泛函分析中不动点理论及其应用
- 格式:doc
- 大小:800.00 KB
- 文档页数:13
泛函分析中的不动点定理证明泛函分析是数学的一个分支,主要研究函数空间和算子的性质。
其中一个重要的定理是不动点定理,它在泛函分析的理论和应用中有着广泛的应用。
本文将探讨不动点定理的证明。
在介绍不动点定理之前,我们先来了解一下不动点的概念。
设X是一个非空集合,f是定义在X上的一个函数。
若存在一个元素x∈X,使得f(x)=x成立,则称x是函数f的一个不动点。
不动点定理指出,对于某些特定的函数和集合,总存在不动点。
为了证明不动点定理,我们需要引入一些基本的概念和定理。
首先是泛函分析中的度量空间和完备性。
定义 1:度量空间设X是一个非空集合,d是定义在X×X上的一个函数,满足以下条件:1) 对于任意的x, y∈X,有d(x, y)≥0,并且当且仅当x=y时,d(x,y)=0成立;2) 对于任意的x, y∈X,有d(x, y)=d(y, x);3) 对于任意的x, y, z∈X,有d(x, z)≤d(x, y)+d(y, z)成立。
满足上述条件的d称为X上的一个度量,而(X, d)则称为度量空间。
在度量空间中,我们可以定义距离和收敛等概念。
定义 2:完备性设(X, d)是一个度量空间,若对于任意的Cauchy序列{x_n}⊆X,存在x∈X,使得limn→∞d(x_n, x)=0成立,则称(X, d)是一个完备度量空间。
在搞清楚上述基本概念后,我们现在可以来证明不动点定理了。
定理 1:Banach不动点定理设(X, d)是一个完备度量空间,f是一个映射,满足以下条件:1) f: X→X;2) 对于任意的x, y∈X,有d(f(x), f(y))≤kd(x, y),其中0≤k < 1。
那么f至少有一个不动点,即存在x∈X,使得f(x)=x成立。
证明:首先,我们定义一个序列{x_n}如下:x_0∈X, x_1=f(x_0), x_2=f(x_1), ..., x_n=f(x_{n-1}), ...我们来证明这个序列是一个Cauchy序列。
泛函分析中的不动点定理证明泛函分析是函数空间上研究函数性质的数学分支,它主要关注函数空间中的映射和变换。
不动点定理是泛函分析中的基本概念之一,它在许多数学领域中有着重要的应用。
本文将探讨泛函分析中的不动点定理及其证明过程。
不动点定理是指对于某个函数空间中的映射,如果存在某个点在映射下不发生变化,即映射的输出等于输入,那么这个点被称为不动点。
不动点定理主要讨论在特定条件下,映射总能找到一个不动点。
以下我们将介绍泛函分析中的两个不动点定理:Banach不动点定理和Brouwer不动点定理。
一、Banach不动点定理的证明Banach不动点定理是泛函分析中最基本、最重要的不动点定理之一。
它表明,对于完备度量空间中的某个收缩映射,总能找到一个唯一的不动点。
假设我们有一个完备度量空间X,并且有一个映射T:X→X,满足以下条件:1. 存在一个常数0≤k<1,使得对于任意两点x和y,都有d(Tx, Ty)≤ k · d(x, y),其中d表示度量空间X中的距离。
2. 映射T是连续的,即对于任意序列{xn}收敛于x,都有{T(xn)}收敛于T(x)。
现在我们需要证明存在一个唯一的不动点y ∈ X,使得Ty = y。
证明过程如下:首先,我们选取一个起始点x0 ∈ X,并定义一个序列{xn},其中xn = T(xn-1),即递归地将映射T作用在前一个点上。
根据条件1,我们可以证明序列{xn}是一个柯西序列。
事实上,对于任意给定的正整数n和m,我们有d(xn, xm) = d(T(xn-1), T(xm-1)) ≤ k · d(xn-1, xm-1) ≤ k^2 · d(xn-2, xm-2) ≤ ... ≤ k^n · d(x0, xm-n)由于0≤k<1,当n趋向于无穷大时,k^n趋近于0。
因此,序列{xn}是一个柯西序列。
根据完备性的定义,我们知道柯西序列在完备度量空间中必定收敛。
泛函分析与微分方程有着密切的联系,泛函分析的算子半群理论、巴拿赫代数、拓扑线性空间理论,不动点原理等在常微分方程中都有重要的应用。
首先,算子半群最简单的原型在线性常微分方程的初值问题,且由Hille Yosida -定理表明:当稠定闭算子A 满足定理条件时,是下列方程的解,且解是唯一的。
设A 是一个n n ⨯实矩阵,方程组()()()00ndx t Ax t dt x x R ⎧=⎪⎨⎪=∈⎩在空间中解存在唯一。
设0t ≥,考察映射 ()()0:.T t x x t →则(){}0T t t ≥是强连续算子半群。
在常微分方程中把算子半群(){0T t t ≥通过矩阵写出来:()0!n ntAN t A T t e n ∞===∑.且不动点在常微分方程中有很多应用。
例如,应用不动点定理证明微分方程解的存在性定理微分方程解的存在性与唯一性定理 若常微分方程0,,xdyF x y y y dx满足以下条件:(1),F x y 在整个平面上连续;(2)()()11,,F x y F x y K y y -≤-,其中K >0; 那么存在唯一的连续函数y x 满足()(),d x F x y dxϕ=且()00x y ϕ=。
证明:用0,XC U x 表示所有定义在0,U x 上取值于R 的连续函数全体,其中满足1K 。
,f g X ,用0,,maxx U x f gf xg x 表示,f g 间的距离,同样由泛函分析的知识知X 为完备度量空间。
