要求的描述)。
《量子化学计算》是在学习了《结构化学》、《量子化学》之后,为物理化学专业博士研究生开设的一门方向课,在每学年第二学期讲授。
如果说《结构化学》、《量子化学》还有更多的抽象,那么《量子化学计算》则直接对各研究体系进行可与实验对比的计算机模拟。
近二十年来,随着计算机硬件和软件水平的迅速发展,计算化学已成为理论化学的重要分支,主要通过量子化学方法、分子力学方法以及分子动力学模拟来解决与化学相关的问题。
目前,计算化学已广泛应用于化学及相关交叉学科的各个领域,迅速成为定量预测分子的结构、性质以及反应性能的有力工具。
本课程计划安排72 个学时。
采用授课与上机演习相结合的教学方法,使学生在较短时间内掌握当今国际流行的常用计算软件的原理、使用方法及技巧,着重培养同学们解决化学实际问题的能力。
要求同学们通过本课程的学习,能对计算化学的原理和方法有一个初步的了解,并能够在化学合成、反应机理、生物、材料等各个领域中得到应用。
教学内容、要求及学时分配:第一章绪论内容:要求:了解量子化学的背景知识、国际国内发展现状及其未来方向学时:41.1 量子力学历史背景 1.2 21 世纪的理论化学计算机模拟第二章从头计算法的基本原理和概念内容:2.1量子力学基本假设 2.5变分法和LCAO-MO近似2.2定态近似 2.6量子化学中的一些基本原理和2.3从头计算法的“头”概念2.4自洽场方法 2.7量子化学中的基本近似要求:了解从头计算法的基础知识、计算化学中的一些基本原理、概念和近似学时:12第三章布居分析和基组专题内容:3.1布居分析 3.2 基组专题要求:理解基组概念及选择的原则,掌握布居分析的计算方法和基组的计数,了解Mulliken布居分析的优缺点及改进的思路。