上述常微分方程等价于等价于积分方程0,x x y xy f t y t dt ,定义映射0,xx Tfy F t f t dt ,由F 的连续性知TfX ,,f gX 0,,max x U x Tf TgTf xTg x()()()()()00,max,,xx U x x F x f x F x g x dt δ∈⎡⎤=-⎣⎦⎰()()()00,maxxx U x x K f t g t dt δ∈≤-⎰()()()0,max x U x K f t g t δδ∈≤-,K f g因为1K,故存在唯一的连续函数0,,yx x U x ,使得()()()00,xx x y f t t dt ϕϕ=+⎰,显然()y x ϕ=可微,所以()()0,,y x x U x ϕδ=∈满足()(),d x F x y dxϕ=且()00x y ϕ=,然后在延拓到整个R 上即得。
泛函分析度量空间知识和不动点的应用第七章度量空间和赋范线性空间知识总结 一、度量空间的例子定义:设X 为一个集合,一个映射d :X ×X →R 。
若对于任何x,y,z 属于X ,有 (I )(正定性)d(x,y )≥0,且d(x,y)=0当且仅当 x = y ; (Ⅱ)(对称性)d(x,y)=d(y,x );(Ⅲ)(三角不等式)d(x,z )≤d(x,y)+d(y,z )则称d 为集合X 的一个度量(或距离)。
称偶对(X ,d )为一个度量空间,或者称X 为一个对于度量d 而言的度量空间。
根据定义引入度量空间有离散的度量空间、序列空间、有界函数空间、可测函数空间、C 【a ,b 】空间、2l 空间,这6个空间是根据度量空间的定义可证它们是度量空间,在后面几节中给出它们相关的性质。
二、度量空间中的极限,抽密集,可分空间: 证明极限有二种方法:1、定义法:设{}n x 是(X ,d )中点列,如果存在x ∈X ,是lim (,)n x d x x →∞=0,则称点列{}n x是(X ,d )中的收敛点列,x 是点列{}n x 的极限。
2、M 是闭集是充要条件是M 中任何收敛点列的极限都在M 中。
即若n x M ∈,n=1、,2……,n x x →,则x M ∈。
给出n 维欧氏空间、C[a,b]序列空间、可测函数空间中点列收敛的具体意义,由这些系列例子可以看到,尽管在各个具体空间中各种极限概念不完全一致,所以我们引入度量空间中的稠密子集和可分空间的概念,根据定义可得出n 维欧氏空间nR 是可分空间,坐标为有理数的全体是nR 的可数稠密集,离散度量空间X 可分的充要条件为X 是可数集。
l ∞是不可分空间。
三、连续映射证明度量空间的连续映射有四种方法:1、定义法:设X=(X ,d ),Y=(Y ,d )是两个度量空间,T 是X 到Y 中的映射,0x X ∈,如果对于任意给定的正数ε,存在正数δ0,使对X 中一切满足d (x ,0x )δ 的x ,有(,)d Tx Tx ε ,则称T 在0x 连续。
泛函分析中的不动点迭代法在泛函分析领域,不动点迭代法是一种重要的数学工具。
它被广泛应用于各个数学领域,如函数逼近、优化问题、微分方程等。
本文将介绍不动点迭代法的基本原理和应用场景。
一、不动点迭代法的基本原理不动点迭代法的核心思想是通过反复迭代逼近一个函数的不动点。
一个函数的不动点是指对于函数f(x),若存在一个点x0使得f(x0)=x0,则x0称为函数f的不动点。
不动点迭代法的基本步骤如下:1. 选择一个初始点x0;2. 迭代计算:根据迭代公式x_{n+1}=f(x_n),进行反复迭代直到满足收敛条件;3. 迭代终止:达到满足收敛条件时,得到函数的近似不动点。
不动点迭代法的收敛性条件通常包括收敛性判别定理、收敛速度等,具体条件取决于问题的特性以及所选择的迭代函数。
二、不动点迭代法的应用场景不动点迭代法在泛函分析中有广泛的应用场景。
以下将介绍其中几个常见的应用:1. 函数逼近:通过不动点迭代法,可以逼近一个函数的零点。
选择一个合适的迭代函数,利用迭代过程逐步逼近函数的零点。
2. 优化问题:在优化领域中,不动点迭代法可以用来求解某些特殊类的优化问题。
通过将优化问题转化为求不动点的问题,利用不动点迭代法求解最优解。
3. 微分方程:不动点迭代法可以用于求解一些微分方程的初值问题。
通过将微分方程转化为一个不动点迭代问题,然后利用不动点迭代法进行求解。
不动点迭代法的应用并不仅限于以上几个场景,它在数学和工程领域都有广泛的应用。
三、不动点迭代法的实例为了更好地理解和应用不动点迭代法,以求解方程f(x)=0为例进行说明。
假设我们需要求解方程x^2-3x+2=0的根。
我们可以将其转化为不动点迭代问题,即求解不动点方程x=f(x),其中f(x)=(x^2+2)/3。
初始点x0可以选择为2,然后根据迭代公式进行迭代计算。
通过多次迭代,我们可以得到近似的不动点为1,即方程的解为x=1。
四、总结不动点迭代法是一种在泛函分析中常用的数学工具。
关于函数不动点的研究及其应用相关概念:定义:一般地,对于定义在区间D 上的函数()y f x =(1)若存在0x D ∈,使得00()f x x =,则称0x 是函数()y f x =的一阶不动点,简称不动点;(2)若存在0x D ∈,使00(())f f x x =,则称0x 是函数()y f x =的二阶不动点,简称稳定点; 说明:(1)不动点实际上是方程组⎩⎨⎧==xy x f y )(的解),(00y x 的横坐标,或两者图象的交点的横坐标(2)稳定点是函数图象与它的反函数(可以是多值的)的图象的交点的横坐标.(3)令()0f x t =,则()()00f x t x t =≠,故函数()y f x =有两个二阶不动点0,x t 就是二元方程()()00f x t f t x =⎧⎪⎨=⎪⎩有解,即点()()00,,,t x x t 都在函数()y f x =图象上,所以()y f x =得二阶不动点就是函数()y f x =图象上关于直线y x =对称两点的横坐标。
(4)若0x 为函数)(x f y =的不动点,则0x 必为函数)(x f y =的稳定点,但稳定点不一定就是不动点,但若函数()y f x =单调递增,则它的不动点与稳定点是完全等价的。
(证明)相关习题:1.(2013年四川文科).设函数a x e x f x -+=)((R a ∈,e 为自然对数的底数). 若存在]1,0[∈b 使b b f f =))((成立,则a 的取值范围是( )A. ],1[eB. ]1,1[+eC. ]1,[+e eD.]1,0[分析:题目的等价于()y f x =存在二阶不动点]1,0[∈b ,而易知()y f x =在定义域内为单调递增函数,故二阶不动点与一阶不动点等价,进而转化为()y f x =存在一阶不动点]1,0[∈b ,即[]0,1x ∃∈,使得x a x e x f x =-+=)(在]1,0[∈x 有解,整理可得,2x x e a x -+=,在]1,0[∈x 有解令2)(x x e x g x -+=,]1,0[∈x∵021121)(=-+>-+='x e x g x ,∴)(x g 在]1,0[∈x 单调递增 1)0(=g ,e g =)1(,],1[e a ∈,故选择A变式:(2013四川理科)设函数a x e x f x -+=)((R a ∈,e 为自然对数的底数). 若曲线x y sin =上存在点),(00y x 使00))((y y f f =成立,则a 的取值范围是( )A . ],1[e B. ]1,1[1--e C. ]1,1[+e D. ]1,1[1+--e e2.如果函数()()2f x x a a R =+∈的二阶不动点恰是它的一阶不动点,求实数a 的取值范围。
不动点定理及其应用摘要不动点定理是研究方程解的存在性与唯一性理论的重要工具之一.本文给出了线性泛函分析中不动点定理的几个应用,并通过实例进行了说明.同时,介绍了非线性泛函分析中的不动点定理——Brouwer不动点定理和Leray-Schauder不动点定理.关键词不动点;不动点定理;Banach空间Fixed Point Theorems and Its ApplicationsAbstract The fixed point theorem is one of important tools in studying the existence and uniqueness of solution to functional equation .In this paper,the fixed theorem in linear functional analysis and its applications are introduced and the corresponding examples are ,the Brouwer and Leray-Schauder fixed point theorems are also involved.Key Words Fixed point , Fixed point theorem, Banach Space不动点定理及其应用0 引言在线性泛函中,不动点定理是研究方程解的存在性与解的唯一性理论[1-3].而在非线性泛函中是研究方程解的存在性与解的个数问题[4],它是许多存在唯一性定理(例如微分方程,积分方程,代数方程等)的证明中的一个有力工具. 下面给出不动点的定义.定义 设映射X X T →:,若X x ∈满足x Tx =,则称x 是T 的不动点.即在函数取值的过程中,有一点X x ∈使得x Tx =.对此定义,有以下理解.1)代数意义:若方程x Tx =有实数根0x ,则x Tx =有不动点0x .2)几何意义:若函数()x f y =与x y =有交点()00,y x 则0x 就是()x f y =的不动点.在微分方程、积分方程、代数方程等各类方程中,讨论解的存在性,唯一性以及近似解的收敛性始终是一个极其重要的内容. 对于许多方程的求解问题,往往转化为求映射的不动点问题,同时简化了运算.本文将对不动点定理及其变换形式在线性分析和非线性分析中的应用加以探索归纳.1 Banach 不动点定理及其应用 相关概念首先介绍本文用的一些概念.定义1.1.1[3]设X 为距离空间,{}n x 是X 中的点列,若对任给的0>ε,存在0>N ,使得当N n m >,时,()ερ<n m x x ,.则称点列{}n x 为基本点列或Cauchy 点列.如果X 中的任一基本点列均收敛于X 中的某一点,则称X 为完备的距离空间.定义1.1.2[3]定义在线性空间上的映射统称为算子.定义1.1.3[3]给定距离空间()ρ,X 及映射T :X X →,若X x ∈满足x Tx =,则称x 是T 的不动点.Banach 不动点定理定理 1.2.1[3]设X 是完备的距离空间,距离为ρ.T 是由X 到其自身的映射,且对任意的X y x ∈,,不等式()(),,Tx Ty x y ρθρ≤成立,其中θ是满足不等式01θ≤<的常数.那么T 在X 中存在唯一的不动点.即存在唯一的X x ∈,使得x x T =.证明 在X 中任意取定一点0x ,令01Tx x =,12Tx x =,…,n n Tx x =+1,… 首先证明{}n x 是X 中的一个基本点列. 因为()()()()00101021,,,,Tx x x x Tx Tx x x θρθρρρ=≤=; ()()()()002212132,,,,Tx x x x Tx Tx x x ρθθρρρ=≤=; ……………………… 于是()()001,,Tx x x x n n n ρθρ≤+, ,3,2,1=n()()()()p n p n n n n n p n n x x x x x x x x +-++++++++≤,,,,1211ρρρρ()()0011,Tx x p n n n ρθθθ-+++++≤()()()0000,1,11Tx x Tx x np n ρθθρθθθ-≤--=. 又10<≤θ,故(),0∞→→n n θ即{}n x 是基本点列.由于X 完备,所以由定义1.1.1知{}n x 收敛于X 中某一点x .另外,由()(),,Tx Ty x y ρθρ≤知,T 是连续映射.在n n Tx x =+1中,令,∞→n 得x x T =,因此x 是T 的一个不动点.下面证明唯一性.设另有y 使y T y =,则()()(),,,,y x y T x T y x θρρρ≤=考虑到10<≤θ,则有(),0,=y x ρ即y x =.定理 1.2.2[3]设T 是由完备距离空间X 到其自身的映射,如果存在常数:1o θθ≤<以及自然数0n 使得(,)(,)n n T x T y x y ρθρ≤(,)x y X ∈ ()1那么T 在X 中存在唯一的不动点.证明 由不等式()1,0n T 满足定理1.2.1的条件,故0n T 存在唯一的不动点0x .现在证明0x 也是映射T 唯一的不动点.事实上10000()()()n n n T Tx T x T T x Tx +===可知,0Tx 是映射0n T 的不动点.由0n T 不动点的唯一性,可得00Tx x =,故0x 是映射T 的不动点.若T 另有不动点1x ,则由01111111n n n T x T Tx T x Tx x --=====知1x 也是0n T 的不动点.仍由唯一性,可得10x x =.Banach 不动点定理的应用1.3.1在讨论积分方程解的存在性与唯一性中的应用例1.3.1.1给定积分方程()()()()ds s x s t K t f t x ba ⎰+=,λ ()2其中()t f 是[]b a ,上的已知连续函数,()s t K ,是定义在矩形区域b s a b t a ≤≤≤≤,上的已知连续函数,证明当λ足够小时(λ是常数),()2式在[]b a ,上存在唯一连续解.证明 在[]b a C ,内规定距离()()()1212,max a t by y y x y x ρ≤≤=-令 ()()()()()ds s x s t K t f t Tx ba⎰+=,λ则当λ充分小时,T 是[][]b a b a C C ,,→的压缩映射. 因()()()()()1212,max a t bTx Tx Tx t Tx t ρ≤≤=-()()()()()()()()121212max ,max ,,,ba t baba tb aK t s x s x s dsK t s x s x s ds M x x λλλρ≤≤≤≤=-≤-≤⎰⎰其中()max ,ba t baM K t s ds ≤≤=⎰,从而当1M λ<时,T 是压缩映射,则由定理1.2.1知方程对于任一()[]b a C t f ,∈解存在并且唯一.例1.3.1.2 考虑微分方程初值问题()⎪⎩⎪⎨⎧===,,,00y y y x f dx dyx x ()3 其中()2R C f ∈,且()y x f ,关于y 满足Lipschitz 条件,即存在0>L 使()()'',,y y L y x f y x f -≤-,R y y x ∈',, ()4则初值问题()3在R 上存在唯一解.证明 微分方程(3)等价于积分方程 ()()()dt t y t f y x y xx ⎰+=0,0,取0>δ,使.1<δL 在[]δ+00,x x C 上定义映射()()()(),,00dt t y t f y x T xx ⎰+=φ则由(4)式得ϕφT T -=()()()()0max ,,xx x x x f t t f t t dt δϕφ≤≤+⎡⎤-⎣⎦⎰ ()()000maxxx x x x L t t dt δϕφ≤≤+≤-⎰,ϕφδ-≤L []δϕφ+∈00,,x x C ,已知1<δL ,故由定理 1.2.1知存在唯一的连续函数[],,000δφ+∈x x C 使,00φφT =即()()()dt t t f y x xx ⎰+=0000,φφ,且()x 0φ在[]δ+00,x x 上连续可微,且()x y 0φ=就是微分方程()2在[]δ+00,x x 上的唯一解.1.3.2在数列求极限中的应用由定理1.2.1的证明可知,若f 是[]b a ,上的压缩映射,则对[]b a x ,1∈∀,由递推公式()n n x f x =+1确定的数列{}n x 收敛,且n n x x ∞→=lim 0为f 的唯一不动点.例 1.3.2.1[5]证明:若()x f 在区间[]r a r a I +-=,上可微,()1<≤'a x f 且()()r a a a f -≤-1,任取I x ∈0.令()()()n n x f x x f x x f x ===+11201,,, ,则**lim ,n n x x x →∞=为方程()x f x = 的根(即*x 为()x f 的不动点).证明 已知I x ∈0,设I x n ∈则()()(){}()a a f a x f a a f a f x f a x n n n -+-≤-+-=-+ξ'1(),(a x n ∈ξ) 由已知得 ()r r a ar a x n =-+≤-+11即I x n ∈+1,从而得知,一切I x n ∈.由微分中值定理,存在ξ在n x 与1+n x 之间,即I ∈ξ使得()()()()10,11'11<<-≤-≤-=----+a x x a x x f x f x f x x n n n n n n n n ξ.这表明()n n x f x =+1是压缩映射,所以{}n x 收敛.又因()x f 连续.在()n n x f x =+1里取极限知{}n x 的极限为()x f x = 的根.例 1.3.2.2[9]设[];3,2,22,1,0,2121 =-=∈=-n x a x a a x n n 求证数列{}n x 收敛并求其极限.证明 易知20ax n ≤≤.则我们在区间⎥⎦⎤⎢⎣⎡2,0a 上考虑函数()222x a x f -=,对⎥⎦⎤⎢⎣⎡∈∀2,0,21a x x 有()()21212122122122122x x a x x x x x x x f x f -≤+-=-=- []()1,0∈a .即()x f 是⎥⎦⎤⎢⎣⎡2,0a 上的压缩映射.从而{}n x 收敛于方程的解.设22020x a x -=得110-+=a x .1.3.3在数学建模中的应用不动点定理也是连续函数的一个重要性质,在数学分析中我们就知道这样一个结论“闭区间上的连续函数必然存在不动点”.在一些数学建模题目的解答上应用不动点定理会使得求解更简单,下面就介绍几个不动点定理在数学分析中的形式及其在解决数学建模问题中的应用,进而深化对不动点定理的认识以及说明此定理应用的广泛性.引理 1.3.3.1[6-7]设()x f 在[]b a ,上连续,且()()b f a f ,异号,则()x f 在[]b a ,内至少存在一点c 使得()0=c f .定理 1.3.3.2[6-7]设()x f 是定义在[]b a ,上的连续函数,其满足()b x f a ≤≤,则在[]b a ,上至少存在一个不动点0x ,即()00x x f =.例 1.3.3.1 日常生活中常有这样一个经验:把椅子往不平的地面上放,通常只有三个脚着地,放不稳,然而只需稍挪动几次,就可以是四只脚同时着地,放稳了.我们将这个问题转化为纯数学问题.现在应用不动点定理对其进行解释说明.模型假设: 对椅子和地面做一些假设:1)椅子四条腿一样长,倚脚与地面可视为一点,四脚的连线呈正方形. 2)地面高度是连续变化的,沿任何地方都不会出现间断点(没有像台阶那样的情况).即地面可视为数学上的连续曲面.3)对于椅脚的间距和倚腿的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地.4)椅子转动时中心不动.模型分析:在图1中椅脚连线为正方形ABCD ,对角线AC 与x 轴重合,椅子绕中心点O 旋转角度θ后,正方形ABCD转至D C B A ''''的位置,所以对角线AC 与x 轴夹角θ表示了椅子的位置.其次要把椅脚着地用数学符号表示出来.如果用某个变量表示椅脚与地面的竖直距离,那么当这个距离为零时就是椅脚着地了,椅子在不同位置是椅脚与地面的距离不同,所以这个距离是椅子位置变量θ的函数.设()θf 为C A ,两脚与地面距离之和,()θg 为D B ,两脚与地面距离之和.由假设2)知,()θf 和()θg 都是连续的函数.由假设3),椅子在任何位置至少有三只脚同时着地,所以对于任意的θ,()θf 和()θg 中至少有一个为零.即()θf ()θg =0,当0=θ时不妨设()()0,0>=θθf g .从而数学问题就转化为求证存在0θ,使x()()000==θθg f ,⎪⎭⎫ ⎝⎛<<20πθ.模型求解:令()()().θθθg f h -=因()()()0222,0000<⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛>-=πππg f h g f h .则由定理1.3.3.2知,必存在,2,00⎪⎭⎫⎝⎛∈πθ使(),00=θh 即()()000==θθg f .1.3.4在解线性方程组中的应用例1.3.4.1[1]设有线性方程组b Cx x +=其中()ij c C =是n n ⨯方阵,()Tn b b b b ,,,21 =是未知向量,证明:若矩阵C 满足1sup 1,1,2,,nij ij c i n =<=∑,则方程b Cx x +=有唯一解.证明 设X 是n R (或n C ),定义度量()i i ni y x y x -=≤≤1max ,ρ,则X 是完备的度量空间.作映射.,,:X x b Cx Tx X X T ∈+=→若()(),,,,,,,,2121X y y y y X x x x x Tn Tn ∈=∈=则 ()⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=∑∑=≤≤i j ij n j i j ij n i b y c b x c Ty Tx 11max ,ρ()()y x a y x c y x c nj ij ni j j n j ij ni ,,max max 1111ρρ=≤-≤∑∑=≤≤=≤≤而,1max 11<=∑=≤≤nj ij ni c a 所以T 是X 上的压缩映射,定理1.2.1知,存在唯一的n R x ∈*,使得b Cx x +=**.2 Leray —Schauder 不动点定理 相关概念定义2.1.1[3]称映射:f U Y →在0x U ∈处连续,是指对任给0ε>,存在0δ>,当x U ∈且0x x δ-<时,恒有0()()f x f x ε-<.若f 在U 内每一点连续,则称f 在U 上连续.定义 2.1.2[4]设,X Y 为线性赋范空间,D X ⊂,称映射:F D Y →为紧映射,如果F 将D 中的任何有界集S 映成Y 中的相对紧集()F S ,即()F S 是Y 的紧集.如果映射F 是连续的,则称F 为紧连续映射,或全连续映射.定义 2.1.3[3]设M 是U 的一个子集,如果对任意的M y y ∈21,以及满足10≤≤α的任意实数α,元素21)1(y y αα-+仍属于M ,则称M 是U 的凸集.如果M既是闭集且凸集,则称M 是U 中的闭凸集.Leray —Schauder 不动点定理及应用定理2.2.1(Brouwer 不动点定理)设Ω是n R 中的有界闭凸子集,Ω∂表示Ω的相对边界;设),(n R C f Ω∈并且满足Ω⊂Ω∂)(f .则在Ω上必有不动点.例2.2.1 设B 是实2l 空间的闭单位球,令B B f →:为(),,,,1212⎪⎭⎫ ⎝⎛-= ξξx x f ().B x k ∈=ξ则f 在B 上连续,但f 在B 上却没有不动点(否则,存在B x ∈,使()x x f =.由此推得,,,11221 ξξξ=-=x 再由2l x ∈得0=x ,这又导致()()x x f ≠= ,0,0,1,得到矛盾).在应用中,常常涉及到无穷维空间(如[][]b a L b a C ,,,2)上的算子,由上例可知,Brouwer 不动点定理对无穷维空间不再成立,尽管如此,我们注意到有线维空间的有界闭集即紧集,若将Brouwer 不动点定理中的“有界闭凸集”改为“紧凸集”,则可利用Leray —Schauder 度理论,就可以说明下述结论.定理2.2.2(Schauder 不动点定理) 设D 是实Banach 空间E 中的非空紧凸集,D D A →:连续,则A 在D 上必有不动点.定理2.2.3(Leray —Schauder 不动点定理)设D 是实Banach 空间E 中的非空有界闭凸集,若算子D D A →:全连续,则A 在D 上必有不动点.例2.2.1考察Urysohn 积分方程()()(),,x t k t s x s ds Ω=⎰ ()5解的存在性,其中Ω是n R 中的有界闭集,()u s t k ,,在R ⨯Ω⨯Ω上连续,并满足()R u s t u u s t k ∈Ω∈+≤,,,,,βα ()6 这里().1,0,0<Ω>>m ββα证明方程()5在Ω上必有连续解.证明 令)()(:Ω→ΩC C A 为()()()(),,Ax t k t s x s ds Ω=⎰,则可知A 是全连续算子.令{},|)(,)(1)(γβαγ≤Ω∈=Ω-Ω=x C x D m m 则D 是)(ΩC 中的有界闭凸集,且当D x ∈是,由()6得()()()ds s sx t k t Ax ⎰Ω≤,()()ds s x ⎰Ω+≤βα Ω+Ω≤m x m βαγβγα=Ω+Ω≤m m 故,γ≤Ax 此即D Ax ∈.由定理 2.2.3知,A 在D 上必有不动点,即存在D x ∈使()()(),,,x t k t s x s ds Ω=⎰因此x 是方程()5在Ω上的连续解. 3 总结不动点定理及其变换形式在线性分析和非线性分析中以及其他领域有着广泛的应用.本文只是总结了在线性分析和非线性分析中最基本的应用,随着不动点定理的不断发展和完善,将会有更多更广泛的应用.参考文献[1]吴翊,屈田兴.应用泛函分析[M].长沙:国防科技大学出版社,2002.[2]程其蘘,张奠宙等.实变函数与泛函分析基础[M].北京:高等教育出版社,2003.[3]王声望,郑维行等. 实变函数与泛函分析[M].北京:高等教育出版社,2003.[4]钟承奎,范先令等.非线性泛函分析引论[M].兰州:兰州大学出版社,2004.[5]钱吉林.数学分析题解精粹[M].北京:中央民族大学出版社,2002.[6]华东师范大学数学系.数学分析(上册)[M].北京:高等教育出版社,2001.[7]华东师范大学数学系.数学分析(下册)[M].北京:高等教育出版社,2001.[8]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,2006.[9]张卿.压缩映象原理的证明及应用[J].衡水学院学报,2008.。
浅谈Banach不动点原理与应用作者:王涛廖雷来源:《文存阅刊》2018年第22期摘要:Banach不动点定理是度量空间理论的一个重要工具。
本文介绍了泛函分析中的Banach不动点原理在解决线性方程组解的存在问题时的应用,在证明数值分析中迭代法原理的应用。
关键词:Banach;不动点;迭代法一、预备知识定义1:设X是度量空间,T是X到X中的映射,如果存在一个数a,0定理1:(Banach不动点原理):设X是完备的度量空间,T是X上的压缩映射,那么T 有且只有一个不动点,即方程Tx=x,有且只有一个解。
定理2:设X是完备的度量空间,T是X上的压缩映射,对所有x,y∈X,成立d(Tx,Ty)≤ad(x,y),对任意x0∈X,定义xn=Txn-1,则存在唯一不动点x*,使得xn→x*,且d(xn,x*)≤ d(xn,xn-1)≤d(x1,x0) [1]。
二、Banach不动点原理的在数学其他学科中的应用(一)不动点原理在解决线对方程组AX+b=X,其中X=(x1,x2,…,xn)T∈in,A=(aij)n×n,b(b1,b2,…,bn).对in取范数‖x‖2=|x1|.下面使用Banach不动点原理讨论此方程组在系数满足什么条件时,存在唯一解。
(二)Banach不动点原理在证明数值分析中的迭代法的应用定理3:迭代法不动点原理设映射g(x)在[a,b]上有连续的一阶导数,且满足:(1)封闭性:对x∈[a,b],有g(x)[a,b]。
(2)压缩性:L∈(0,1),使得对x∈[a,b],|g (x)|≤L则g(x)在[a,b]上存在唯一的不动点X*,且对x0∈[a,b],xk=g(xk-1)收敛于X*,且|x*-xk|≤|xk-xk-1|≤|x1-x0|有使用Banach不动点原理对推论证明:由原理内容知,g(x)是[a,b]到[a,b]的线性映射;R和[a,b]均完备;条件(2)等价于g(x)为压缩映射。
目录内容摘要 (1)关键词 (1)Abstract (1)Key Words (1)1.引言 (1)2.不动点定义及定理介绍 (2)2.1不动点相关定义 (2)2.2不动点思想 (2)2.3不动点相关定理 (6)3.不动点思想在其他学科的应用 (8)3.1在求数列通项公式中的应用 (8)3.2在求方程解中的应用 (11)3.3在求函数解析式中的应用 (12)4.不动点定理在证明中的应用 (14)4.1 应用不动点定理证明数列极限 (14)4.2 应用不动点定理证明隐函数定理 (15)4.3 应用不动点定理证明微分方程解的存在性定理 (17)4.4 应用不动点定理证明积分方程解的存在性定理 (17)4.5 不动点定理在图论中的证明 (14)参考文献 (18)致谢 (19)内容摘要:本文简要介绍了不动点思想及相关定理,对Banach不动点定理做了一些简单的推论,应用不动点思想解决数列通项公式、方程的解、函数的解析式等问题。
并对隐函数定理、微分方程解的存在性定理、积分方程解的存在性定理做出了证明。
关键词:不动点不动点思想不动点定理应用Abstract:Key words:1.引言泛函分析是本世纪出才逐渐形成的一个新的数学分支,以其高度的统一性和广泛的应用性,在现代数学领域占有重要的地位。
在泛函分析中。
许多分散在各个数学分支中的事实都得到了统一的处理,例如隐函数定理、微分方程解的存在性定理、积分方程解的存在性定理,在泛函分析中都归结为一个定理——不动点定理。
这正是抽象的结果。
不动点定理实际上是算子方程T x x =的求解问题,是分析学的各个分支中存在和唯一性定理的重要基础,它是关于具体问题解的存在唯一性的定理,其中Banach 不动点定理,亦称压缩映射原理,它提供了线性方程解的最佳逼近程序,给出了近似解的构造,在常微分方程、积分方程等领域中也有着广泛的应用,在现代数学发展中有着重要的地位和作用。
2.不动点相关定义及定理介绍2.1不动点相关定义定义1 设X 为非空集合,:T X X ®是一个映射,如果x X $ 使得T x x =成立,则称x 为映射T 的一个不动点。
特别地,函数()f x 是定义在D R Ì上的函数,如果x D $ 使得()f x x =成立,则称x 为函数()f x 的一个不动点。
定义 2 设(),X r 是距离空间,T 是X 到其自身的映射,且对于任意的,x y XÎ,不等式()(),,Tx Ty x y r qr £都成立,其中q 是满足01q?的常数。
则称T 是X 上的压缩映射。
2.2不动点思想首先,对于函数()y f x =的不动点,有两个方面的理解:1)()y f x =的不动点,是方程()0f x x -=的根。
2)()y f x =的不动点,是函数()y f x =与y x =的交点。
有了这两个方面的理解,很显然,可以用不动点思想来求方程的根和函数的交点。
其次,由于()()()()()()()(),,f x x ff x f x x f f f x f x x ===== 无论迭代多少次,总是x 本身,所以不动点思想可以在函数迭代及数列中有广泛的应用。
2.3不动点相关定理定理1 设(),X r 为完备的距离空间,T 是X 上的压缩映射,则T 在X 中存在唯一的不动点,即存在唯一的x X Î,使得T x x =。
并且该不动点可以用迭代法求得。
有时候映射T 不能满足定理1的条件,故不能应用它,因此有必要将定理加以拓广,由此得到定理2。
定理2 设(),X r 为完备的距离空间,T 是X 到其自身的映射,如果存在常数:01q q?以及自然是0n 使得对于任意的,x y XÎ,()()0,,n n T x T y x y r qr £成立,那么T 在X 中存在唯一的不动点。
为使用的方便,由上述定理1的证明过程,容易得到下面的定理3。
定理3 若数列{}n x 满足条件211n n n n x x r x x +++-? ()1,2,3,01n r=?则{}n x 一定存在极限。
在定理1中取X R =,r 为R 中常见距离,则又可以得到下述定理4。
定理4 若函数()f x 是定义在D R Ì上的函数,若[),,0,1x y D q "? 使得()()fx f y x yq -?,那么函数()f x 在D 中存在唯一不动点。
若()f x 满足更强的条件,在D 是可导,则由微分中值定理,可得定理5。
定理 5 若函数()f x 是定义在D R Ì上的可导函数,且满足(),x D f x K¢"危,其中01K ?,则函数()fx 在D 中存在唯一不动点。
将此结论应用到数列中,有可得到下述的定理。
定理 6 设函数(),y f x x D = 可导且满足()1f x K¢?,定义数列()1n nx fx +=,1,2,3,n = 那么{}nx 一定存在极限。
有了上述一系列的定理,我们可以应用它们解决很多问题。
3.不动点思想在其他学科的应用3.1在数列通项公式中的应用命题1 若函数()f x ax b =+,0x 为()f x 的不动点,{}n a 满足()1n n a f a +=则{}0n a x -是以a 为公比的等比数列。
命题2 若函数()()0,0ax b f x c ad bc cx d+=?+,数列{}n a 满足()1n n a f a +=则有:(1)若()f x 有两个不动点,p q ,则数列nn a p a q 禳-镲睚-镲铪是等比数列。
(2)若()f x 只有一个不动点p ,则数列1n a p 禳镲睚-镲铪是等差数列。
证明(1),p q 是()f x 的不动点,则,p q 分别满足()20,cp d a p b +--=()20cq d a q b +--=,于是()()11n n n n n n n n aa bpa pc ab pd a p ca d aa b a qa qc ab qdqca d+++--+--+==+--+--+()()()()()()22n na pc a p cp d a p ba qc aq cq d a q b轾---+--臌=轾---+--臌n n a p a pc a qca q--=--故数列nn a p a q 禳-镲睚-镲铪是等比数列。
(2)p 是()f x 的唯一不动点,那么p 满足()20c p d a p b +--=且()()22cx d a x b x p +--=-。
于是11111n n n n n aa b a pa pa ppca d+-=-+----+()()()2n n n nca d a a b a pc a b pdap +--=轾-+--臌()()()()2n n n a p a pc a p a p -=轾---臌1a pc=-故列1n a p 禳镲睚-镲铪是等差数列。
例1.已知113,21,n n a a a +==-求数列{}n a 的通项公式。
解:设()21f x x =-,则()f x 的不动点为01x =,故{}1n a -是以2为公比的等比数列,而13a =,所以11222n nn a --=?,故21n n a =+例2.已知111,21n n n a a a a +==+,求数列{}n a 的通项公式。
解:设()21xf x x =+,则()f x 有唯一的不动点0x =,故1n a 禳镲睚镲铪是等差数列,1112n na a +-=,而11a =,故()1121nn a =+-,从而可得121n a n =-。
3.2在求方程解中的应用命题3 若0x 是()y f x =的不动点,那么0x 也是()()y ff x =的不动点。
证明:0x 是()y f x =的不动点,那么()00f x x =,故()()()0f f x f x x ==,从而命题得证。
例3 求方程43222210x x x x --++=的解。
解:原方程可转化为()()222111x x x x x ------=,令()21f x x x =--,此题即求()()y ff x =得不动点。
由命题3,()y f x =的不动点也是()()y f f x =的不动点,从而求出()y f x =的不动点1211x x ==-。
即12,x x 是原方程的两个根。
故4322221x x x x --++必含((11x x 轾轾---犏犏臌臌,由多项式除法,((()43222221111x x x x x x x轾轾--++=-+---犏犏臌臌,得到方程的另两个根341,1x x ==-。
由定理1可知,不动点可由迭代法求得,应用此思想也可以求一些方程的近似解。
例4 求方程cos -=0x x 的近似解。
解:设()cos f x x =,本题转化为求()f x 在上的不动点。
由函数图象c o s ,y x y x ==只有一个交点,故()fx 只有一个不动点。
取初始值01x =,1cos n n x x +=,进行迭代,可以得到方程的近似解0.9998477x »。
3.3在求函数解析式中的应用命题 4 设(),1f x ax b a =+ ,定义()()()1,n nf x ffx n N ++=,则(),11nnb b fx a x n N aa +骣琪=-+ 琪--桫 证明:令()f x x =,得()f x 的不动点01b x a=-,原命题即证()()0nnfx ax x x=-+,用归纳法证明如下:1)当1n =时,结论显然成立。
2)假设当n k =时,结论成立。
即()()0kkfx a x x x=-+。
则当1n k =+时,()()()()()()10000k kk k fx ffx fa x x x a a x x x b+轾==-+=-++臌 ()()110000k k a x x ax b a x x x ++=-++=-+ 命题得证。
例5. 设()41f x x =-,定义()()()1,n nf x f fx n N ++=,求()nfx解:首先求出()f x 的不动点,013x =。
由命题4可知()11433nnfx x 骣琪=-+琪桫例5.求所有函数()f x ,使其定义域为一切正实数,值为正实数,且 (1)()()()0,0,x y f xf y yf x ">>=; (2)()lim 0x f x=。
解:设()f x 是满足题设条件的函数,则首先证明:1是()f x 的一个不动点。